Nothing Special   »   [go: up one dir, main page]

JPH0540422Y2 - - Google Patents

Info

Publication number
JPH0540422Y2
JPH0540422Y2 JP10416587U JP10416587U JPH0540422Y2 JP H0540422 Y2 JPH0540422 Y2 JP H0540422Y2 JP 10416587 U JP10416587 U JP 10416587U JP 10416587 U JP10416587 U JP 10416587U JP H0540422 Y2 JPH0540422 Y2 JP H0540422Y2
Authority
JP
Japan
Prior art keywords
light
reflectance
linear array
array sensor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10416587U
Other languages
Japanese (ja)
Other versions
JPS648643U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10416587U priority Critical patent/JPH0540422Y2/ja
Publication of JPS648643U publication Critical patent/JPS648643U/ja
Application granted granted Critical
Publication of JPH0540422Y2 publication Critical patent/JPH0540422Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、紙等のシート状物体の色をオンライ
ンで測定する色彩計に関し、更に詳しくは前記シ
ート状物体の反射率の影響を受けない色彩計に関
する。
[Detailed description of the invention] <Industrial application field> The present invention relates to a colorimeter that measures the color of a sheet-like object such as paper online, and more specifically, a colorimeter that is not affected by the reflectance of the sheet-like object. Regarding colorimeter.

〈従来の技術〉 従来、紙の色をオンラインで測定する装置とし
て第4図に示すものが提案されている。Aは検出
部で、筐体1内には、シート状の紙2の表面に対
し45°の角度で光を照射する光源3と、紙2の垂
直方向の反射光を集光するレンズ4と、反射光を
スペクトルに分光する分光器5と、この分光器の
焦点面に形成されたリニアアレイセンサ6と、リ
ニアアレイセンサ6からの検出信号を処理する信
号処理部7とが設けられている。リニアアレイセ
ンサ6は、例えば1024個のフオトダイオードをス
ペクトルの波長分布方向に配列したダイオードア
レイセンサが用いられる。
<Prior Art> Conventionally, a device shown in FIG. 4 has been proposed as an on-line measuring device for the color of paper. A is a detection unit, and inside the housing 1 there are a light source 3 that irradiates light at an angle of 45° to the surface of a sheet of paper 2, and a lens 4 that collects light reflected in the vertical direction of the paper 2. , a spectroscope 5 that separates reflected light into spectra, a linear array sensor 6 formed on the focal plane of the spectrometer, and a signal processing section 7 that processes detection signals from the linear array sensor 6. . The linear array sensor 6 is a diode array sensor in which, for example, 1024 photodiodes are arranged in the wavelength distribution direction of the spectrum.

このような構成で、色の測定は、リニアアレイ
センサ6で検出された分光測定値をそのまま出力
し、或は信号処理部7で分光測定値から色の3刺
激値X,Y,Zを算出しこれを出力し、或はまた
この3刺激値からL,a,b値を計算し色の定量
測定値として出力している。
With this configuration, color measurement is performed by outputting the spectral measurement values detected by the linear array sensor 6 as they are, or by calculating the color tristimulus values X, Y, and Z from the spectral measurement values in the signal processing section 7. This is output, or the L, a, and b values are calculated from the tristimulus values and output as quantitative color measurement values.

〈考案が解決しようとする問題点〉 このような装置では、紙2の色が反射率の非常
に小さなモスグリーン、或は濃紺色のような場
合、測定出力が極端に小さくなり測定不能に陥る
ことがある。このような場合、紙2への照射光量
を増やせばこのような反射率の小さな物体の測定
も可能となるが、紙2の色が白色のような反射率
の大きな物体の場合にはリニアアレイセンサ6が
飽和し測定が行えなくなる。
<Problems to be solved by the invention> In such a device, if the color of the paper 2 is moss green or dark blue, which has a very low reflectance, the measurement output becomes extremely small and measurement becomes impossible. Sometimes. In this case, increasing the amount of light irradiated onto the paper 2 makes it possible to measure objects with low reflectance, but in the case of objects with high reflectance, such as when the color of paper 2 is white, the linear array The sensor 6 becomes saturated and measurement cannot be performed.

