Nothing Special   »   [go: up one dir, main page]

JPH0541818B2 - - Google Patents

Info

Publication number
JPH0541818B2
JPH0541818B2 JP194683A JP194683A JPH0541818B2 JP H0541818 B2 JPH0541818 B2 JP H0541818B2 JP 194683 A JP194683 A JP 194683A JP 194683 A JP194683 A JP 194683A JP H0541818 B2 JPH0541818 B2 JP H0541818B2
Authority
JP
Japan
Prior art keywords
air
fuel
load
engine
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP194683A
Other languages
Japanese (ja)
Other versions
JPS59128941A (en
Inventor
Toshio Suematsu
Juji Takeda
Katsushi Anzai
Yoshasu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP194683A priority Critical patent/JPS59128941A/en
Publication of JPS59128941A publication Critical patent/JPS59128941A/en
Publication of JPH0541818B2 publication Critical patent/JPH0541818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の空燃比制御方法に係り、特
に、自動車などの車両のエンジンの各種運転状態
を検出し、各運転状態に適合する空燃比によりエ
ンジンを制御するのに好適な内燃機関の空燃比制
御方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air-fuel ratio control method for an internal combustion engine, and particularly to a method for controlling an air-fuel ratio of an internal combustion engine, and in particular, detects various operating states of an engine of a vehicle such as an automobile, and determines an air-fuel ratio suitable for each operating state. The present invention relates to an air-fuel ratio control method for an internal combustion engine suitable for controlling the engine.

〔従来技術〕[Prior art]

自動車などの車両において、軽負荷時エンジン
に供給される混合気の空燃比を理論空燃比近傍に
制御し、排気ガスを規制値内に抑制することが従
来から行なわれている。ところが、エンジンの負
荷が高負荷になつたときにも理論空燃比によつて
エンジンを制御したのでは、排気軽の温度が許容
限界を越える恐れがある。そこで、エンジンの負
荷が高負荷になつたとき、第1図のbのA2で示
されるような排気系の温度を許容限界内に抑制す
る燃料増量値を含む空燃比によつてエンジンを制
御し、第1図のaのA1で示されるように、排気
系の温度を許容限界内に抑制することが従来から
行なわれていた。
2. Description of the Related Art In vehicles such as automobiles, it has been conventional practice to control the air-fuel ratio of an air-fuel mixture supplied to an engine during light loads to near a stoichiometric air-fuel ratio to suppress exhaust gas within a regulation value. However, if the engine is controlled using the stoichiometric air-fuel ratio even when the engine load becomes high, there is a risk that the temperature of the exhaust gas may exceed the allowable limit. Therefore, when the engine load becomes high, the engine is controlled by an air-fuel ratio that includes a fuel increase value that suppresses the exhaust system temperature within the allowable limit, as shown by A2 in b in Figure 1. As shown by A1 in FIG. 1A, it has been conventional practice to suppress the temperature of the exhaust system to within an allowable limit.

しかし、従来の空燃比制御方法は、排気系の温
度が比較的低い低負荷状態から高負荷状態になつ
た直後から燃料増量が行なわれるので、第1図の
dのA4に示されるように燃料消費量が増大する
という欠点があつた。
However, in the conventional air-fuel ratio control method, the amount of fuel is increased immediately after the exhaust system changes from a low load state where the temperature is relatively low to a high load state. The disadvantage was that consumption increased.

そこで、b図のB2で示されるように、高負荷
になつた一定時間T1経過後燃料増量を行なえ
ば、燃料消費量はdのB4で示されるようにな
り、高負荷直後から燃料増量を行なう場合よりも
燃料が浪費されるのを防止できる。なお、この方
法の場合にも、a図のB1で示されるように排気
系の温度を許容限界内に抑制することができる。
しかし、この方法では、c図のB3で示されるよ
うに、高負荷直後から燃料増量を行なつたときの
トルクA3よりもトルクが低下することが確認さ
れた。
Therefore, as shown by B2 in figure b, if the fuel amount is increased after a certain period of time T1 has passed since the load became high, the fuel consumption will be shown by B4 in d, and the fuel amount will be increased immediately after the high load. This will prevent more fuel from being wasted than would otherwise be the case. In addition, also in the case of this method, the temperature of the exhaust system can be suppressed within the permissible limit, as shown by B1 in Figure a.
However, with this method, as shown by B3 in Figure c, it was confirmed that the torque was lower than the torque A3 when the fuel amount was increased immediately after the high load.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高負荷時排気系の温度を許容
限界内に抑制する燃料増量を行う内燃機関におい
て、燃料消費量を抑制した状態でエンジンの出力
の低下を防止することができる内燃機関の空燃比
制御方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine capable of preventing a decrease in engine output while suppressing fuel consumption in an internal combustion engine that increases the amount of fuel to suppress the temperature of the exhaust system during high load to within an allowable limit. An object of the present invention is to provide an air-fuel ratio control method.

