Nothing Special   »   [go: up one dir, main page]

JPH054274B2 - - Google Patents

Info

Publication number
JPH054274B2
JPH054274B2 JP22912984A JP22912984A JPH054274B2 JP H054274 B2 JPH054274 B2 JP H054274B2 JP 22912984 A JP22912984 A JP 22912984A JP 22912984 A JP22912984 A JP 22912984A JP H054274 B2 JPH054274 B2 JP H054274B2
Authority
JP
Japan
Prior art keywords
vehicle speed
wheel steering
steering
signal
rear wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22912984A
Other languages
Japanese (ja)
Other versions
JPS61108069A (en
Inventor
Akihiko Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22912984A priority Critical patent/JPS61108069A/en
Publication of JPS61108069A publication Critical patent/JPS61108069A/en
Publication of JPH054274B2 publication Critical patent/JPH054274B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/30Safety devices, e.g. alternate emergency power supply or transmission means to ensure steering upon failure of the primary steering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1518Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles
    • B62D7/1545Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles provided with electrical assistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前輪の転舵に応じて後輪をも転舵す
るように成した車両の4輪操舵装置に関する。さ
らに詳しくは、少なくとも車速に応じて決定され
る前輪転舵角に対する後輪転舵角の比に基づいて
後輪を転舵するよう後輪転舵機構に指令信号を発
するコントローラを備えて成る4輪操舵装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a four-wheel steering system for a vehicle that steers the rear wheels in response to the steering of the front wheels. More specifically, the four-wheel steering system includes a controller that issues a command signal to a rear wheel steering mechanism to steer the rear wheels based on a ratio of a rear wheel steering angle to a front wheel steering angle determined in accordance with at least vehicle speed. Regarding equipment.

(従来技術) 従来4輪車両の操舵はステアリングホイールに
よつて前輪のみを転舵するのが普通であつたが、
前輪のみを転舵するのでは走行状況によつて後輪
に横すべりが生じたり、旋回半径に限度があつて
小まわりが効かないなどの操縦性、操向性の点か
ら問題が指摘され、この点に鑑み最近前輪と共に
後輪をも転舵する4輪操舵装置が提案、研究され
ている。
(Prior art) Conventionally, four-wheeled vehicles were typically steered by turning only the front wheels using a steering wheel.
Problems have been pointed out in terms of maneuverability and steering, such as steering only the front wheels, which may cause sideslip in the rear wheels depending on the driving situation, or limit the turning radius, making it impossible to make small turns. In view of this, four-wheel steering devices that steer both the front wheels and the rear wheels have recently been proposed and researched.

即ち4輪操舵装置では比較的高速での走行時に
前輪の転舵方向と同一の方向に後輪を転舵すれば
(これを同位相転舵という)、前、後輪に同時に横
方向の力が加わるので操舵輪操舵からの位相のお
くれがなく、車両の姿勢を旋回円の接線上にほぼ
保つことが出来、例えば高速走行時のレーンチエ
ンジなどもスムーズに行なえる。又極低速走行時
に前輪の転舵方向と逆方向に後輪を転舵すれば
(これを逆位相転舵という)、車両の向きを大きく
変化出来るので縦列駐車や車庫入れなどに便利で
ある。
In other words, with a four-wheel steering system, when driving at relatively high speeds, if the rear wheels are steered in the same direction as the front wheels (this is called in-phase steering), lateral forces are applied to the front and rear wheels at the same time. Because of this, there is no phase lag from the steering wheel steering, and the vehicle's attitude can be maintained almost on the tangent to the turning circle, allowing smooth lane changes, for example, when driving at high speeds. Also, if the rear wheels are steered in the opposite direction to the front wheels when driving at very low speeds (this is called reverse phase steering), the direction of the vehicle can be changed significantly, which is convenient for parallel parking or parking in a garage.

さらに比較的高速では前輪を大きく転舵するこ
とはなく、前輪を大きく転舵するのは比較的低速
での走行時であることを考えると、前輪が小さく
転舵される範囲では後輪をも同一方向に転舵し、
大きく転舵する時には後輪を逆方向に転舵する4
輪操舵装置が求められることが判る。
Furthermore, considering that the front wheels are not steered significantly at relatively high speeds, and the front wheels are steered significantly when driving at relatively low speeds, the rear wheels are also steered within the range where the front wheels are steered small. steer in the same direction,
When making a large turn, steer the rear wheels in the opposite direction 4
It can be seen that a wheel steering device is required.

このようなことから、前輪の転舵角に対して後
輪の転舵角の比、すなわち転舵比を任意に可変制
御できる機構を設け、車速、前輪転舵角等に応じ
て転舵比を可変制御して操縦性、走行安定性等の
向上を図ることが提案されている。
For this reason, we have provided a mechanism that can arbitrarily variably control the ratio of the steering angle of the rear wheels to the steering angle of the front wheels, that is, the steering ratio, and adjust the steering ratio according to vehicle speed, front wheel steering angle, etc. It has been proposed to improve maneuverability, driving stability, etc. by variable control of

例えば、特開昭59−77968号に開示されている
ように、前輪に対する後輪の転舵比をコントロー
ラにより制御するようになすとともに、このコン
トローラを車速センサからの車速信号に基づいて
作動させるようにした4輪操舵装置がある。
For example, as disclosed in Japanese Patent Laid-Open No. 59-77968, the steering ratio of the rear wheels relative to the front wheels is controlled by a controller, and this controller is operated based on a vehicle speed signal from a vehicle speed sensor. It has a four-wheel steering system.