勿論、ダイナミツクレンジの大きなセンサを用
いれば物体の反射率に関係なく測定出来るが、こ
のようなセンサは非常に高価で、入手が容易でな
い。
Of course, if a sensor with a large dynamic range is used, measurements can be made regardless of the reflectance of an object, but such a sensor is very expensive and not easily available.

本考案の解決しようとする技術的課題は、容易
に入手出来る安価なリニアアレイセンサを用い
て、紙の反射率に影響されず正確に色の測定が行
えるようにすることである。
The technical problem to be solved by the present invention is to make it possible to accurately measure color without being affected by the reflectance of paper using a readily available and inexpensive linear array sensor.

〈問題点を解決するための手段〉 本考案の構成は、前記色彩計において、前記リ
ニアアレイセンサで検出された分光スペクトルの
零次光の大きさを監視し、或は前記リニアアレイ
センサにおける所定波長置きの検出出力の和を監
視し前記物体の反射率を検知する反射率検知手段
と、この反射率検知手段からの信号に基づき、前
記光源から前記物体へ照射される光量を段階的に
変更する光量変更手段とを具備し、前記物体の反
射率が小さくなつたとき前記光量を増加させ、こ
の光量変更に伴い前記リニアアレイセンサからの
検出出力にスパン補正を施すようにしたことにあ
る。
<Means for Solving the Problems> The configuration of the present invention is such that the colorimeter monitors the magnitude of the zero-order light of the spectral spectrum detected by the linear array sensor, or reflectance detection means for detecting the reflectance of the object by monitoring the sum of detection outputs for each wavelength; and stepwise changing the amount of light irradiated from the light source to the object based on the signal from the reflectance detection means. and a light amount changing means for increasing the light amount when the reflectance of the object becomes small, and performing span correction on the detection output from the linear array sensor in accordance with this change in the light amount.

〈作用〉 前記の技術手段は次のように作用する。即ち、
前記分光スペクトル中の零次光は白色光信号で、
前記物体からの反射光に対応しており、前記物体
の反射率が小さい場合には、前記零次光の信号レ
べルは小さくなる。また、一次光の所定波長置き
の検出出力の和も前記物体からの反射率に対応し
ている。
<Operation> The above technical means operates as follows. That is,
The zero-order light in the optical spectrum is a white light signal,
This corresponds to reflected light from the object, and when the reflectance of the object is small, the signal level of the zero-order light becomes small. Further, the sum of detection outputs of the primary light at predetermined wavelength intervals also corresponds to the reflectance from the object.

これらの信号レべルが所定値以下になつたと
き、前記光源から前記物体へ照射される光量を段
階的に上げて行く。これにより、所定の大きさの
検出信号が得られ、反射率の小さな物体でも測定
可能となる。同時に検出信号にスパン補正を施し
スパン誤差が出力に現れないようにしている。
When these signal levels fall below a predetermined value, the amount of light irradiated from the light source to the object is increased in stages. As a result, a detection signal of a predetermined magnitude can be obtained, and even objects with small reflectance can be measured. At the same time, span correction is applied to the detection signal to prevent span errors from appearing in the output.

〈実施例〉 以下図面に従い本考案の実施例を説明する。第
1図は本考案実施例装置の構成図である。図中、
第4図における要素と同じ要素には同一符号を付
しこれらについての説明は省略する。8はリニア
アレイセンサ6からの検出信号に基づき紙2の反
射率を検知する反射率検知手段である。紙2の反
射率を検知する方法の一つとして、分光スペクト
ルの零次光を監視し、この大きさから反射率を検
知する方法がある。第2図はリニアアレイセンサ
6で検出された分光スペクトルを表わす。零次光
SP0は色の測定には使われず、測定には1次光
SP1が使用される。零次光SP0は白色光信号であ
り、紙2からの反射光に対応しており、この信号
にレべルから紙2の反射率の変化を検知すること
が出来る。
<Examples> Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. In the figure,
Elements that are the same as those in FIG. 4 are given the same reference numerals, and explanations thereof will be omitted. Reference numeral 8 denotes a reflectance detection means for detecting the reflectance of the paper 2 based on the detection signal from the linear array sensor 6. One method for detecting the reflectance of the paper 2 is to monitor the zero-order light of the spectroscopic spectrum and detect the reflectance based on the magnitude of the zero-order light. FIG. 2 shows a spectrum detected by the linear array sensor 6. zero order light
SP 0 is not used for color measurement; it uses primary light for measurement.
SP 1 is used. The zero-order light SP 0 is a white light signal and corresponds to the reflected light from the paper 2, and changes in the reflectance of the paper 2 can be detected from the level of this signal.