〔発明の概要〕[Summary of the invention]

前記目的を達成するために、本発明は、エンジ
ンの負荷及び回転数に基づいて、空燃比が所定空
燃比となる基準燃料噴射量を算出するとともに、
該算出結果に基づいて燃料噴射を実行するように
した内燃機関の空燃比制御方法において、 前記負荷が所定負荷以上か否かを判断し、 負荷が所定値以上の状態が、排気系の温度が許
容限界に近づくと想定される時間だけ継続したか
否かを判断し、 負荷が所定値以上で且つ負荷が所定値以上の状
態が、排気系の温度が許容限界に近づくと想定さ
れる時間だけ継続していないときには、エンジン
の空燃比が、排気系の温度を許容限界内に抑制す
る空燃比よりも稀薄で且つ前記所定空燃比より過
濃な空燃比となる高出力用増量値により前記基準
燃料噴射量を増量補正した量の燃料を噴射し、 負荷が所定値以上で且つ負荷が所定値以上の状
態が、排気系の温度が許容限界に近づくと想定さ
れる時間だけ継続したときには、エンジンの空燃
比が、排気系の温度を許容限界内に抑制する空燃
比となる排気系冷却用増量値により前記基準燃料
噴射量を増量補正した量の燃料を噴射するように
したことを特徴とする。
In order to achieve the above object, the present invention calculates a reference fuel injection amount at which the air-fuel ratio becomes a predetermined air-fuel ratio based on the engine load and rotation speed, and
In the air-fuel ratio control method for an internal combustion engine in which fuel injection is executed based on the calculation result, it is determined whether the load is equal to or higher than a predetermined load, and when the load is equal to or higher than the predetermined value, the temperature of the exhaust system is Determine whether or not the load has continued for the amount of time that is expected to approach the allowable limit, and the condition in which the load is at or above a predetermined value continues for the amount of time that the temperature of the exhaust system is expected to approach the allowable limit. If not, the air-fuel ratio of the engine is leaner than the air-fuel ratio that suppresses the temperature of the exhaust system within the permissible limit, and is richer than the predetermined air-fuel ratio. When the amount of fuel that has been corrected by increasing the fuel injection amount is injected, and the load is above a predetermined value, and the load remains above the predetermined value for a period of time during which the temperature of the exhaust system is expected to approach the permissible limit, the engine An amount of fuel is injected by increasing the reference fuel injection amount by an increase value for exhaust system cooling such that the air-fuel ratio is such that the temperature of the exhaust system is suppressed within an allowable limit. .

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の好適な実施例を
説明する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第2図には、本発明を適用したシステムの構成
が示されている。
FIG. 2 shows the configuration of a system to which the present invention is applied.

第2図において、エンジン10の吸気系には、
エアフロメータ12、スロツトル弁14などが設
けられており、エアフロメータ12を介して吸入
された空気がスロツトル弁14を介してインテー
クマニホールド16に供給され、燃料噴射弁18
から噴射される燃料と混合する。混合気は吸入弁
20を介して燃焼室22に供給される。燃焼室2
2に供給された混合気が、シリンダヘツド24に
設けられた点火プラグ26によつて燃焼される
と、排気弁28を介して排気系に排出される。シ
リンダブロツク32にはエンジンの冷却水温を検
出する水温センサ34が設けられている。又、イ
グナイタ36からの点火信号を各気筒に分配する
デイストリビユータ38には気筒判別センサ4
0、回転角センサ42が内蔵されている。
In FIG. 2, the intake system of the engine 10 includes:
An air flow meter 12, a throttle valve 14, etc. are provided, and air taken in through the air flow meter 12 is supplied to an intake manifold 16 through the throttle valve 14, and then a fuel injection valve 18.
mixes with the fuel injected from the The air-fuel mixture is supplied to the combustion chamber 22 via the intake valve 20. Combustion chamber 2
When the air-fuel mixture supplied to cylinder head 2 is combusted by spark plug 26 provided in cylinder head 24, it is discharged to the exhaust system via exhaust valve 28. The cylinder block 32 is provided with a water temperature sensor 34 for detecting the engine cooling water temperature. Further, the distributor 38 that distributes the ignition signal from the igniter 36 to each cylinder includes a cylinder discrimination sensor 4.
0. A rotation angle sensor 42 is built-in.