このようにして、車速に応じて4輪操舵を行な
わせる場合に、車速は路面状況等により常に細か
く変動し、また車速を検出する車速センサの精度
やセンサ用ケーブルのねじれ等により検出信号も
常に変動するため、この細かな変動に対応して転
舵比を制御したのでは却つて後輪のふらつき等を
生じ安定性が損なわれるという問題がある。
In this way, when performing four-wheel steering according to the vehicle speed, the vehicle speed always fluctuates minutely depending on road surface conditions, etc., and the detection signal also varies depending on the accuracy of the vehicle speed sensor that detects the vehicle speed, twisting of the sensor cable, etc. Since the steering ratio fluctuates, there is a problem in that if the steering ratio is controlled in response to these small fluctuations, the rear wheels may wobble or the like, resulting in a loss of stability.

(発明の目的) 本発明は、このような問題に鑑み、4輪操舵の
制御用のコントローラに入力する車速信号はヒス
テリシス処理して車速の微少変動による悪影響を
除去するようにした車両の4輪操舵装置を提供す
ることを目的とするものである。
(Object of the Invention) In view of the above-mentioned problems, the present invention provides a four-wheel system for a vehicle in which a vehicle speed signal input to a controller for controlling four-wheel steering is subjected to hysteresis processing to eliminate the adverse effects caused by minute fluctuations in vehicle speed. The object of the present invention is to provide a steering device.

(発明の構成) 本発明の4輪操舵装置は、少なくとも車速に応
じて転舵比を可変制御する指令信号を後輪転舵機
構に発するコントローラを有し、 該コントローラには、信号処理部によつて車速
センサからの信号をヒステリシス処理された車速
信号が入力されるようにしたことを特徴とするも
のである。
(Structure of the Invention) The four-wheel steering device of the present invention includes a controller that issues a command signal to the rear wheel steering mechanism to variably control the steering ratio according to at least the vehicle speed, and the controller includes a signal processing unit that controls the steering ratio. The present invention is characterized in that a vehicle speed signal obtained by subjecting a signal from a vehicle speed sensor to hysteresis processing is input.

上記ヒステリシス処理とは、車速がある一定範
囲内で変動しても、車速センサから検出してコン
トローラにおける制御情報として用いる車速信号
としては一定値のまま保持するような処理を意味
し、具体的には、例えば、車速センサから検出さ
れるパルスを検出する場合に、このパルス数(N)が
最初に検出したパルス数(N1)から所定幅(±
α)の変動内に収まつている間はコントローラに
送る車速信号としては最初に検出したパルス数
(N1)を送り続け、この所定幅を超えて変動した
時に初めてコントローラへ送る車速信号を変動し
た車速に対応する値に変えるようにすることを言
い、このようにヒステリシス処理することにより
コントローラの作動は車速の細かな変動を受けな
くなり安定した制御が行なえるようになる。
The above-mentioned hysteresis processing means a process in which even if the vehicle speed fluctuates within a certain range, the vehicle speed signal detected by the vehicle speed sensor and used as control information in the controller is maintained at a constant value. For example, when detecting pulses detected from a vehicle speed sensor, the number of pulses (N) is within a predetermined width (±
As long as the speed remains within the variation of α), the first detected number of pulses (N 1 ) continues to be sent as the vehicle speed signal sent to the controller, and when it fluctuates beyond this predetermined width, the vehicle speed signal sent to the controller is changed for the first time. By performing hysteresis processing in this way, the operation of the controller is not affected by small fluctuations in vehicle speed, and stable control can be performed.

(実施例) 以下、図面に示す実施例を参照しながら本発明
を詳細に説明する。
(Examples) Hereinafter, the present invention will be described in detail with reference to examples shown in the drawings.

第1図は本発明に係る4輪操舵装置の1実施例
を示す概略図である。ステアリングホイール1は
ステアリングシヤフト1aを介して第1ピニオン
2と連結し、第1ピニオン2は車幅方向に摺動自
在な第1ラツク軸3のラツクと噛合する。第1ラ
ツク軸3の両端には右および左用タイロツド4
a,4bが連結し、タイロツド4a,4bは右お
よび左用前輪6aを車体に対し転舵自在に支持す
るナツクル5a,5bのアームと連結する(な
お、左右対象なので左側のタイロツド4b、ナツ
クル5b、前輪6bは図示せず)。このため、ス
テアリングホイール1の操作に応じて第1ラツク
軸3が車幅方向に移動し、この移動がタイロツド
4a,4bを介してナツクル5a,5bに伝わり
前輪6a,6bが転舵される。
FIG. 1 is a schematic diagram showing one embodiment of a four-wheel steering system according to the present invention. The steering wheel 1 is connected to a first pinion 2 via a steering shaft 1a, and the first pinion 2 meshes with a rack of a first rack shaft 3 that is slidable in the vehicle width direction. Right and left tie rods 4 are attached to both ends of the first rack shaft 3.
a, 4b are connected, and the tie rods 4a, 4b are connected to arms of knuckles 5a, 5b that support the right and left front wheels 6a with respect to the vehicle body so as to be steerable (note that since the left and right wheels are symmetrical, the left tie rod 4b, the knuckle 5b, The front wheel 6b is not shown). Therefore, the first rack shaft 3 moves in the vehicle width direction in response to the operation of the steering wheel 1, and this movement is transmitted to the knuckles 5a, 5b via the tie rods 4a, 4b, so that the front wheels 6a, 6b are steered.

