JPH05340956A - Acceleration sensor - Google Patents
Acceleration sensorInfo
- Publication number
- JPH05340956A JPH05340956A JP14447492A JP14447492A JPH05340956A JP H05340956 A JPH05340956 A JP H05340956A JP 14447492 A JP14447492 A JP 14447492A JP 14447492 A JP14447492 A JP 14447492A JP H05340956 A JPH05340956 A JP H05340956A
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- cantilever
- acceleration sensor
- cantilever beam
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は加速度センサに関する。
本発明は例えば半導体式加速度センサに適用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor.
The present invention is applied to, for example, a semiconductor type acceleration sensor.
【0002】[0002]
【従来の技術】従来、図8に示すように、マス90の両
端の各左右をそれぞれビーム91〜94で支持する両持
ち式加速度センサであって、各ビーム91〜94にそれ
ぞれ一対の歪みゲージ(図示せず)を設けたものが知ら
れている。この半導体式加速度センサでは、加速度検出
方向への抵抗値の変化が同一方向となり、加速度検出方
向と直角な方向における各歪みゲージの抵抗値変化は互
いに相殺される。2. Description of the Related Art Conventionally, as shown in FIG. 8, there is provided a dual-supported acceleration sensor in which the left and right ends of a mass 90 are supported by beams 91 to 94, and a pair of strain gauges are provided for each beam 91 to 94. It is known to provide (not shown). In this semiconductor type acceleration sensor, the resistance values change in the acceleration detection direction in the same direction, and the resistance value changes of the strain gauges in the direction perpendicular to the acceleration detection direction cancel each other out.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記した
従来の加速度センサは、出力感度すなわち抵抗値変化が
小さく、感度向上が要望されている。なおマス重量の増
大は感度を向上するが、全体の体格、重量も増大するの
で小型化にとって不利となる。本発明は、上記問題点に
鑑みてなされたものであり、体格、重量の増大を抑止し
つつ感度向上が可能な片持ちビーム式加速度センサを提
供することを、その目的としている。However, the above-mentioned conventional acceleration sensor has a small output sensitivity, that is, a change in resistance value, and thus improvement in sensitivity is demanded. It should be noted that an increase in the mass weight improves the sensitivity, but it also increases the overall size and weight, which is disadvantageous for downsizing. The present invention has been made in view of the above problems, and an object thereof is to provide a cantilever beam type acceleration sensor capable of improving sensitivity while suppressing an increase in body size and weight.
【0004】[0004]
【課題を解決するための手段】本発明の加速度センサ
は、固定端から所定の一方向に延設され他端にマスが固
定される第1、第2の片持ちビームと、異なる前記両ビ
ーム上にそれぞれ所定方向に配設された各4個の歪みゲ
ージを有し、前記各歪みゲージを、所定方向への加速度
による各歪みゲージの抵抗値変化を検出し、前記方向と
直角な方向への加速度による各歪みゲージの抵抗値変化
を相殺するブリッジ回路とを備えることを特徴とする加
速度センサ。The acceleration sensor according to the present invention comprises a first and a second cantilevered beam which extends from a fixed end in a predetermined direction and has a mass fixed at the other end, and the two beams different from each other. Each of the strain gauges has four strain gauges arranged in a predetermined direction on the upper side, and detects a change in resistance value of each strain gauge due to acceleration in a predetermined direction, and detects the change in the direction perpendicular to the direction. An acceleration sensor, comprising: a bridge circuit that cancels a change in resistance value of each strain gauge due to the acceleration.
【0005】[0005]
【作用及び発明の効果】両片持ちビームの自由端に設け
られたマスが加速度により変位すると各片持ちビームが
撓み、各片持ちビーム上に配設された各4個の歪みゲー
ジの抵抗値が変化する。これら各4個の歪みゲージは加
速度検出方向の力による抵抗値変化を検出し、加速度検
出方向と直角な方向への力による抵抗値変化を相殺する
ように各片持ちビーム上に配設され、かつ、ブリッジ接
続されているので、これら各4個の歪みゲージからなる
ブリッジ回路は加速度検出方向の力すなわち加速度に対
してだけ感応する信号電圧を出力する。When the mass provided at the free ends of both cantilever beams is displaced by acceleration, each cantilever beam bends, and the resistance value of each of the four strain gauges arranged on each cantilever beam. Changes. Each of these four strain gauges is arranged on each cantilever beam so as to detect the resistance value change due to the force in the acceleration detection direction and cancel the resistance value change due to the force in the direction perpendicular to the acceleration detection direction, Further, since they are bridge-connected, the bridge circuit composed of these four strain gauges outputs a signal voltage sensitive only to the force in the acceleration detection direction, that is, acceleration.