エアフロメータ12、水温センサ34、気筒判
別センサ40、回転角センサ42など、エンジン
の各種運転状態を検出するセンサの検出出力は制
御装置44に供給されている。
Detection outputs from sensors that detect various operating states of the engine, such as the air flow meter 12, water temperature sensor 34, cylinder discrimination sensor 40, and rotation angle sensor 42, are supplied to a control device 44.

第3図には、制御装置44をマイクロコンピユ
ータで構成した場合の構成が示されている。
FIG. 3 shows a configuration in which the control device 44 is composed of a microcomputer.

制御装置44は、第3図に示されるように、
CPU50、RAM52、ROM54、入出力ポー
ト56,58、出力ポート60,62、A−D変
換器64、マルチプレクサ66、駆動回路68,
70、波形整形回路72から構成されており、
CPU50、RAM52、ROM54、入出力ポー
ト56,58、出力ポート60,62がそれぞれ
バスライン76で接続されている。
The control device 44, as shown in FIG.
CPU50, RAM52, ROM54, input/output ports 56, 58, output ports 60, 62, A-D converter 64, multiplexer 66, drive circuit 68,
70, consists of a waveform shaping circuit 72,
The CPU 50, RAM 52, ROM 54, input/output ports 56, 58, and output ports 60, 62 are connected by a bus line 76, respectively.

エアフロメータ12、水温センサ34の検出出
力はマルチプレクサ66、A−D変換器64を介
して入出力ポート56に供給される、気筒判別セ
ンサ40、回転角センサ42の検出出力は波形成
形回路72を介して入出力ポート58に供給され
る。イグナイタ36は出力ポート60、駆動回路
68を介して出力される制御信号により点火信号
をデイストリビユータ38に供給することができ
る。又、燃料噴射弁18は、出力ポート62、駆
動回路70を介して出力される制御信号により噴
射時間が制御される。
The detection outputs of the air flow meter 12 and the water temperature sensor 34 are supplied to the input/output port 56 via the multiplexer 66 and the A-D converter 64.The detection outputs of the cylinder discrimination sensor 40 and rotation angle sensor 42 are supplied to the waveform shaping circuit 72. The signal is supplied to the input/output port 58 via the input/output port 58. The igniter 36 can supply an ignition signal to the distributor 38 by a control signal outputted through an output port 60 and a drive circuit 68. Further, the injection time of the fuel injection valve 18 is controlled by a control signal outputted via the output port 62 and the drive circuit 70.