一方、第1ラツク軸3には第1ラツク軸3と平
行な第2ラツク軸7が連結部7aを介して一体に
連結され、第2ラツク軸7のラツクには後輪へ伝
える転舵力を得るための第2ピニオン8が噛合し
ている。このため、第1ラツク軸3が車幅方向に
動かされると、同時に第2ラツク軸7も同方向に
動かされ、第2ピニオン8が回転される。この第
2ピニオン8の回転は、第2ピニオン8と連結す
る動力伝達シヤフト9を介して転舵比可変後輪転
舵機構10に伝えられ、ここで調整される転舵比
に応じて後輪が転舵される。このようにして、前
輪転舵に応じて後輪転舵を行なわせることができ
るようになつている。
On the other hand, a second rack shaft 7 parallel to the first rack shaft 3 is integrally connected to the first rack shaft 3 via a connecting portion 7a, and the rack of the second rack shaft 7 has a steering force to be transmitted to the rear wheels. The second pinion 8 is engaged to obtain the following. Therefore, when the first rack shaft 3 is moved in the vehicle width direction, the second rack shaft 7 is simultaneously moved in the same direction, and the second pinion 8 is rotated. The rotation of the second pinion 8 is transmitted to the variable steering ratio rear wheel steering mechanism 10 via the power transmission shaft 9 connected to the second pinion 8, and the rear wheels are rotated according to the steering ratio adjusted here. Be steered. In this way, the rear wheels can be steered in accordance with the front wheels steered.

次に、転舵比可変後輪転舵機構10について説
明する。前端が第2ピニオン8と連結した動力伝
達シヤフト9の後端は第3ピニオン11と連結
し、第3ピニオン11は回転軸12bが車体に支
持されたベベルギヤ12と噛合する。ベベルギヤ
12の周上の1ケ所には、ロツド支持孔12aが
形成され、このロツド支持孔12a内に連結ロツ
ド13がベベルギヤ12に対し回動自在で且つロ
ツド13の軸方向摺動自在に挿入される。ロツド
13の一端13aは、パワーステアリング用のコ
ントロールバルブ15を介して後輪転舵用の第3
ラツク軸17と結合する結合アーム14a,14
bとボールジヨイントにより連結する。第3ラツ
ク軸17は後輪用ギヤボツクス16内に車体方向
摺動自在に保持され、第3ラツク軸17の両端は
右および左用タイロツド18a,18bを介して
右および左用ナツクル19a,19bと連結す
る。右および左用ナツクル19a,19bは車体
に対して転舵自在に後輪20a,20bを支持す
るため、第3ラツク軸17の車幅方向の動きによ
り後輪が転舵される。なお、タイロツド、ナツク
ル、後輪は左右対象であるため右側のみを図示し
ている。第3ラツク軸17の車幅方向の動きは、
ベベルギヤ12の回転に伴う連結ロツド13の一
端13aの車幅方向の移動が結合アーム14a,
14bを介して第3ラツク軸17に伝えられて行
なわれる。この時、結合アーム14a,14b上
に設置されたコントロールバルブ15の作用によ
り、ポンプ21からの圧油が後輪用ギヤボツクス
16内のシリンダ内に適宜送られ第3ラツク軸1
7の移動をアシストするようになつている。
Next, the variable steering ratio rear wheel steering mechanism 10 will be explained. The rear end of the power transmission shaft 9, whose front end is connected to the second pinion 8, is connected to a third pinion 11, and the third pinion 11 meshes with a bevel gear 12 whose rotating shaft 12b is supported by the vehicle body. A rod support hole 12a is formed at one location on the circumference of the bevel gear 12, and a connecting rod 13 is inserted into the rod support hole 12a so as to be rotatable relative to the bevel gear 12 and slidable in the axial direction of the rod 13. Ru. One end 13a of the rod 13 is connected to a third valve for steering the rear wheels via a control valve 15 for power steering.
Connecting arms 14a, 14 connected to rack shaft 17
Connect with b using a ball joint. The third rack shaft 17 is held in the rear wheel gearbox 16 so as to be slidable in the vehicle body direction, and both ends of the third rack shaft 17 are connected to right and left knuckles 19a and 19b via right and left tie rods 18a and 18b. . Since the right and left knuckles 19a, 19b support the rear wheels 20a, 20b so as to be steerable relative to the vehicle body, the rear wheels are steered by movement of the third rack shaft 17 in the vehicle width direction. Note that the tie rod, nut, and rear wheel are symmetrical, so only the right side is shown. The movement of the third rack shaft 17 in the vehicle width direction is as follows:
The movement of one end 13a of the connecting rod 13 in the vehicle width direction due to the rotation of the bevel gear 12 causes the connecting arm 14a,
14b to the third rack shaft 17. At this time, by the action of the control valve 15 installed on the coupling arms 14a, 14b, pressure oil from the pump 21 is appropriately sent into the cylinder in the rear wheel gearbox 16, and the third rack shaft 1
It is designed to assist the movement of 7.