【0006】すなわち本発明では、片持ちビーム式加速
度センサを用いることにより高い感度を維持しつつ、検
出方向の加速度に対してだけ感度をもつ加速度センサを
実現することができる。また、本発明の加速度センサは
片持ちビーム式加速度センサを2個用いるものの、上記
両片持ちビーム式加速度センサの一方のマスの2倍のマ
スをもつ両持ちビーム式加速度センサに比べて、感度一
定とすれば格段にマスなどを小型化することができる。That is, according to the present invention, by using the cantilever beam type acceleration sensor, it is possible to realize an acceleration sensor which is sensitive only to the acceleration in the detection direction while maintaining high sensitivity. Further, although the acceleration sensor of the present invention uses two cantilever beam type acceleration sensors, the sensitivity is higher than that of the double-sided beam type acceleration sensor having twice the mass of one of the two cantilever beam type acceleration sensors. If it is fixed, the mass can be remarkably downsized.
【0007】[0007]
(実施例1)以下、本発明を図面に示す実施例を用いて
説明する。本発明の加速度センサの一実施例を示す一部
破断断面図を図1に示す。この加速度センサのパッケー
ジは板状のステム1及び下端開口缶状のシェル2からな
り、ステム1の中央部には正方形の厚肉部11が形成さ
れ、厚肉部11の周囲の段差部12にはシエル2が嵌
着、溶接されている。パッケージ内には2個のカンチレ
バー3a,3bが載置された台座4が固定され、またダ
ンピング液が封入されている。12個の貫通孔がステム
1の厚肉部11に貫孔され、各貫通孔をシールするシー
ル用のガラスがリード端子14をそれぞれ固定してい
る。15は取り付け用の穴である。(Embodiment 1) The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 is a partially cutaway sectional view showing an embodiment of the acceleration sensor of the present invention. The package of this acceleration sensor is composed of a plate-shaped stem 1 and a shell 2 having a lower end opening, and a square thick portion 11 is formed in the center of the stem 1, and a step portion 12 around the thick portion 11 is formed. The shell 2 is fitted and welded. A pedestal 4 on which two cantilevers 3a and 3b are placed is fixed in the package, and a damping liquid is enclosed. Twelve through holes are formed in the thick portion 11 of the stem 1, and sealing glass that seals the through holes fixes the lead terminals 14. Reference numeral 15 is a mounting hole.
【0008】カンチレバー3a及び台座4の断面図を図
2に示す。カンチレバー3aはN型シリコン単結晶基板
を素材とする長方形板チップからなり、長方形枠体状の
支持部31と、基端が支持部31の一短辺に固定されて
他短辺に向けて延在する片持ちビーム5と、片持ちビー
ム5の先端(自由端)に固定されるマス6とからなる。
なお、片持ちビーム5及びマス6と支持部31とを分離
するコ字状溝32は両面エッチングにより形成され、ま
た片持ちビーム5の下部の下部には片持ちビーム5を薄
肉化するための凹部33がエッチングされている。支持
部31の下面はNi層等からなる下地層34により台座
4の上面に接着されている。A cross-sectional view of the cantilever 3a and the pedestal 4 is shown in FIG. The cantilever 3a is composed of a rectangular plate chip made of an N-type silicon single crystal substrate, and has a rectangular frame-shaped support portion 31 and a base end fixed to one short side of the support portion 31 and extended toward the other short side. It consists of an existing cantilever beam 5 and a mass 6 fixed to the tip (free end) of the cantilever beam 5.
The U-shaped groove 32 that separates the cantilever beam 5 and the mass 6 from the support portion 31 is formed by double-sided etching, and the lower portion of the lower portion of the cantilever beam 5 is for thinning the cantilever beam 5. The recess 33 is etched. The lower surface of the support portion 31 is adhered to the upper surface of the pedestal 4 by a base layer 34 made of a Ni layer or the like.
【0009】片持ちビーム5の表面部には図3に示すよ
うに公知の半導体加工技術、例えばボロン等のP型不純
物を熱拡散又はイオン注入により形成された4個の半導
体歪ゲ−ジ71〜74が形成されている。また、半導体
歪ゲ−ジ71〜74の形成と同工程で片持ちビーム5に
P型不純物を高濃度で導入して引き出し用の各配線層
(図示せず)が形成され、これら配線層をAl蒸着膜等
から成る配線部材(図示せず)により相互接続するとと
もに、各配線部材の端部は外部引き出し用のパッド部
(図示せず)に接続されている。これらパッド部はワイ
ヤ線16のボンディングによりリード端子14に電気接
続されており、センサエレメントは半田等でステム1に
接着されている。35はシリコン酸化膜等の保護膜であ
る。As shown in FIG. 3, on the surface of the cantilever beam 5, four semiconductor strain gauges 71 are formed by a known semiconductor processing technique, for example, thermal diffusion or ion implantation of P-type impurities such as boron. ~ 74 are formed. Further, in the same step as the formation of the semiconductor strain gauges 71 to 74, P-type impurities are introduced into the cantilever beam 5 at a high concentration to form respective wiring layers (not shown) for extraction, and these wiring layers are formed. The wiring members (not shown) made of Al vapor deposition film and the like are connected to each other, and the end portions of the respective wiring members are connected to pad portions (not shown) for external drawing. These pad portions are electrically connected to the lead terminals 14 by bonding wire wires 16, and the sensor element is bonded to the stem 1 by soldering or the like. Reference numeral 35 is a protective film such as a silicon oxide film.
