Nothing Special   »   [go: up one dir, main page]

JPH0540268Y2 - - Google Patents

Info

Publication number
JPH0540268Y2
JPH0540268Y2 JP12386587U JP12386587U JPH0540268Y2 JP H0540268 Y2 JPH0540268 Y2 JP H0540268Y2 JP 12386587 U JP12386587 U JP 12386587U JP 12386587 U JP12386587 U JP 12386587U JP H0540268 Y2 JPH0540268 Y2 JP H0540268Y2
Authority
JP
Japan
Prior art keywords
cooling water
temperature
heater
exhaust port
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12386587U
Other languages
Japanese (ja)
Other versions
JPS6429216U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12386587U priority Critical patent/JPH0540268Y2/ja
Publication of JPS6429216U publication Critical patent/JPS6429216U/ja
Application granted granted Critical
Publication of JPH0540268Y2 publication Critical patent/JPH0540268Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はエンジンの冷却水取出部構造に関する
ものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a structure of a cooling water outlet for an engine.

(従来技術) 一般に自動車用エンジンにおいては、エンジン
のシリンダヘツド内に形成される冷却水通路とラ
ジエータとを結ぶ通路中に感温弁を取付け、冷却
水温が所定温度より高い場合には該感温弁が開い
てエンジン側の冷却水通路からラジエータ側に冷
却水が流され、水温が所定温度より低い場合には
該感温弁が閉じて冷却水のラジエータ側への流れ
を阻止する如く冷却水の流通を水温に応じて制御
するようにしている。
(Prior art) Generally, in an automobile engine, a temperature-sensitive valve is installed in a passage connecting a cooling water passage formed in the cylinder head of the engine and a radiator, and when the cooling water temperature is higher than a predetermined temperature, When the valve opens, cooling water flows from the cooling water passage on the engine side to the radiator side, and when the water temperature is lower than a predetermined temperature, the temperature-sensitive valve closes to prevent the cooling water from flowing to the radiator side. The flow of water is controlled according to the water temperature.

また一方、自動車用エンジンにおいては、冷却
水の一部を車内暖房用ヒータ側に取り出してこれ
を暖房用熱源として利用することも一般的に行な
われており、この場合、暖房性能(特に暖房の即
効性)という観点から、エンジンの冷却水通路を
エンジン内でも特に高温となる排気ポート側にで
きるだけ偏らせて形成するとともに、該冷却水通
路の出口端、即ち、上記感温弁が配置された近傍
位置からヒータ側への冷却水取出口を設けるのが
通例である。
On the other hand, in automobile engines, it is common practice to extract a portion of the cooling water to the heater for heating the vehicle interior and use this as a heat source for heating. From the viewpoint of (immediate effect), the engine cooling water passage is formed as far as possible toward the exhaust port side, which is particularly high temperature within the engine, and the temperature-sensitive valve is located at the outlet end of the cooling water passage. It is customary to provide a cooling water outlet from a nearby position to the heater side.

ところが、このようにシリンダヘツド内に形成
される冷却水通路を排気ポート側に偏らせて形成
するとともに、その出口側の端部に感温弁とヒー
タへの冷却水取出口とを形成した場合には、感温
弁の水温による開閉制御が適正に行なわれない
と、後述する如く冷却水の過上昇を招来すること
も考えられる。
However, when the cooling water passage formed in the cylinder head is biased toward the exhaust port side, and a temperature-sensitive valve and a cooling water outlet to the heater are formed at the end on the outlet side, In this case, if the opening/closing control of the temperature-sensitive valve based on the water temperature is not performed properly, the cooling water may rise excessively as described later.

即ち、シリンダヘツド内に設けられる冷却水通
路を排気ポート側に偏らせて形成した場合には、
全体として高温の冷却水が得られるところからこ
の冷却水を熱源とするヒータの暖房性能という面
では好都合であるが、その反面、該冷却水通路を
シリンダヘツドの中央部に形成した場合に比し
て、吸気による冷却水の冷却作用が少なくなると
ともに排気熱による冷却水の昇温作用が高くなる
ことから、冷却水通路内の排気ポート寄りを流れ
る冷却水と吸気ポート寄りを流れる冷却水との間
の温度差が大きい。また、この冷却水通路の出口
端における流れ方向は、感温弁の作動状態により
変化するものであつて、該感温弁が開いてラジエ
ータ側へも冷却水が流れている場合(即ち、エン
ジン高温時)には、感温弁側とヒータ取出口側の
両方へ冷却水の流れが分かれるが、感温弁が閉じ
ている場合(即ち、エンジン低温時)にはヒータ
取出口側へ向かう流れが主流となる。
In other words, if the cooling water passage provided in the cylinder head is biased towards the exhaust port side,
The ability to obtain high-temperature cooling water as a whole is advantageous in terms of heating performance of a heater that uses this cooling water as a heat source, but on the other hand, it is less effective than when the cooling water passage is formed in the center of the cylinder head. Therefore, the cooling effect of the cooling water due to intake air decreases, and the temperature raising effect of the cooling water due to exhaust heat increases, so the cooling water flowing closer to the exhaust port in the cooling water passage and the cooling water flowing closer to the intake port There is a large temperature difference between Furthermore, the flow direction at the outlet end of this cooling water passage changes depending on the operating state of the temperature-sensitive valve, and when the temperature-sensing valve is open and the cooling water is also flowing to the radiator side (i.e., the engine When the temperature is high (when the temperature is high), the flow of cooling water is split to both the temperature-sensing valve side and the heater outlet side, but when the temperature-sensing valve is closed (i.e., when the engine is low temperature), the flow of cooling water is directed toward the heater outlet side. becomes the mainstream.