分光スペクトルに基づき紙2の反射率を検知す
るもう一つの方法として、1次光SP1の所定波長
置きに複数の波長λ1,λ2,λ3の検出出力をサンプ
リングし、これらの和を監視する方法がある。こ
の和信号は略紙2からの反射光に対応しており、
これに基づき紙2の反射率の変化を検知すること
が出来る。
Another method for detecting the reflectance of the paper 2 based on the spectroscopic spectrum is to sample the detection outputs of multiple wavelengths λ 1 , λ 2 , λ 3 at predetermined wavelength intervals of the primary light SP 1 and calculate the sum of these outputs. There are ways to monitor it. This sum signal corresponds to the reflected light from the paper 2,
Based on this, changes in the reflectance of the paper 2 can be detected.

反射率検知手段8では、零次光信号SP0或は前
記和信号を、内部に設けられたコンパレータの設
定電圧とウインドウ比較し、これら信号のレべル
に応じて例えば3種の光量変更信号S1〜S3を発生
する。
The reflectance detection means 8 compares the zero-order optical signal SP 0 or the sum signal with a set voltage of an internally provided comparator, and generates, for example, three types of light intensity change signals according to the levels of these signals. Generates S 1 to S 3 .

9は光量変更手段で、紙2の反射率が小さいと
き紙2へ照射される光量を増加させるように動作
する。光量変更の具体方法は、光源の種類によつ
て異なる。直流点灯型の光源の場合には、第3図
で示すように、反射率検知手段8から与えられる
光量変更信号S1〜S3に応じてスイツチSW1〜SW3
を選択し、光源3に与える電圧を段階的に変更す
る。
Reference numeral 9 denotes a light amount changing means, which operates to increase the amount of light irradiated onto the paper 2 when the reflectance of the paper 2 is low. The specific method of changing the light amount differs depending on the type of light source. In the case of a DC lighting type light source, as shown in FIG .
, and change the voltage applied to the light source 3 step by step.

光源3がパルス点灯型のキセノンランプのよう
な場合には、光量変更信号S1〜S3に基づきランプ
点灯回数を変え、紙2に照射する光量を段階的に
変更する。
When the light source 3 is a pulse lighting type xenon lamp, the number of times the lamp is lit is changed based on the light intensity change signals S1 to S3 , and the amount of light irradiated onto the paper 2 is changed in stages.

反射率検知手段8からの光量変更信号S1〜S3
同時に信号処理部7にも与えられており、光量を
変更したときにこの信号に基づきリニアアレイセ
ンサ6からの検出出力にスパン補正を施すように
しており、光量変更に拘らずスパン誤差は発生し
ない。
The light amount change signals S 1 to S 3 from the reflectance detection means 8 are also given to the signal processing unit 7 at the same time, and when the light amount is changed, span correction is applied to the detection output from the linear array sensor 6 based on this signal. Therefore, span errors do not occur regardless of changes in light intensity.