以上の構成から、制御装置44は、エンジンの
各種運転状態を検出するセンサの検出出力を取込
み、各運転状態に適合する燃料噴射時間を演算し
燃料噴射弁18を制御することができる。なお、
各運転状態に適合する燃料噴射時間は予めROM
54に格納されている。又、本発明は、エンジン
の負荷が高負荷になつたとき、エンジン出力を高
める燃料増量値(高出力用燃料増量値)と基準燃
料噴射量(エンジン負荷とエンジン回転数に基づ
いて生成される燃料噴射量)とに従つた空燃比
で、且つ軽負荷時より過濃な空燃比によりエンジ
ンを一定時間制御し、一定時間経過後、例えば、
燃料増量制御の開始に伴つて排気系の温度が許容
限界に近づいたと想定される時間が経過したとき
に、前記空燃比よりも過濃の空燃比であつて、排
気系の温度を許容限界内に抑制する燃料増量値
(排気系冷却用燃料増量値)と基準燃料噴射量と
に従つた空燃比によりエンジンを制御することを
特徴とするところから、本実施例においては、前
記空燃比に対応した燃料噴射時間としての数値が
予めROM54に格納されている。
With the above configuration, the control device 44 can take in the detection outputs of the sensors that detect various operating states of the engine, calculate the fuel injection time suitable for each operating state, and control the fuel injection valve 18. In addition,
The fuel injection time suitable for each operating condition is determined by ROM in advance.
It is stored in 54. In addition, the present invention provides a fuel increase value for increasing engine output (fuel increase value for high output) and a reference fuel injection amount (generated based on the engine load and engine speed) when the engine load becomes high. The engine is controlled for a certain period of time with an air-fuel ratio according to the amount of fuel injection (fuel injection amount), and with an air-fuel ratio richer than that under light load, and after a certain period of time elapses, for example,
When the time period during which the temperature of the exhaust system is assumed to have approached the allowable limit due to the start of fuel increase control has elapsed, the air-fuel ratio is richer than the air-fuel ratio and the temperature of the exhaust system is within the allowable limit. Since the engine is controlled according to the air-fuel ratio according to the fuel increase value (exhaust system cooling fuel increase value) and the reference fuel injection amount, in this embodiment, the air-fuel ratio corresponds to A numerical value representing the fuel injection time is stored in the ROM 54 in advance.

本実施例は以上の構成からなり、次にその作用
を説明する。
The present embodiment has the above configuration, and its operation will be explained next.

第4図には、燃料噴射時間τ計算用割込みルー
チンのフローチヤートが示されている。
FIG. 4 shows a flowchart of an interrupt routine for calculating fuel injection time τ.

まずステツプ100において、エアフロメータ1
2による吸入空気量Q、回転角センサ42による
エンジン回転速度N、水温センサ34によるエン
ジン水温THWなどから、エンジンの運転状態に
適合する燃料噴射時間τを演算しステツプ102に
移る。ステツプ102においては、エンジン出力を
高める燃料増量値を含む空燃比によりエンジンが
制御された一定時間経過したことを示すフラグf
が1となつているか否かの判定を行なう。
First, in step 100, air flow meter 1
The fuel injection time τ suitable for the operating condition of the engine is calculated from the intake air amount Q according to 2, the engine rotational speed N according to the rotation angle sensor 42, the engine water temperature THW according to the water temperature sensor 34, etc., and the process moves to step 102. In step 102, a flag f is set to indicate that a certain period of time has elapsed during which the engine has been controlled by an air-fuel ratio that includes a fuel increase value that increases engine output.
It is determined whether or not the value is 1.

ステツプ102においてYESと判定され、前記一
定時間が経過したときにはステツプ104に移る。
ステツプ104においては、エンジン負荷が高負荷
か否かの判定を行なう。このエンジン負荷の判定
は、例えばエンジン1回転あたりの吸入空気量が
0.5/revを越えたか否かによつて行なう、ステ
ツプ104でQ/N<0.5/revと判定されたとき
には、エンジン負荷が軽負荷と判定されたステツ
プ106に移る。ステツプ106ではフラグfの値を0
にセツトし、ステツプ108に移る。ステツプ108に
おいては、ステツプ100で算出された燃料噴射時
間τによつて燃料噴射弁18を制御する。
When the determination in step 102 is YES and the predetermined period of time has elapsed, the process moves to step 104.
In step 104, it is determined whether the engine load is high. This engine load determination is based on, for example, the amount of intake air per engine revolution.
This is carried out depending on whether Q/N exceeds 0.5/rev. If it is determined in step 104 that Q/N<0.5/rev, the process moves to step 106 in which the engine load is determined to be light. In step 106, the value of the flag f is set to 0.
and move to step 108. In step 108, the fuel injection valve 18 is controlled according to the fuel injection time τ calculated in step 100.

一方、ステツプ104において、Q/N>0.5/
revのときには高負荷と判定されステツプ110に移
る。ステツプ110においては、排気系の温度を許
容限界内に抑制する燃料増量値を含む空燃比によ
つてエンジンを制御するために、ステツプ100で
算出された燃料噴射時間τを、例えば15%延長す
る燃料噴射時間によつて燃料噴射弁18を制御す
る。
On the other hand, in step 104, Q/N>0.5/
When the load is rev, it is determined that the load is high and the process moves to step 110. In step 110, the fuel injection time τ calculated in step 100 is extended by, for example, 15% in order to control the engine with an air-fuel ratio that includes a fuel increase value that suppresses the temperature of the exhaust system within an allowable limit. The fuel injection valve 18 is controlled based on the fuel injection time.