このため、エンジンの信頼性の確保という観点
からは、感温弁の開閉状態に応じて変化する冷却
水の流れ状態の如何にかかわらず、常に高温の冷
却水、即ち、排気ポート寄りを流れる冷却水を積
極的に感温弁側へ流す必要があり、もしこれが実
現できない場合(即ち、吸気ポート寄りを流れる
低温の冷却水、あるいは排気ポート寄りを流れる
高温の冷却水と吸気ポート寄りを流れる低温の冷
却水との混合冷却水が感温弁側に流れる場合)に
は、高温部位の冷却水がエンジンの信頼性上から
許容される温度以上となつているにもかかわらず
依然としてラジエータ側への冷却水還流が阻止し
続けられて冷却水温の過上昇という事態に至るこ
とが考えられるものである。
Therefore, from the perspective of ensuring engine reliability, regardless of the flow state of the cooling water, which changes depending on the opening/closing state of the temperature-sensitive valve, high-temperature cooling water always flows near the exhaust port. It is necessary to actively flow water toward the temperature-sensitive valve, and if this is not possible (i.e., low-temperature cooling water flowing toward the intake port, or high-temperature cooling water flowing toward the exhaust port and low-temperature cooling water flowing toward the intake port). When mixed cooling water flows to the temperature-sensitive valve side), even though the cooling water in the high-temperature area is at a temperature higher than the allowable temperature for engine reliability, it still flows to the radiator side. It is conceivable that the cooling water reflux continues to be blocked, leading to an excessive rise in the cooling water temperature.

しかるに、従来はこのような不具合に対して何
等有効な対策が講じられておらず、この点からし
て、エンジンの信頼性という面において改善の余
地がある。
However, in the past, no effective countermeasures have been taken against such problems, and from this point of view, there is room for improvement in terms of engine reliability.

(考案の目的) 本考案は上記従来技術の項で指摘した問題点を
解決しようとするもので、シリンダヘツド内に冷
却水通路を形成するとともに、該冷却水通路から
取り出される冷却水の一部を暖房用ヒータの熱源
として利用するようにしたエンジンにおいて、冷
却水による吸気の緩め過ぎを防止することでエン
ジンの出力性能の維持を図るとともに、シリンダ
ヘツド内の冷却水温の異常上昇を招くことなく高
水準の暖房性能が得られるようにしたエンジンの
冷却水取出部構造を提案することを目的としてな
されたものである。
(Purpose of the invention) The present invention is an attempt to solve the problems pointed out in the above-mentioned section of the prior art. In an engine that uses water as a heat source for the heater, it is possible to maintain the output performance of the engine by preventing the cooling water from loosening the intake air too much, and to prevent the temperature of the cooling water in the cylinder head from increasing abnormally. The purpose of this project is to propose a structure for an engine cooling water outlet that provides a high level of heating performance.

(目的を達成するための手段) 本考案では、上記の目的を達成するための手段
として、シリンダヘツド内に気筒配列方向に延び
る冷却水通路を主として排気ポート形成側部分に
偏つて形成する一方、冷却水通路の一端部には該
冷却水通路に連通する冷却水取出室を形成し、さ
らに該冷却水取出室のうち排気ポート寄り位置に
は感温弁を備えるラジエータ側冷却水取出を、ま
た吸気ポート寄り位置にはヒータ側冷却水取出部
をそれぞれ設けるとともに、上記冷却水取出室内
には上記冷却水通路の排気ポート側位置から該冷
却水取出室側に流入する冷却水を上記感温弁の感
温部に向けて偏向せしめるリブを形成したもので
ある。
(Means for Achieving the Object) In the present invention, as a means for achieving the above object, the cooling water passage extending in the cylinder arrangement direction is mainly formed in the cylinder head toward the exhaust port forming side. A cooling water extraction chamber communicating with the cooling water passage is formed at one end of the cooling water passage, and a radiator-side cooling water extraction chamber equipped with a temperature-sensitive valve is provided at a position closer to the exhaust port in the cooling water extraction chamber. A heater-side cooling water outlet is provided at a position closer to the intake port, and the cooling water flowing into the cooling water outlet from the exhaust port side of the cooling water passage is connected to the temperature-sensitive valve in the cooling water outlet chamber. The ribs are formed to deflect the heat toward the temperature-sensing part.