〈考案の効果〉 本考案によれば、容易に入手出来る安価なリニ
アアレイセンサを用いて測定でき、紙の反射率に
影響されずに正確な色の測定が行える。
<Effects of the Invention> According to the invention, color can be measured using a readily available and inexpensive linear array sensor, and color can be accurately measured without being affected by the reflectance of paper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例装置の構成図、第2図は
分光スペクトル分布図、第3図は本考案実施例装
置における光量変更手段の具体例を示す構成図、
第4図は従来装置の構成図である。 A……検出部、2……シート状の紙、3……光
源、5……分光器、6……リニアアレイセンサ、
7……信号処理部、8……反射率検知手段、9…
…光量変更手段、S1〜S3……光量変更信号。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a spectral distribution diagram, and FIG. 3 is a block diagram showing a specific example of the light amount changing means in the apparatus according to an embodiment of the present invention.
FIG. 4 is a configuration diagram of a conventional device. A...detection unit, 2...sheet-like paper, 3...light source, 5...spectroscope, 6...linear array sensor,
7... Signal processing unit, 8... Reflectance detection means, 9...
...Light amount changing means, S1 to S3 ...Light amount changing signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光源からシート状物体に所定角度で光を照射
し、この物体の垂直方向の反射光を分光器で分光
し、リニアアレイセンサに分光スペクトルを結像
し、この分光測定値に基づき信号処理部で演算を
行い色の定量測定値を出力する色彩計において、
前記リニアアレイセンサで検出された分光スペク
トルの零次光の大きさを監視し、或は前記リニア
アレイセンサにおける所定波長置きの検出出力の
和を監視し前記物体の反射率を検知する反射率検
知手段と、この反射率検知手段からの信号に基づ
き、前記光源から前記物体へ照射される光量を段
階的に変更する光量変更手段とを具備し、前記物
体の反射率が小さくなつたとき前記光量を増加さ
せ、この光量変更に伴い前記リニアアレイセンサ
からの検出出力にスパン補正を施したことを特徴
とする色彩計。
Light is irradiated from a light source onto a sheet-like object at a predetermined angle, the vertically reflected light from this object is separated into spectra by a spectrometer, the spectral spectrum is imaged on a linear array sensor, and based on this spectral measurement value, the signal processing section In a colorimeter that performs calculations and outputs quantitative color measurements,
reflectance detection that detects the reflectance of the object by monitoring the magnitude of the zero-order light of the spectroscopic spectrum detected by the linear array sensor, or by monitoring the sum of detection outputs at predetermined wavelength intervals in the linear array sensor; and a light amount changing means that changes stepwise the amount of light irradiated from the light source to the object based on the signal from the reflectance detection means, and when the reflectance of the object becomes small, the amount of light changes. The colorimeter is characterized in that the detection output from the linear array sensor is subjected to span correction in accordance with the change in the amount of light.
JP10416587U 1987-07-07 1987-07-07 Expired - Lifetime JPH0540422Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10416587U JPH0540422Y2 (en) 1987-07-07 1987-07-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10416587U JPH0540422Y2 (en) 1987-07-07 1987-07-07

Publications (2)

Publication Number Publication Date
JPS648643U JPS648643U (en) 1989-01-18
JPH0540422Y2 true JPH0540422Y2 (en) 1993-10-14

Family

ID=31335640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10416587U Expired - Lifetime JPH0540422Y2 (en) 1987-07-07 1987-07-07

Country Status (1)

Country Link
JP (1) JPH0540422Y2 (en)

Also Published As

Publication number Publication date
JPS648643U (en) 1989-01-18

Similar Documents

Publication Publication Date Title
CA2199868C (en) Compact spectrophotometer
US5771094A (en) Film measurement system with improved calibration
JP2020094955A (en) Defect detecting device, and defect detecting method
JP3754989B2 (en) Sensor output correction method
US6801309B1 (en) Detector array with scattered light correction
US20060146330A1 (en) Color measurements of ambient light
JPWO2002039094A1 (en) Measurement method and apparatus using image sensor
JPH0540422Y2 (en)
JPS61134636A (en) Method for measuring degree of decoloration of steel sheet surface
JPH0346524A (en) Colorimeter
JPH0781840B2 (en) Optical film thickness measuring device
JPH0599746A (en) Industrial colorimeter having light-intensity compensating means
TW202014930A (en) Method of spectral analysing with a color camera
JPH04157350A (en) Fluorescent measurement apparatus
JPH0599747A (en) Industrial colorimeter compensating aging of lamp and color measurement method
JPS5957123A (en) Apparatus for measuring surface color of moving object
CN114739905A (en) Double-light-path spectrometer, color measuring device and calibration method
JPS62127635A (en) Color determining system for precisely measuring parameter inducting discoloration
JPS6183922A (en) Spectrometric apparatus of colorimetry
JPH0125017B2 (en)
KR100205532B1 (en) Moisture measuring apparatus
JPS6014132A (en) Colorimetric device of surface of moving object
JP2001318001A (en) Color measuring instrument
JPH0610298Y2 (en) Emission spectroscopy analyzer
JPS61251749A (en) Measuring instrument for optical characteristic of paper