次に、ベベルギヤ12の回転に応じて連結ロツ
ド13の一端13aを車幅方向に移動させる機構
について説明する。連結ロツド13の他端13b
はボールジヨイントを介して振子アーム22の先
端と連結し、この振子アーム22はこのアーム2
2と直角な揺動軸23と結合し、この揺動軸23
を中心に回転自在となつている。この揺動軸23
は、垂直に延びた揺動支持軸24により水平面内
に延びて支持され、揺動支持軸24の回転に応じ
て水平面内で揺動するようになつている。この揺
動軸23の揺動に応じて振子アーム22の回転面
が傾くため、ベベルギヤ12の回転に応じて連結
ロツド13の一端13aが車幅方向へ動かされる
割合が変動する。
Next, a mechanism for moving one end 13a of the connecting rod 13 in the vehicle width direction in accordance with the rotation of the bevel gear 12 will be described. The other end 13b of the connecting rod 13
is connected to the tip of the pendulum arm 22 via a ball joint, and this pendulum arm 22 is connected to the tip of the pendulum arm 22 via a ball joint.
2 and a swing shaft 23 perpendicular to the swing shaft 23.
It can be rotated freely around the center. This swing shaft 23
is extended and supported in a horizontal plane by a swinging support shaft 24 extending vertically, and swings in the horizontal plane in response to rotation of the swinging support shaft 24. Since the rotating surface of the pendulum arm 22 is tilted in accordance with the swinging of the swing shaft 23, the rate at which one end 13a of the connecting rod 13 is moved in the vehicle width direction varies in accordance with the rotation of the bevel gear 12.

この作動を、第2図に示す上記転舵比可変機構
の平面概略図を用いて説明する。まず、揺動軸2
3が車幅方向に延びてベベルギヤ12の回転軸1
2bと同一直線上に位置する時を考える。なお、
連結ロツド13の一端13aもベベルギヤ12の
回転軸線上に位置する。この時に、ベベルギヤ1
2が回転されると、連結ロツド13は一端13a
を頂点として連結ロツド13を稜線とする円錐面
上を移動し、振子アーム22はこの円錐の底面上
を移動する。このため、ベベルギヤ9が回転して
も、一端13aは移動しない。すなわち、この時
には前輪の転舵に対して後輪は転舵されない状態
になる。この状態から揺動支持軸24を回転させ
て、図示の如く揺動軸23を水平面内で反時計回
りに“”だけ傾けると、振子アーム22の回転
面を上記円錐の底面に対して“”だけ傾く。こ
のため、例えば、ベベルギヤ12を回転させ、第
2図において連結ロツド13とベベルギヤ12の
回転軸12bとのなす角がα1となるようにする
と、連結ロツド13の他端13bは13b′の位置
に距離“d1”だけ移動し、このため一端13aも
13a′の位置にほぼ同距離だけ移動する。この移
動により第3ラツク軸17が同様に移動され後輪
の転舵がなされる。この図から判るように、前輪
転舵角に対する後輪転舵角の比、すなわち転舵比
はベベルギヤ12の回転に対する連結ロツド13
の一端13aの移動量と同じであり、揺動軸23
の水平面内での傾き“”の大きさに応じて転舵
比を変えることができる。さらに、揺動軸23は
上記の如く反時計回りに傾かせるのみならず時計
回りにも傾かせることができ、この時にはベベル
ギヤ12の回転に対する連結ロツド13の一端1
3aの移動方向が上記の場合と逆になる。これに
より、前輪に対し後輪を同位相にも逆位相にも転
舵させることができる。
This operation will be explained using a schematic plan view of the variable steering ratio mechanism shown in FIG. First, the swing axis 2
3 extends in the vehicle width direction and is the rotating shaft 1 of the bevel gear 12.
Consider the case where it is located on the same straight line as 2b. In addition,
One end 13a of the connecting rod 13 is also located on the rotation axis of the bevel gear 12. At this time, bevel gear 1
2 is rotated, the connecting rod 13 has one end 13a
The pendulum arm 22 moves on a conical surface with the apex at the apex and the connecting rod 13 as the ridgeline, and the pendulum arm 22 moves on the bottom surface of this cone. Therefore, even if the bevel gear 9 rotates, the one end 13a does not move. That is, at this time, the rear wheels are not steered while the front wheels are steered. From this state, by rotating the swing support shaft 24 and tilting the swing shaft 23 counterclockwise in the horizontal plane by "" as shown in the figure, the rotating surface of the pendulum arm 22 is aligned "" with respect to the bottom surface of the cone. Just lean. Therefore, for example, if the bevel gear 12 is rotated so that the angle between the connecting rod 13 and the rotating shaft 12b of the bevel gear 12 in FIG. The first end 13a also moves approximately the same distance to the position 13a'. As a result of this movement, the third rack shaft 17 is similarly moved and the rear wheels are steered. As can be seen from this figure, the ratio of the rear wheel steering angle to the front wheel steering angle, that is, the steering ratio, is the ratio of the rotation of the connecting rod 13 to the rotation of the bevel gear 12.
The amount of movement of the one end 13a is the same as that of the swing shaft 23.
The steering ratio can be changed depending on the magnitude of the inclination "" in the horizontal plane. Furthermore, the swing shaft 23 can be tilted not only counterclockwise as described above, but also clockwise, and in this case, one end 1 of the connecting rod 13 is connected to the rotation of the bevel gear 12.
The moving direction of 3a is opposite to the above case. Thereby, the rear wheels can be steered in the same phase or in the opposite phase with respect to the front wheels.