(作用) 本考案では上記の手段により次のような作用が
得られる。
(Function) In the present invention, the following effects can be obtained by the above-mentioned means.

(1) シリンダヘツド内に形成される冷却水通路が
排気ポート側に偏つて存在しているため、吸気
ポート側に積極的に冷却水通路を形成する場合
に比して、吸気ポート内を流通する吸気ポート
が冷却水通路内を流通する高温の冷却水によつ
て昇温される割合が少なく、それだけ吸気温が
低温に保持され、高水準の吸気充填効率が実現
される。
(1) Since the cooling water passage formed inside the cylinder head is biased toward the exhaust port side, the flow of water inside the intake port is more difficult than when the cooling water passage is actively formed on the intake port side. The rate at which the intake port is heated by the high-temperature cooling water flowing through the cooling water passage is small, and the intake air temperature is maintained at a low temperature accordingly, achieving a high level of intake air filling efficiency.

(2) 冷却水通路が排気ポート側に偏つて形成され
るとともに、その一端部に形成される冷却水取
出室の吸気ポート寄りにヒータ側冷却水取出部
が、排気ポート寄りに感温弁を備えたラジエー
タ側冷却水取出部が、それぞれ形成されている
ため、該感温弁が開弁し冷却水がヒータ側取出
部とラジエータ側取出部の双方に分流されるエ
ンジン高温時には例え吸気ポート側の冷却水が
ヒータ側取出部に積極的に流れても冷却水温度
そのものが全体的に高いため良好な暖房作用が
期待でき、またエンジン温度が低く感温弁が閉
弁して排気ポート寄りを流れる高温の冷却水が
ラジエータ側取出部の近傍を迂回してヒータ側
取出部側に集中的に流れる時にはこの迂回して
ヒータ側取出部に流れ込む高温冷却水によつて
吸気ポート寄りを流れる低温冷却水の流入が抑
制され高温冷却水が積極的にヒータ側取出部に
導入されるため良好な暖房作用が期待できるも
のである。
(2) The cooling water passage is formed to be biased toward the exhaust port side, and the heater side cooling water extraction part is located closer to the intake port of the cooling water extraction chamber formed at one end, and the temperature-sensitive valve is located closer to the exhaust port. The temperature-sensitive valve opens and the cooling water is divided into both the heater side outlet and the radiator side. Even if the cooling water actively flows to the heater side outlet, the overall temperature of the cooling water itself is high, so a good heating effect can be expected; When the flowing high-temperature cooling water bypasses the vicinity of the radiator-side outlet and flows intensively toward the heater-side outlet, the high-temperature cooling water that detours and flows into the heater-side outlet causes low-temperature cooling to flow near the intake port. Since the inflow of water is suppressed and high-temperature cooling water is actively introduced into the heater-side outlet, a good heating effect can be expected.

(3) 冷却水取出室の吸気ポート寄りにヒータ側冷
却水取出部が、排気ポート寄りに感温弁を備え
たラジエータ側冷却水取出部が、それぞれ形成
されるとともに、上記冷却水取出室内に、排気
ポート側から該冷却水取出室側に流入する冷却
水を上記感温弁の感温部側に偏向せしめるリブ
が設けられているため、感温弁が開弁して冷却
水が該開弁弁側とヒータ側取出部側とに分流す
る時には排気ポート寄りに位置する上記感温弁
側に排気ポート側を流れる高温の冷却水が流入
し、また上記感温弁が閉弁して冷却水の主流が
ラジエータ側取出部の近傍を迂回してヒータ側
取出部側に向かう時には、この迂回する排気ポ
ート寄りの高温冷却水がリブによつて積極的に
感温弁側に偏向されるとともにヒータ側取出部
に向かう流れによつて吸気ポート寄りの低温冷
却水の感温弁側への移動が抑制されることの相
乗作用として該感温弁側には高温冷却水が流入
し、結果的に、該感温弁の開閉状態の如何に拘
わらず該感温弁には高温冷却水が積極的に流入
し、該感温弁は常時この高温冷却水の温度に基
づいて作動することとなる。
(3) A heater-side cooling water extraction section is formed near the intake port of the cooling water extraction chamber, and a radiator-side cooling water extraction section equipped with a temperature-sensitive valve is formed near the exhaust port. Since a rib is provided to deflect the cooling water flowing from the exhaust port side to the cooling water extraction chamber side toward the temperature sensing part of the temperature sensing valve, the temperature sensing valve opens and the cooling water flows through the opening. When the flow is divided into the valve side and the heater side outlet side, the high temperature cooling water flowing through the exhaust port side flows into the temperature sensing valve side located near the exhaust port, and the temperature sensing valve closes to cool the water. When the main flow of water bypasses the vicinity of the radiator-side outlet and heads toward the heater-side outlet, the bypassing high-temperature cooling water near the exhaust port is actively deflected toward the temperature-sensing valve by the ribs. As a synergistic effect of the flow toward the heater-side outlet suppressing the movement of low-temperature cooling water near the intake port toward the temperature-sensing valve side, high-temperature cooling water flows into the temperature-sensing valve side, resulting in In addition, regardless of whether the temperature-sensitive valve is open or closed, high-temperature cooling water actively flows into the temperature-sensitive valve, and the temperature-sensitive valve always operates based on the temperature of this high-temperature cooling water. .