又、ステツプ102においてNOと判定されたと
き、即ちフラグfが0のときにはステツプ112に
移る。ステツプ112においては、ステツプ114と同
様エンジン負荷が高負荷か否かの判定を行なう。
ステツプ112においてNOと判定されエンジン負
荷が軽負荷のときにはステツプ114に移り、第1
図に示す一定時間T2に対応するRAM52のカ
ウンタ値を100にセツトしステツプ116に移る。ス
テツプ116ではステツプ100で算出された燃料噴射
時間τによつて燃料噴射弁18を制御する。即
ち、このときにはエンジン負荷が軽負荷であるの
で燃料増量は行なわない。
Further, when the determination in step 102 is NO, that is, when the flag f is 0, the process moves to step 112. In step 112, as in step 114, it is determined whether the engine load is high.
If it is determined NO in step 112 and the engine load is light, the process moves to step 114 and the first step is performed.
The counter value of the RAM 52 corresponding to the fixed time T2 shown in the figure is set to 100, and the process moves to step 116. In step 116, the fuel injection valve 18 is controlled according to the fuel injection time τ calculated in step 100. That is, at this time, since the engine load is light, the amount of fuel is not increased.

ステツプ112でYESと判定され、エンジン負荷
が高負荷になつたときにはステツプ118に移り、
前記カウンタ値を−1減算しステツプ120に移る。
ステツプ120においてはカウンタ値が0か否かの
判定を行なう。即ち、第1図に示す一定時間T2
を経過したか否かの判定を行なう。ステツプ120
でNOと判定されたとき、即ち前記一定時間T2
内のときにはステツプ122に移る。このステツプ
では、第1図のbのC2で示されるようなエンジ
ン出力を高める増量値を含む空燃比によつてエン
ジンを制御するために、ステツプ100で演算され
た燃料噴射時間τを、例えば7%延長した燃料噴
射時間で燃料噴射弁18を制御する。
If the result of step 112 is YES and the engine load becomes high, the process moves to step 118.
The counter value is subtracted by -1 and the process moves to step 120.
In step 120, it is determined whether the counter value is 0 or not. That is, the fixed time T2 shown in FIG.
It is determined whether or not the period has passed. step 120
When the determination is NO, that is, the certain time T2
If it is, the process moves to step 122. In this step, the fuel injection time τ calculated in step 100 is changed, for example, to The fuel injection valve 18 is controlled with the fuel injection time extended by %.

ステツプ120でYESと判定され、前記一定時間
T2を経過したときにはステツプ124に移り、ス
テツプ110と同様燃料噴射時間を15%延長した燃
料噴射時間によつて燃料噴射弁18を制御する。
この後ステツプ126の処理に移り、フラグfを1
にセツトし割込みルーチンの処理が全て終了す
る。
When the determination in step 120 is YES and the predetermined time T2 has elapsed, the process moves to step 124, where, as in step 110, the fuel injection valve 18 is controlled using a fuel injection time that is 15% longer than the fuel injection time.
After this, the process moves to step 126, and the flag f is set to 1.
, and all interrupt routine processing is completed.