次いて、上記揺動軸23の水平面内での揺動を
行なわせる機構を説明する。揺動軸23は、垂直
に延びた揺動支持軸24により水平面内に延びて
支持されるのであるが、この揺動支持軸24には
先端にギヤ25aを有する揺動ギヤ25が固設さ
れ、この揺動ギヤ25の揺動支持軸24を中心と
する揺動により揺動支持軸24が回され揺動軸2
3が揺動される。揺動ギヤ25のギヤ25aはウ
オーム26と噛合し、このウオーム26はステツ
プモータ29の出力軸29aに設けられた第1か
さ歯車28およびこれと噛合しウオーム26と同
軸26a上に設けられた第2かさ歯車27を介し
てステツプモータ29により回転される。このス
テツプモータ29の回転は、揺動支持軸24上に
設けられ揺動軸23の揺動角を検知する揺動角セ
ンサ33およびヒステリシス処理部34を介して
車速を検知する車速センサ32からの検知信号を
受けた電気コントローラ31からステツプモータ
駆動回路30へ送られる制御信号に基づいて制御
される。
Next, a mechanism for swinging the swing shaft 23 in a horizontal plane will be explained. The swing shaft 23 extends in a horizontal plane and is supported by a swing support shaft 24 extending vertically, and a swing gear 25 having a gear 25a at the tip is fixed to the swing support shaft 24. , the swing support shaft 24 is rotated by the swing of the swing gear 25 around the swing support shaft 24.
3 is rocked. The gear 25a of the swing gear 25 meshes with a worm 26, and the worm 26 meshes with a first bevel gear 28 provided on the output shaft 29a of the step motor 29 and a first bevel gear 28 provided on the same axis as the worm 26. It is rotated by a step motor 29 via a double bevel gear 27. The rotation of the step motor 29 is controlled by a swing angle sensor 33 provided on the swing support shaft 24 that detects the swing angle of the swing shaft 23 and a vehicle speed sensor 32 that detects the vehicle speed via a hysteresis processing section 34. The step motor drive circuit 30 is controlled based on a control signal sent from the electric controller 31 that receives the detection signal to the step motor drive circuit 30.

電気コントローラ31による制御の1例を示す
のが第3図のグラフであり、このように車速に応
じてハンドル舵角(前輪転舵角)に対する後輪転
舵角、すなわち転舵比を変えるようにしている。
本例においては、低速領域においては後輪を逆位
相に転舵させ旋回性の向上を図り、高速領域では
同位相に転舵させ走行安定性の向上を図つてい
る。この場合、コントローラ31は、予め設定さ
れたプログラムに従つて演算処理を行なうマイコ
ン等の演算処理装置で構成され、該コントローラ
31は、少なくとも車速に応じて転舵比(前輪転
舵角に対する後輪転舵角の比)を決定し、該転舵
比に基づいて後輪を転舵するよう後輪転舵機構1
0、特に該機構中のステツプモータ29に指令信
号を発し、該ステツプモータ29はこの信号の基
づいて所定回転方向に所定パルス分だけ駆動さ
れ、それに応じて第3図のように転舵比が変化す
る。
The graph in FIG. 3 shows an example of control by the electric controller 31, and in this way, the rear wheel steering angle relative to the steering wheel steering angle (front wheel steering angle), that is, the steering ratio, is changed according to the vehicle speed. ing.
In this example, in a low speed range, the rear wheels are steered in opposite phases to improve turning performance, and in high speed ranges, the rear wheels are steered in the same phase to improve driving stability. In this case, the controller 31 is constituted by an arithmetic processing device such as a microcomputer that performs arithmetic processing according to a preset program. The rear wheel steering mechanism 1 determines the steering angle ratio) and steers the rear wheels based on the steering ratio.
In particular, a command signal is issued to the step motor 29 in the mechanism, and the step motor 29 is driven in a predetermined rotation direction by a predetermined pulse amount based on this signal, and the steering ratio is accordingly changed as shown in FIG. Change.

上記コントローラ31に送られる車速信号は、
車速センサ32により検出された信号そのもので
はなく、この信号をヒステリシス処理部34でヒ
ステリシス処理されたものであり、このヒステリ
シス処理により車速の微小変動を伝えないように
して安定した制御を行なえるようにしている。さ
らに、ヒステリシス処理部34には、車速センサ
32からの信号を受けて実車速が零になつたか否
かを検出する車速判別部35からの出力が入力さ
れるようになつており、車速判別部35によつて
実車速が零になつたことが検出されると車速判別
部35からヒステリシス処理部34へ信号が送ら
れ、ヒステリシス処理部34ではこの信号を受け
てヒステリシス処理の幅を零にする。これによつ
て、実車速が零の時にはコントローラ31に送ら
れる車速信号も零になり、後輪のイニシヤルセツ
トを車両が確実に停止した状態で行なうことがで
きる。
The vehicle speed signal sent to the controller 31 is
This signal is not the signal itself detected by the vehicle speed sensor 32, but is subjected to hysteresis processing by the hysteresis processing section 34. This hysteresis processing prevents the transmission of minute fluctuations in the vehicle speed and enables stable control. ing. Further, the hysteresis processing section 34 is configured to receive an output from a vehicle speed determination section 35 that receives a signal from the vehicle speed sensor 32 and detects whether or not the actual vehicle speed has become zero. 35 detects that the actual vehicle speed has become zero, a signal is sent from the vehicle speed determination section 35 to the hysteresis processing section 34, and the hysteresis processing section 34 receives this signal and sets the width of the hysteresis processing to zero. . As a result, when the actual vehicle speed is zero, the vehicle speed signal sent to the controller 31 also becomes zero, and the initial setting of the rear wheels can be performed with the vehicle reliably stopped.