(考案の効果) 従つて、本考案のエンジンの冷却水取出部構造
によれば次のような効果が得られる。
(Effects of the invention) Therefore, according to the engine cooling water outlet structure of the invention, the following effects can be obtained.

(a) 冷却水通路を排気ポ−ト側に偏らせて形成す
ることで冷却水による吸気温の昇温作用を抑制
しもつて吸気充填効率を高めるようにしている
ことから、エンジンの出力性能の向上が図られ
る。
(a) By forming the cooling water passage biased towards the exhaust port side, the effect of raising the intake air temperature due to the cooling water is suppressed and the intake air filling efficiency is increased, which improves engine output performance. This will lead to improvements in

(b) 冷却水温が相対的に高く感温弁が開示してい
る様態においては吸気ポート寄りを流れる冷却
水がヒータ側冷却水取出部に、また冷却水温比
較的低く感温弁が閉じている状態においては排
気ポート寄りを流れる最も高温の冷却水がヒー
タ側冷却水取出部に、それぞれ流入することか
ら、ヒータ側には常時高温冷却水が供給される
こととなり、それだけ暖房性能が向上せしめら
れる。
(b) When the cooling water temperature is relatively high and the temperature-sensing valve is open, the cooling water flowing near the intake port flows to the heater-side cooling water outlet, and when the cooling water temperature is relatively low and the temperature-sensing valve is closed. In this state, the highest temperature cooling water flowing near the exhaust port flows into the heater side cooling water outlet, so high temperature cooling water is constantly supplied to the heater side, improving heating performance accordingly. .

(c) ラジエータ側冷却水取出部に設けられた感温
弁には、リブによる偏向作用も手伝つて該感温
弁の開閉状態の如何に拘わらず常時高温冷却水
が供給され、該感温弁はこの高温冷却水に基づ
いて作動することから、例えば、該感温弁が低
温冷却水に基づいて作動した場合のような冷却
水の過上昇という事態の発生が未然に且つ確実
に防止され、それだけエンジンの信頼性が向上
するものである。
(c) High-temperature cooling water is always supplied to the temperature-sensitive valve installed in the cooling water outlet on the radiator side, regardless of whether the temperature-sensing valve is open or closed, with the aid of the deflection effect of the ribs. Since the valve operates based on this high-temperature cooling water, the occurrence of a situation in which the cooling water rises excessively as in the case where the temperature-sensitive valve operates based on low-temperature cooling water, for example, can be prevented in advance. , the reliability of the engine is improved accordingly.

(実施例) 以下、第1図及び第2図を参照して本考案の好
適な実施例を説明する。
(Embodiment) Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図及び第2図には本考案の実施例に係る冷
却水取出部構造を備えた自動車用エンジンのシリ
ンダヘツド1の一部(エンジン後端側の2気筒部
分)が示されている。このシリンダヘツド1は、
1気筒当たり吸・排気弁をそれぞれ2個づつ備え
た4弁式多気筒エンジンに適用されるものであつ
て、各気筒の燃焼室10,10…に対応する位置
にそれぞれ2個の吸気弁取付ボス部16,16と
2個の排気弁取付ボス部15,15と1個の点火
プラグ取付部17とを形成している。また、この
シリンダヘツド1の内部には、気筒配列方向に延
びる冷却水通路4が形成されている。そして、こ
の冷却水通路4のシリンダヘツド1内における平
面的な配置は、本考案を適用して、第1図に示す
如く主として排気マニホールド取付面2側(即
ち、排気ポート形成側)に偏つた配置とされてい
る。尚、吸気マニホールド取付面3側には冷却水
通路4が全く形成されていないというのではな
く、吸気ポート(図示省略)の下方側には若干冷
却水通路4が形成されている。又、第1図におい
て符号18はロツカー軸取付基部である。
1 and 2 show a part of a cylinder head 1 (two-cylinder part on the rear end side of the engine) of an automobile engine equipped with a cooling water outlet structure according to an embodiment of the present invention. This cylinder head 1 is
This is applied to a four-valve multi-cylinder engine that has two intake and exhaust valves per cylinder, and two intake valves are installed at positions corresponding to the combustion chambers 10, 10, etc. of each cylinder. Boss parts 16, 16, two exhaust valve mounting boss parts 15, 15, and one spark plug mounting part 17 are formed. A cooling water passage 4 is formed inside the cylinder head 1 and extends in the direction in which the cylinders are arranged. By applying the present invention, the planar arrangement of the cooling water passage 4 in the cylinder head 1 is mainly biased toward the exhaust manifold mounting surface 2 side (that is, the exhaust port formation side) as shown in FIG. It is said to be placed. Note that it is not the case that no cooling water passage 4 is formed on the side of the intake manifold mounting surface 3, but rather that a cooling water passage 4 is formed slightly below the intake port (not shown). Further, in FIG. 1, reference numeral 18 is a rocker shaft mounting base.