このように本実施例においては、エンジンの負
荷が高負荷になつたとき、第1図bに示されるよ
うに、排気系の温度を許容限界内に抑制する燃料
増量値よりも少ない燃料増量値によつてエンジン
が制御されるので、dのC4で示されるように高
負荷直後から燃料増量する場合よりも燃料が浪費
されるのを防止することができる。又さらに、c
のC3で示されるように、燃料増量を一定時間遅
延する場合B3、あるいは高負荷直後から燃料増
量を行なう場合A3よりもエンジンのトルクを増
加させることができる。即ち、燃料増量を遅延す
る場合(曲線B3)は燃料増量が一定時間T1遅
延されるので、その間トルクが低下する。一方高
負荷直後から燃料増量を行なうA3の場合には高
負荷直後の空燃比が過濃となりすぎるので、トル
クアツプを図ることができない。
As described above, in this embodiment, when the engine load becomes high, as shown in FIG. Since the engine is controlled by , it is possible to prevent fuel from being wasted more than when increasing the amount of fuel immediately after a high load, as shown by C4 in d. Furthermore, c
As shown in C3, the engine torque can be increased more than B3 when the fuel increase is delayed for a certain period of time, or A3 when the fuel increase is performed immediately after a high load. That is, when the fuel increase is delayed (curve B3), the fuel increase is delayed for a certain period of time T1, so the torque decreases during that time. On the other hand, in the case of A3, in which the amount of fuel is increased immediately after the high load, the air-fuel ratio immediately after the high load becomes too rich, making it impossible to increase the torque.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、エンジ
ンの負荷が軽負荷から高負荷になつた燃料増量時
に、排気系冷却用燃料増量値より小さい燃料増量
値を示す高出力用燃料増量値に従つて空燃比を過
濃とする空燃比制御を実行し、その後排気系冷却
用燃料増量値に従つて空燃比を過濃とする空燃比
制御を実行するようにしたため、エンジンの負荷
が軽負荷から高負荷になつたときの燃料増量時
に、燃料消費量を抑制した状態でエンジンの出力
の低下を防止することができる。
As explained above, according to the present invention, when increasing the fuel amount when the engine load changes from light load to high load, the high output fuel increase value that is smaller than the exhaust system cooling fuel increase value is used. The engine load is changed from light load to When increasing the amount of fuel when the load becomes high, it is possible to prevent a decrease in engine output while suppressing fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図のa〜dは内燃機関の空燃比制御方法に
よるエンジンの特性図、第2図は本発明を適用し
た内燃機関のシステム構成図、第3図は第2図に
示す制御装置の構成図、第4図は本発明に係る作
用を説明するためのフローチヤートである。 10……エンジン、12……エアフロメータ、
18……燃料噴射弁、34……水温センサ、42
……回転角センサ、44……制御装置。
Fig. 1 a to d are engine characteristic diagrams according to the air-fuel ratio control method for an internal combustion engine, Fig. 2 is a system configuration diagram of an internal combustion engine to which the present invention is applied, and Fig. 3 is a configuration of the control device shown in Fig. 2. FIG. 4 is a flowchart for explaining the operation according to the present invention. 10... Engine, 12... Air flow meter,
18...Fuel injection valve, 34...Water temperature sensor, 42
...Rotation angle sensor, 44...Control device.

Claims (1)

【特許請求の範囲】 1 エンジンの負荷及び回転数に基づいて、空燃
比が所定空燃比となる基準燃料噴射量を算出する
とともに、該算出結果に基づいて燃料噴射を実行
するようにした内燃機関の空燃比制御方法におい
て、 前記負荷が所定負荷以上か否かを判断し、 負荷が所定値以上の状態が、排気系の温度が許
容限界に近づくと想定される時間だけ継続したか
否かを判断し、 負荷が所定値以上で且つ負荷が所定値以上の状
態が、排気系の温度が許容限界に近づくと想定さ
れる時間だけ継続していないときには、エンジン
の空燃比が、排気系の温度を許容限界内に抑制す
る空燃比よりも稀薄で且つ前記所定空燃比より過
濃な空燃比となる高出力用増量値により前記基準
燃料噴射量を増量補正した量の燃料を噴射し、 負荷が所定値以上で且つ負荷が所定値以上の状
態が、排気系の温度が許容限界に近づくと想定さ
れる時間だけ継続したときには、エンジンの空燃
比が、排気系の温度を許容限界内に抑制する空燃
比となる排気系冷却用増量値により前記基準燃料
噴射量を増量補正した量の燃料を噴射するように
したことを特徴とする内燃機関の空燃比制御方
法。
[Claims] 1. An internal combustion engine that calculates a reference fuel injection amount at which the air-fuel ratio becomes a predetermined air-fuel ratio based on the engine load and engine speed, and executes fuel injection based on the calculation result. In the air-fuel ratio control method, it is determined whether the load is equal to or greater than a predetermined load, and whether the state in which the load is equal to or greater than the predetermined value continues for a period of time during which the temperature of the exhaust system is expected to approach an allowable limit is determined. If the load is above a predetermined value and the load is not above the predetermined value for a period of time during which the temperature of the exhaust system is expected to approach the allowable limit, the air-fuel ratio of the engine is Inject fuel in an amount that is an increase in the standard fuel injection amount by an increase value for high output that is leaner than the air-fuel ratio that suppresses the fuel injection rate to within the allowable limit, and richer than the predetermined air-fuel ratio, and When the condition where the load is above a predetermined value and the load is above a predetermined value continues for a period of time during which the temperature of the exhaust system is expected to approach the permissible limit, the air-fuel ratio of the engine suppresses the temperature of the exhaust system to within the permissible limit. 1. An air-fuel ratio control method for an internal combustion engine, characterized in that fuel is injected in an amount obtained by increasing the reference fuel injection amount using an exhaust system cooling increase value that is an air-fuel ratio.
JP194683A 1983-01-10 1983-01-10 Air/fuel ratio control method for internal-combustion engine Granted JPS59128941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP194683A JPS59128941A (en) 1983-01-10 1983-01-10 Air/fuel ratio control method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP194683A JPS59128941A (en) 1983-01-10 1983-01-10 Air/fuel ratio control method for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59128941A JPS59128941A (en) 1984-07-25
JPH0541818B2 true JPH0541818B2 (en) 1993-06-24