即ち、4輪操舵装置においては、転舵比制御を
行なつている場合に前輪に対する後輪の位置や転
舵比制御系等にわずかずつ狂いが生じてくること
が考えられ、このような狂いを放置すれば狂いが
徐々に大きくなつて転舵比制御が異常になり操縦
性、安定性が損なわれる恐れがあるため、一般に
後輪の位置を検出してこれをフイードバツク制御
して正しい位置にセツトし直すイニシヤルセツト
を行なうようにしている。このイニシヤルセツト
を走行中に行なつたのではセツトに伴い後輪のふ
らつきが生じ危険があるので、イニシヤルセツト
は停車中に行なうようにしている。ところが、上
述のように車速検出においてヒステリシス処理を
行なうようにした場合には、実車速が零であるの
に検出車速が零でないと判断したり、実車速が零
でないのに検出車速が零であると判断することが
生じ、このような状態で後輪のイニシヤルセツト
を行なつたのでは却つて後輪の位置、すなわち転
舵比の誤差が大きくなる恐れがあるという問題が
ある。
In other words, in a four-wheel steering system, when steering ratio control is performed, slight deviations may occur in the position of the rear wheels relative to the front wheels, the steering ratio control system, etc. If left unchecked, the deviation will gradually increase and the steering ratio control will become abnormal, which could impair maneuverability and stability.In general, the position of the rear wheels is detected and feedback control is performed to adjust the position to the correct position. I am trying to perform an initial reset. If this initial set is performed while the vehicle is running, there is a danger that the rear wheels may wobble due to the setting, so the initial set is performed while the vehicle is stopped. However, when hysteresis processing is performed in vehicle speed detection as described above, the detected vehicle speed may be determined to be non-zero even though the actual vehicle speed is zero, or the detected vehicle speed may be determined to be zero even though the actual vehicle speed is not zero. If the initial setting of the rear wheels is performed in such a state, there is a problem that the error in the position of the rear wheels, that is, the steering ratio, may become larger.

そこで、本実施例では、上述の様に車速判別部
から実車速が零であることが検出された時にはヒ
ステリシス処理を行なう幅を零にするようにして
おり、その結果、上記ヒステリシス処理を行なつ
ても車両が完全に停止した時にのみ制御用車速信
号が零になるので後輪のイニシヤルセツトを車両
が完全に停止した状態で行なうことができ、制御
誤差を少なくすることができる。
Therefore, in this embodiment, when the actual vehicle speed is detected to be zero by the vehicle speed determination section as described above, the width for performing the hysteresis processing is set to zero, and as a result, the width for performing the hysteresis processing is set to zero. Since the control vehicle speed signal becomes zero only when the vehicle comes to a complete stop, the rear wheels can be initialized while the vehicle is completely stopped, and control errors can be reduced.

以上説明したコントローラ31およびヒステリ
シス処理部34での制御内容を第4図のフローチ
ヤートを用いて説明する。
The control contents of the controller 31 and the hysteresis processing section 34 explained above will be explained using the flowchart of FIG. 4.

このフローチヤートに示す車速処理ルーチンは
ステツプS1から始まりステツプS10で終るもの
で、このルーチンを所定間隔で割込み処理する。
この割込み処理間隔は、車速センサの種類等に応
じて決めるもので、本実施例では車速センサとし
て20パルスセンサを用い、且つこのセンサは車が
1Km進むと637回転するようになつているので、
車速が1Km/Hの時のパルス周期Tは T=3600(秒)/{1(Km/H)×637(回転) ×20(パルス/回転)}=0.282575(秒) となるので、T=0.282575秒毎の割り込み処理を
行なう。これによつて、このT(秒)の間に入力
されるパルス数が車速(Km/H)と同じになる。
The vehicle speed processing routine shown in this flowchart starts at step S1 and ends at step S10, and this routine is interrupted at predetermined intervals.
This interrupt processing interval is determined depending on the type of vehicle speed sensor, etc. In this embodiment, a 20-pulse sensor is used as the vehicle speed sensor, and this sensor rotates 637 times when the car travels 1 km.
The pulse period T when the vehicle speed is 1 Km/H is T = 3600 (seconds) / {1 (Km/H) x 637 (rotations) x 20 (pulses/turns)} = 0.282575 (s), so T = Performs interrupt processing every 0.282575 seconds. As a result, the number of pulses input during this T (seconds) becomes the same as the vehicle speed (Km/H).