又、このシリンダヘツド1は、そのエンジン前
端部(図示省略)にシリンダブロツク(図示省
略)側からこの冷却水通路4内に冷却水を導入す
るための冷却水導入口(図示省略)を設ける一
方、そのエンジン後端部1aには、本考案を適用
して、該冷却水通路4の後端部に連通する冷却水
取出室5を一体的に形成している。従つて、シリ
ンダブロツク側からシリンダヘツド1の冷却水通
路4内に流入した冷却水は、該冷却水通路4内を
その前端部側から後端部の冷却水取出室5側に向
つて流通する。
The cylinder head 1 is provided with a cooling water inlet (not shown) at the front end of the engine (not shown) for introducing cooling water into the cooling water passage 4 from the cylinder block (not shown) side. By applying the present invention, a cooling water extraction chamber 5 communicating with the rear end of the cooling water passage 4 is integrally formed in the rear end portion 1a of the engine. Therefore, the cooling water that has flowed into the cooling water passage 4 of the cylinder head 1 from the cylinder block side flows through the cooling water passage 4 from its front end toward the cooling water extraction chamber 5 at its rear end. .

さらに、この冷却水取出室5には、大径のラジ
エータ側冷却水取出部51と小径のヒータ側冷却
水取出部52とバイパスポート(図示省略)が形
成されている。そして、このラジエータ側冷却水
取出部51とヒータ側冷却水取出部52の冷却水
取出室5内における平面的配置は、本考案を適用
して、ラジエータ側冷却水取出部51が排気ポー
ト側(即ち、排気マニホールド取付面2側)に、
ヒータ側冷却水取出部52が吸気ポート側(即
ち、吸気マニホールド取付面3側)に位置するよ
うに設置されている。
Furthermore, this cooling water extraction chamber 5 is formed with a large diameter radiator side cooling water extraction part 51, a small diameter heater side cooling water extraction part 52, and a bypass port (not shown). The planar arrangement of the radiator-side cooling water extraction part 51 and the heater-side cooling water extraction part 52 in the cooling water extraction chamber 5 is such that the radiator-side cooling water extraction part 51 is located on the exhaust port side ( In other words, on the exhaust manifold mounting surface 2 side),
The heater-side cooling water extraction portion 52 is installed so as to be located on the intake port side (that is, on the intake manifold mounting surface 3 side).

また、このラジエータ側冷却水取出部51とヒ
ータ側冷却水取出部52のうち、該ラジエータ側
冷却水取出部51にはその一端がラジエータ(図
示省略)に連通するラジエータ接続管8が、また
ヒータ側冷却水取出部52にはその一端が車室暖
房用ヒータコア(図示省略)に連通するヒータ接
続管9がそれぞれ設けられている。さらに、上記
ラジエータ側冷却水取出部51のラジエータ接続
管8との接合部には、ワツクスタイプの感温部7
を備えた感温弁6が取付けられている。
Furthermore, of the radiator-side cooling water extraction section 51 and the heater-side cooling water extraction section 52, the radiator-side cooling water extraction section 51 has a radiator connection pipe 8 whose one end communicates with a radiator (not shown), and a radiator connection pipe 8 that communicates with a radiator (not shown) at one end. Each of the side cooling water outlet portions 52 is provided with a heater connection pipe 9 whose one end communicates with a heater core (not shown) for heating the vehicle interior. Further, a wax type temperature sensing portion 7 is provided at the joint portion of the radiator side cooling water outlet portion 51 with the radiator connecting pipe 8.
A temperature-sensitive valve 6 is installed.