Family

ID=11515775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP194683A Granted JPS59128941A (en) 1983-01-10 1983-01-10 Air/fuel ratio control method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59128941A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1263414A (en) * 1986-06-05 1989-11-28 Magnus Lizell Restriction valve device for hydraulic pressure fluids in vehicle shock absorbing mechanisms
WO1988006983A1 (en) * 1987-03-18 1988-09-22 Monroe Auto Equipment Company Method and apparatus for absorbing mechanical shock
US5092626A (en) * 1989-03-13 1992-03-03 Monroe Auto Equipment Company Apparatus for controlling the damping of a shock absorber
US4943083A (en) * 1989-03-13 1990-07-24 Monroe Auto Equipment Company Signal conditioning circuit assembly
US5123671A (en) * 1989-03-13 1992-06-23 Monroe Auto Equipment Company Method and apparatus for controlling shock absorbers
US5016596A (en) * 1989-05-01 1991-05-21 Honda Giken Kogyo K.K. Air-fuel ratio control method for internal combustion engines
US5152379A (en) * 1990-04-16 1992-10-06 Monroe Auto Equipment Company Adjustable shock absorber assembly
US5125681A (en) * 1990-11-26 1992-06-30 Monroe Auto Equipment Company Method and apparatus for determining the displacement of a piston within a shock absorber
JP3326945B2 (en) * 1993-12-29 2002-09-24 トヨタ自動車株式会社 Control device for internal combustion engine
JP4643493B2 (en) * 2006-05-29 2011-03-02 愛三工業株式会社 Fuel injection amount control device for internal combustion engine

Also Published As

Publication number Publication date
JPS59128941A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
JPH0522061B2 (en)
US4628883A (en) Air-fuel ratio control system
US4457282A (en) Electronic control for fuel injection
JPH0541818B2 (en)
JPH07197877A (en) Control device for internal combustion engine
JPH0316498B2 (en)
JP2890651B2 (en) Fuel injection amount control device for internal combustion engine
JPH0623553B2 (en) Engine air-fuel ratio control method
JPH0530984B2 (en)
JPH0555700B2 (en)
JPH07305643A (en) Engine controller
JPH0410359Y2 (en)
JPH0742876B2 (en) Electronic control unit for internal combustion engine
JPS61155638A (en) Method for controling idle rotating number
JP2572405B2 (en) Control device for heater provided in oxygen concentration sensor
JPH02104938A (en) Device for controlling air-fuel ratio of internal combustion engine
JPH07269401A (en) Air-fuel ratio control device for engine
JPS61108839A (en) Fuel injection control device of internal-combustion engine
JPS5830425A (en) Feedback control method of air-fuel ratio
JPH0248728B2 (en)
JPH0587664B2 (en)
JPH0559262B2 (en)
JPS59141730A (en) Method of controlling fuel injection quantity of internal-combustion engine
JPS62162742A (en) Air-fuel ratio control device
JPS63170536A (en) Fuel cut control device for internal combustion engine