上記のような周期T(秒)の割込み処理を行な
うときのパルス数を“N”、検出車速を“V(Km/
H)”とすると、ステツプS1から開始した車速処
理ルーチンをステツプS2に進んだ時、前回のル
ーチンから今回のルーチンまでのT(秒)の間に
カウントされたパルス数N(この値は車速を時速
で表わした値となる)を車速Vと記憶し、一方、
Nの値は零にリセツトして次のルーチンまで再び
パルスのカウントを開始する。次いで、ステツプ
S3に進みV=0か否か、すなわち前回のルーチ
ンから今回の割込み処理ルーチンまでのT秒の間
にパルスがカウントされたか否かを判定し、V=
0の時は実車速も零であるのでステツプS4に進
みVの値(すなわち“零”)をコントローラでの
制御情報用の車速信号SPDに入力する。この
SPDが零になることによつて前述の後輪のイニ
シヤルセツトが可能になる。ステツプS4からは
ステツプS10に進んで割込み処理は完了し、次の
処理に備える。
When performing the above-mentioned interrupt processing with a period of T (seconds), the number of pulses is “N” and the detected vehicle speed is “V (Km/Km)”.
H)", when the vehicle speed processing routine started at step S1 advances to step S2, the number of pulses N (this value is the number of pulses counted during T (seconds) from the previous routine to the current routine. ) is stored as vehicle speed V, and on the other hand,
The value of N is reset to zero and pulse counting begins again until the next routine. Then step
Proceeding to S3, it is determined whether V = 0, that is, whether pulses were counted during T seconds from the previous routine to the current interrupt processing routine, and V =
When the value is 0, the actual vehicle speed is also zero, so the process proceeds to step S4 and the value of V (ie, "zero") is input to the vehicle speed signal SPD for control information in the controller. this
When the SPD becomes zero, the above-mentioned initial setting of the rear wheels becomes possible. From step S4, the process advances to step S10 to complete the interrupt process and prepare for the next process.

一方、V=0でない時、すなわち走行中の場合
にはステツプSPD=0か否かを判定する。本制
御においてはヒステリシス処理が行なわれるの
で、ある程度の車速変動があつても制御用の車速
信号SPDは零ということがあり得るが、この時
にはステツプS4に進んでVの値をSPDに入力す
る。これによつてSPD=0であつても実車速が
零でない限りSPDの値はVと等しくなつて零で
はなくなる。このため、実車速が零でない限り後
輪のイニシヤルセツトが行なわれることがない。
SPD=0でない時は、ステツプS6に進み(V−
SPD)≧αか否かを判定し、(V−SPD)≧αの時
はステツプS8に進んで(V−α)の値をSPDに
入力した後ステツプS10に進んで処理を終了し、
(V−SPD)<αの時はステツプS8に進んで(V
−SPD)≦−αか否かを判定し、(V−SPD)≦−
αの時は(V−SPD)の値をSPDに入力した後
ステツプS10に進んで処理を終了し、(V−SPD)
>αの時はそのままステツプS10に進んで処理を
終了する。この時のSPDの値は次回の割り込み
処理のためこのまま記憶されて用いられるため、
この車速処理フローをT秒毎に割込み処理すれ
ば、前回の割り込み処理で用いられた制御用の車
速信号SPDに対して、今回の車速変化が(±α)
の範囲内にある限りSPDの値はそのまま制御用
として用いられ、車速変化が(±α)を超えた時
に初めてSPDの値が実車速に近ずくように修正
される。すなわち、車速センサの信号は上記の様
にして(±α)の幅のヒステリシス処理がなされ
るのである。
On the other hand, when V=0, that is, when the vehicle is running, it is determined whether step SPD=0. Since hysteresis processing is performed in this control, the vehicle speed signal SPD for control may be zero even if the vehicle speed fluctuates to some extent, but in this case, the process proceeds to step S4 and the value of V is input to SPD. As a result, even if SPD=0, as long as the actual vehicle speed is not zero, the value of SPD will be equal to V and will not be zero. Therefore, the rear wheels are not initialized unless the actual vehicle speed is zero.
If SPD is not 0, proceed to step S6 (V-
Determine whether or not (V-SPD)≧α, and if (V-SPD)≧α, proceed to step S8, input the value of (V-α) to SPD, and then proceed to step S10 to end the process.
When (V-SPD)<α, proceed to step S8 and (V
-SPD)≦-α, determine whether (V-SPD)≦-
When α, input the value of (V-SPD) to SPD, proceed to step S10, end the process, and input (V-SPD).
>α, the process directly advances to step S10 and ends the process. The SPD value at this time is stored and used as is for the next interrupt processing, so
If this vehicle speed processing flow is interrupted every T seconds, the current vehicle speed change will be (±α) with respect to the control vehicle speed signal SPD used in the previous interrupt processing.
As long as it is within the range, the SPD value is used as is for control purposes, and only when the vehicle speed change exceeds (±α) is the SPD value corrected so that it approaches the actual vehicle speed. That is, the signal from the vehicle speed sensor is subjected to hysteresis processing with a width of (±α) as described above.

なお、本発明は上記実施例のごとく後輪転舵機
構とステアリング機構とを機械的に連結した型式
の4輪操舵装置に限定されず、後輪転舵機構をコ
ントローラにより電気的に制御される電磁アクチ
ユエータで直接駆動する型式の4輪操舵装置にも
適用できる。この場合、コントローラには前輪の
操舵角を検出するセンサの信号が合せて入力され
る。
Note that the present invention is not limited to a four-wheel steering system in which a rear wheel steering mechanism and a steering mechanism are mechanically connected as in the above-described embodiments, but also includes an electromagnetic actuator that electrically controls the rear wheel steering mechanism by a controller. It can also be applied to a type of four-wheel steering system that is directly driven. In this case, a signal from a sensor that detects the steering angle of the front wheels is also input to the controller.