さらに、この実施例では、本考案を適用して、
上記冷却水取出室5の上面と下面にそれぞれ気筒
配列方向に延びる上下一対のリブ12,13を該
冷却水取出室5内に突出させた状態で形成し、こ
の上側リブ12と下側リブ13のガイド作用によ
り冷却水通路4の排気ポート側を通つて冷却水取
出室5側に流入する冷却水を積極的に感温弁6の
感温部7側へ偏向させるようにしている。尚、特
にこの実施例においては、上記上側リブ12と下
側リブ13の一端部を、それぞれ感温弁6の外周
に形成した嵌合溝21,22に嵌入させることに
より、冷却水取出室5にた対して感温弁6を所定
の回動位置に位置決めした状態で取付けられるよ
うにしている(即ち、上側リブ12と下側リブ1
3が感温弁6の該取付け防止部材として機能す
る)。
Furthermore, in this example, by applying the present invention,
A pair of upper and lower ribs 12 and 13 are formed on the upper and lower surfaces of the cooling water extraction chamber 5, respectively, and extend in the cylinder arrangement direction and project into the cooling water extraction chamber 5. Due to the guiding action, the cooling water flowing into the cooling water outlet chamber 5 side through the exhaust port side of the cooling water passage 4 is actively deflected toward the temperature sensing portion 7 side of the temperature sensing valve 6. Particularly in this embodiment, by fitting one end of the upper rib 12 and the lower rib 13 into the fitting grooves 21 and 22 formed on the outer periphery of the temperature-sensitive valve 6, the cooling water outlet chamber 5 is closed. The temperature-sensitive valve 6 can be mounted with the temperature-sensitive valve 6 positioned at a predetermined rotational position (that is, the upper rib 12 and the lower rib 1
3 functions as the attachment prevention member of the temperature-sensitive valve 6).

このように構成した場合における冷却水の流れ
状態に及びこれらに関連した暖房性能及び感温弁
6による冷却水の流路制御に付いて説明する。先
ず、冷却水温が所定温度以下である場合は、感温
弁6が閉じられるため、冷却水通路4から冷却水
取出室5側に流入する冷却水は、その大部分が冷
却水取出室5からラジエータ側に流入することな
くバイパスポート(図示省略)から直接シリロダ
ブロツクの冷却水通路側に環流されるとともに、
その一部分は感温弁6の近傍をそのまま迂回して
ヒータ側冷却水取出部52側へ流れることにな
る。この場合、ラジエータ側冷却水取出部51と
ヒータ側冷却水取出部52とにおける冷却水の流
れに着目すると、冷却水通路4から冷却水取出室
5に流れる冷却水は、該冷却水通路4の排気ポー
ト側寄りを流れて上記感温弁6の前方を通過して
ヒータ側冷却水取出部52側に向かう流れと、吸
気ポート側寄りを流れてそのままヒータ側冷却水
取出部52側に向かう流れとになる。
The flow state of the cooling water in the case of this configuration, the heating performance related thereto, and the flow path control of the cooling water by the temperature-sensitive valve 6 will be explained. First, when the cooling water temperature is below a predetermined temperature, the temperature-sensitive valve 6 is closed, so that most of the cooling water flowing from the cooling water passage 4 to the cooling water extraction chamber 5 side is drained from the cooling water extraction chamber 5. The water does not flow into the radiator side, but instead flows directly from the bypass port (not shown) to the cooling water passage side of the cylinder block, and
A portion of the water directly bypasses the vicinity of the temperature-sensitive valve 6 and flows toward the heater-side cooling water outlet 52. In this case, focusing on the flow of cooling water between the radiator-side cooling water extraction section 51 and the heater-side cooling water extraction section 52, the cooling water flowing from the cooling water passage 4 to the cooling water extraction chamber 5 is A flow flows toward the exhaust port side, passes in front of the temperature-sensitive valve 6, and heads toward the heater side cooling water outlet portion 52, and a flow flows toward the intake port side, directly toward the heater side cooling water outlet portion 52 side. It becomes.

この場合、冷却水通路4が排気ポート側に偏つ
て形成されていることから、排気ポート寄りを流
れる冷却水流量が吸気ポート寄りを流れる冷却水
流量よりも多く、従つて、排気ポート寄りからヒ
ータ側冷却水取出部52に向かう流れが主流とな
り、吸気ポート寄りの冷却水のヒータ側冷却水取
出部52への流入そのものが抑制され、結果的に
該ヒータ側冷却水取出部52へは高温冷却水が積
極的に導入されることとなり、冷却水温度そのも
のが比較的低温であるエンジン冷間時であるにも
かかわらず、高い暖房性能が確保されることとな
る。
In this case, since the cooling water passage 4 is formed to be biased toward the exhaust port side, the flow rate of cooling water flowing toward the exhaust port side is larger than the flow rate of cooling water flowing toward the intake port side, and therefore, the flow rate of the cooling water flowing toward the exhaust port side is larger than the flow rate of cooling water flowing toward the intake port side. The flow toward the side cooling water outlet 52 becomes the mainstream, and the flow of cooling water near the intake port into the heater side coolant outlet 52 is suppressed, and as a result, high temperature cooling is not carried into the heater side coolant outlet 52. Water is actively introduced, and high heating performance is ensured even when the engine is cold, when the temperature of the cooling water itself is relatively low.