(発明の効果) 以上説明したように本発明によれば、少なくと
も車速に基づいて4輪操舵の制御を行なうコント
ローラに入力される制御用車速信号が車速センサ
の信号を所定幅のヒステリシス処理したものであ
るので、走行中の細かな車速変動の影響を受けず
に安定した制御を行なうことができる。
(Effects of the Invention) As explained above, according to the present invention, the control vehicle speed signal input to the controller that controls four-wheel steering based on at least the vehicle speed is a signal from the vehicle speed sensor processed with hysteresis of a predetermined width. Therefore, stable control can be performed without being affected by small fluctuations in vehicle speed while driving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る車両の4輪操舵装置の1
例を示す概略図、第2図は第1図の後輪転舵機構
の平面概略図、第3図は第1図の4輪操舵装置に
より制御される転舵比と速度の関係を示すグラ
フ、第4図は第1図の4輪操舵装置による車速処
理制御ルーチンを示すフローチヤートである。 1……ステアリングホイール、9……動力伝達
シヤフト、10……転舵比可変後輪転舵機構、1
2……ベベルギヤ、22……振子アーム、29…
…ステツプモータ、31……コントローラ。
FIG. 1 shows a four-wheel steering system for a vehicle according to the present invention.
A schematic diagram showing an example; FIG. 2 is a schematic plan view of the rear wheel steering mechanism in FIG. 1; FIG. 3 is a graph showing the relationship between the steering ratio and speed controlled by the four-wheel steering device in FIG. 1; FIG. 4 is a flowchart showing a vehicle speed processing control routine by the four-wheel steering system shown in FIG. DESCRIPTION OF SYMBOLS 1...Steering wheel, 9...Power transmission shaft, 10...Variable steering ratio rear wheel steering mechanism, 1
2...bevel gear, 22...pendulum arm, 29...
...Step motor, 31...Controller.

Claims (1)

【特許請求の範囲】 1 前輪の転舵に応じて後輪を転舵するようにな
した車両の4輪操舵装置であつて、 少なくとも車速に応じて決定される前輪転舵角
に対する後輪転舵角の比に基づいて後輪を転舵す
るよう後輪転舵機構に指令信号を発するコントロ
ーラが設けられており、 該コントローラに入力される車速信号は、車速
を検出する車速センサより発せられる信号を所定
幅のヒステリシス処理する信号処理部を介して入
力されるように構成されていることを特徴とする
車両の4輪操舵装置。
[Scope of Claims] 1. A four-wheel steering device for a vehicle configured to steer rear wheels in accordance with steering of front wheels, the rear wheel steering being based on a front wheel steering angle determined at least in accordance with vehicle speed. A controller is provided that issues a command signal to the rear wheel steering mechanism to steer the rear wheels based on the angle ratio, and the vehicle speed signal input to the controller is a signal issued by a vehicle speed sensor that detects the vehicle speed. A four-wheel steering system for a vehicle, characterized in that the signal is input through a signal processing section that performs hysteresis processing of a predetermined width.
JP22912984A 1984-10-31 1984-10-31 Four-wheel steering device for car Granted JPS61108069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22912984A JPS61108069A (en) 1984-10-31 1984-10-31 Four-wheel steering device for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22912984A JPS61108069A (en) 1984-10-31 1984-10-31 Four-wheel steering device for car

Publications (2)

Publication Number Publication Date
JPS61108069A JPS61108069A (en) 1986-05-26
JPH054274B2 true JPH054274B2 (en) 1993-01-19

Family

ID=16887203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22912984A Granted JPS61108069A (en) 1984-10-31 1984-10-31 Four-wheel steering device for car

Country Status (1)

Country Link
JP (1) JPS61108069A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752297B2 (en) * 1992-06-23 1998-05-18 株式会社日立製作所 AC generator for vehicles

Also Published As

Publication number Publication date
JPS61108069A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
US20020108805A1 (en) Oversteer control for a motor vehicle
EP0563885B1 (en) Rear-wheel steering apparatus for vehicles with a yaw rate sensor and calibration means therefore, and method for calibrating a yaw rate sensor
JPH054274B2 (en)
JPH0618255A (en) Front wheel steering angle detector and rear wheel steering controller for vehicle
JP2964728B2 (en) Four-wheel steering system
JPH055707B2 (en)
JPH0243675B2 (en)
JPS63173766A (en) Steering for vehicle
JPH0256275B2 (en)
JPH0223495Y2 (en)
JPS62160965A (en) Four wheel steering device
JPS62199569A (en) Rear wheel steering gear for automobile
JP2913851B2 (en) Motor control device for four-wheel steering vehicle
JP3100780B2 (en) Abnormality detection device for vehicle yaw rate sensor
JP2598787B2 (en) Rear wheel steering system for vehicles
JP2646803B2 (en) 4-wheel steering system
JP3012346B2 (en) Vehicle rear wheel steering system
JPS6220755A (en) Steering device for car
JP3006686B2 (en) Steering angle correction device
JPH05215542A (en) Apparatus for detecting front-wheel steering angle of vehicle
JPS63176787A (en) Four-wheel steering device for vehicle
JPH02200573A (en) Four-wheel steering control device
JPH03176279A (en) Rear wheel steering angle control device for car
JPH0231980A (en) Device for steering rear wheel of vehicle
JPH052551B2 (en)