また、この場合、排気ポート寄りを流れる冷却
水が感温弁6の前方位置を通過してヒータ側冷却
水取出部52側へ流れることから、何等の手段を
講じないと、該感温弁6の近傍は冷却水の溜り部
となるが、この実施例のものにおいては本考案を
適用してこの部分にリブ12,13を形成してい
ることから、ヒータ側冷却水取出部52側へ流れ
る冷却水の一部が該リブ12,13によつて感温
弁6側に偏向せしめられることとなり、結果的に
該感温弁6は排気ポート寄りを流れる高温冷却水
の温度に基づいて作動することとなる。
In addition, in this case, since the cooling water flowing near the exhaust port passes through the front position of the temperature-sensitive valve 6 and flows toward the heater-side cooling water outlet 52, unless some measure is taken, the temperature-sensing valve 6 The area near the area becomes a pool of cooling water, but in this embodiment, the ribs 12 and 13 are formed in this area by applying the present invention, so that the water flows toward the heater side cooling water outlet 52. A portion of the cooling water is deflected toward the temperature-sensitive valve 6 by the ribs 12 and 13, and as a result, the temperature-sensing valve 6 operates based on the temperature of the high-temperature cooling water flowing near the exhaust port. That will happen.

一方、冷却水温度が所定温度以上である場合に
は、感温弁6が開弁することから、冷却水通路4
から冷却水取出室5側に流れる冷却水はヒータ側
冷却水取出部52とラジエータ側冷却水取出部5
1の両方へ分流することとなる。この場合、ラジ
エータ側冷却水取出部51が排気ポート寄りに、
ヒータ側冷却水取出部52が吸気ポート寄りにそ
れぞれ形成されていることから、冷却水のうち、
排気ポート寄りを流れる高温冷却水はラジエータ
側冷却水取出部51側に積極的に流れ、吸気ポー
ト寄りを流れる低温冷却水はヒータ側冷却水取出
部52側へ積極的に流れることとなる。
On the other hand, when the cooling water temperature is higher than the predetermined temperature, the temperature-sensitive valve 6 opens, so the cooling water passage 4
The cooling water that flows from the heater side cooling water outlet part 52 to the cooling water outlet chamber 5 side is the heater side coolant outlet part 52 and the radiator side coolant outlet part 5.
1. The flow will be divided into both. In this case, the radiator side cooling water take-out part 51 is located closer to the exhaust port,
Since the heater-side cooling water extraction portions 52 are formed closer to the intake ports, out of the cooling water,
The high-temperature cooling water flowing near the exhaust port actively flows toward the radiator-side cooling water outlet 51, and the low-temperature cooling water flowing toward the intake port actively flows toward the heater-side cooling water outlet 52.

ところが、この運転状態においては冷却水温度
そのものがエンジン冷間時のそれに比して高くな
つていることから、ヒータ側冷却水取出部52側
へ吸気ポート寄りを流れる冷却水が導入されると
しても、高い暖房性能が確保されるものである。
また、感温弁6側には排気ポート寄りを流れる高
温冷却水が積極的に導入されることから、該感温
弁6はこの高温冷却水に基づいて作動されること
となる。
However, in this operating state, the coolant temperature itself is higher than when the engine is cold, so even if the coolant flowing closer to the intake port is introduced to the heater side coolant outlet 52 side, , high heating performance is ensured.
Furthermore, since high-temperature cooling water flowing near the exhaust port is actively introduced to the temperature-sensitive valve 6 side, the temperature-sensing valve 6 is operated based on this high-temperature cooling water.

このように、この実施例のものにおいては、エ
ンジン温度の如何にかかわらず常時高温冷却水が
ヒータ側冷却水取出部52側へ導入されることで
高い暖房性能が確保されるものである。また、感
温弁6の作動についても、該感温弁6を常時高温
冷却水に基づいて作動させることができることか
ら、例えば、加勢感温弁6が低温冷却水に基づい
て作動する場合のように冷却水温度が過上昇する
というようなことがなく、エンジンの高い信頼性
が確保されるものである。
In this way, in this embodiment, high temperature cooling water is always introduced into the heater-side cooling water outlet 52 regardless of the engine temperature, thereby ensuring high heating performance. Furthermore, regarding the operation of the temperature-sensitive valve 6, since the temperature-sensitive valve 6 can be operated based on high-temperature cooling water at all times, for example, when the auxiliary temperature-sensitive valve 6 is operated based on low-temperature cooling water, This prevents the cooling water temperature from rising excessively and ensures high engine reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例に係る冷却水取出部構
造を備えたエンジンのシリンダヘツドの要部横断
面図、第2図は第1図の−要部縦断面図であ
る。 1……シリンダヘツド、2……排気マニホール
ド取付面、3……吸気マニホールド取付面、4…
…冷却水通路、5……冷却水取出室、6……感温
弁、7……感温部、8……ラジエータ接続管、9
……ヒータ接続管、10……燃焼室、12……上
側リブ、13……下側リブ、51……ラジエータ
側冷却水取出部、52……ヒータ側冷却水取出
部。
FIG. 1 is a cross-sectional view of a main part of a cylinder head of an engine equipped with a cooling water outlet structure according to an embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view of a main part of FIG. 1. 1...Cylinder head, 2...Exhaust manifold mounting surface, 3...Intake manifold mounting surface, 4...
... Cooling water passage, 5 ... Cooling water extraction chamber, 6 ... Temperature sensing valve, 7 ... Temperature sensing part, 8 ... Radiator connection pipe, 9
...Heater connection pipe, 10...Combustion chamber, 12...Upper rib, 13...Lower rib, 51...Radiator side cooling water outlet, 52...Heater side cooling water outlet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダヘツド内に気筒配列方向に延びる冷却
水通路が主として排気ポート形成側部分に偏つて
形成される一方、冷却水通路の一端部には該冷却
水通路に連通する冷却水取出室が形成されるとと
もに、該冷却水取出室のうち排気ポート寄り位置
には感温弁を備えるラジエータ側冷却水取出が、
また吸気ポート寄り位置にはヒータ側冷却水取出
部がそれぞれ設けられており、しかも上記冷却水
取出室内には上記冷却水通路の排気ポート側位置
から該冷却水取出室側に流入する冷却水を上記感
温弁の感温部に向けて偏向せしめるリブが形成さ
れていることを特徴とするエンジンの冷却水取出
部構造。
Inside the cylinder head, a cooling water passage extending in the cylinder arrangement direction is formed mainly toward the exhaust port formation side, while a cooling water extraction chamber communicating with the cooling water passage is formed at one end of the cooling water passage. In addition, a radiator-side cooling water outlet equipped with a temperature-sensitive valve is located near the exhaust port in the cooling water outlet chamber.
In addition, a heater side cooling water outlet is provided at a position closer to the intake port, and the cooling water outlet chamber is provided with cooling water flowing into the cooling water outlet chamber from a position on the exhaust port side of the cooling water passage. An engine cooling water outlet structure, characterized in that a rib is formed to deflect the temperature toward the temperature sensing part of the temperature sensing valve.
JP12386587U 1987-08-12 1987-08-12 Expired - Lifetime JPH0540268Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12386587U JPH0540268Y2 (en) 1987-08-12 1987-08-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12386587U JPH0540268Y2 (en) 1987-08-12 1987-08-12

Publications (2)

Publication Number Publication Date
JPS6429216U JPS6429216U (en) 1989-02-21
JPH0540268Y2 true JPH0540268Y2 (en) 1993-10-13

Family

ID=31373106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12386587U Expired - Lifetime JPH0540268Y2 (en) 1987-08-12 1987-08-12

Country Status (1)

Country Link
JP (1) JPH0540268Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996229B2 (en) * 2012-03-27 2016-09-21 ダイハツ工業株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JPS6429216U (en) 1989-02-21

Similar Documents

Publication Publication Date Title
JP3700836B2 (en) Cylinder head cooling structure for internal combustion engine
JP3775572B2 (en) Water-cooled internal combustion engine
JPH0357301B2 (en)
JP2013108429A (en) Water outlet structure of internal combustion engine
JPH0540268Y2 (en)
JP4770815B2 (en) Dual cooling system for engine
US20030051703A1 (en) Direct-injection type diesel engine
JPH0746726Y2 (en) Head cooling system for water-cooled vertical multi-cylinder engine
JP3817798B2 (en) Engine cooling system
JP4492240B2 (en) Engine cooling system
JP2004044465A (en) Cylinder head structure in engine
JPH07180555A (en) Cooling device for engine
JP3104538B2 (en) Internal combustion engine cooling system
JP4411969B2 (en) Engine cooling system
JP3485158B2 (en) Water-cooled cooling system for vehicle internal combustion engine
JP2870393B2 (en) Thermostatic valve device
JP2530868Y2 (en) Multi-cylinder engine cylinder head
JPH0128290Y2 (en)
JP2593649Y2 (en) Internal combustion engine cooling system
JPH0234422Y2 (en)
JP3402148B2 (en) Air venting device for cooling water jacket with pre-cooling air intake in slant type internal combustion engine
JPS6040818Y2 (en) Automotive internal combustion engine cooling system
JPH0424119Y2 (en)
JPH0227138Y2 (en)
JPH0519544Y2 (en)