【0010】カンチレバー3bは上記したカンチレバー
3aと同一構造を有しており、台座4上に互いに平行で
逆方向に接着されている。ただし、カンチレバー3bの
片持ちビーム5bには半導体歪ゲ−ジ81〜84が形成
されている(図3参照)。マス6に加速度が加えられる
と、片持ちビーム5a,5bに歪が生じ、加速度の大き
さ及び方向に応じて各半導体歪ゲ−ジ71〜74、81
〜84の抵抗値が変化する。The cantilevers 3b have the same structure as the above cantilevers 3a, and are adhered to the pedestal 4 in parallel with each other in opposite directions. However, semiconductor strain gauges 81 to 84 are formed on the cantilever beam 5b of the cantilever 3b (see FIG. 3). When acceleration is applied to the mass 6, the cantilever beams 5a and 5b are distorted, and the semiconductor strain gauges 71 to 74 and 81 are deformed according to the magnitude and direction of the acceleration.
The resistance value of ~ 84 changes.
【0011】次に、ゲ−ジ71〜74、81〜84の配
設方向を図3に、ブリッジ接続方法について図4に示
す。なお、カンチレバー3a,3bの長尺方向をx、幅
方向をy、それらと直角の方向をzとする。加速度検出
方向はz軸方向である。図3に示すようにゲ−ジ71、
73、83、81はy方向へ(横向きに)へ、ゲ−ジ7
2、74、84、82はx方向へ(縦向きに)延設され
ており、ゲ−ジ71、72、81、82は支持部31か
らマス6に向いた場合に左側部に配設され、ゲ−ジ7
3、74、83、84は支持部31からマス6に向いた
場合に右側部に配設されている。各ゲ−ジ71〜74、
81〜84は図4に示すように一対づつが対抵抗を構成
し、4個の対抵抗によりブリッジが形成されている。す
なわち、ゲ−ジ71と81、ゲ−ジ72と82、ゲ−ジ
73と83、ゲ−ジ74と84がそれぞれ対抵抗を構成
する。Next, FIG. 3 shows the arrangement direction of the gauges 71 to 74 and 81 to 84, and FIG. 4 shows the bridge connection method. The long direction of the cantilevers 3a and 3b is x, the width direction is y, and the direction perpendicular to them is z. The acceleration detection direction is the z-axis direction. As shown in FIG. 3, a gauge 71,
73, 83, 81 in the y direction (sideways) to the gate 7
2, 74, 84 and 82 are extended in the x direction (longitudinal direction), and the gauges 71, 72, 81 and 82 are arranged on the left side when facing the mass 6 from the supporting portion 31. , Gauge 7
3, 74, 83, 84 are arranged on the right side when facing the mass 6 from the support portion 31. Each gauge 71-74,
As shown in FIG. 4, each of 81 to 84 constitutes a pair resistance, and a bridge is formed by four pair resistances. That is, the gages 71 and 81, the gages 72 and 82, the gages 73 and 83, and the gages 74 and 84 respectively form a pair resistance.
【0012】次に、加速度が生じた場合の抵抗変化を示
す。まず図1において、紙面上から下向きに(z方向)
に加速度が生じた場合、マス6、6は下側に変位し、片
持ちビーム6、6に歪みを生じ、ゲ−ジ72、74、8
2、84は抵抗値が増加し、ゲ−ジ71、73、81、
83は抵抗値が減少し、出力電圧が生ずる。Next, the resistance change when acceleration occurs will be shown. First, in FIG. 1, downward from the paper surface (z direction)
When acceleration is generated in the cans 6, the masses 6 and 6 are displaced downward, and the cantilever beams 6 and 6 are distorted.
2, 84, the resistance value increases, and the gauges 71, 73, 81,
The resistance value of 83 decreases and an output voltage is generated.
【0013】ここで、x、y方向は加速度を検出したく
ない方向であるが、x方向に加速度が生じた場合、抵抗
71、73、82、84の抵抗値は増加し、抵抗72、
74、81、83の抵抗値は減少する。またy方向へ加
速度が生じた場合、抵抗71、74、81、84の抵抗
値は増加し、抵抗72、73、82、83は抵抗値が減
少する。Here, the x and y directions are directions in which acceleration is not desired to be detected, but when acceleration occurs in the x direction, the resistance values of the resistors 71, 73, 82 and 84 increase and the resistors 72 and 72,
The resistance values of 74, 81 and 83 decrease. When acceleration occurs in the y direction, the resistance values of the resistors 71, 74, 81, 84 increase and the resistance values of the resistors 72, 73, 82, 83 decrease.
【0014】したがってx方向の加速度が生じたときの
出力電圧は、抵抗72と82を1つの抵抗と見なすと抵
抗値変化は結局相殺され、合成抵抗(対抵抗の抵抗値)
は見かけ上変化しない。同様に、抵抗73と抵抗83、
抵抗71と抵抗81、抵抗74と抵抗84についても同
様に合成抵抗は変化しない。またy方向の加速度が生じ
たときの出力電圧は、抵抗72、82と抵抗73、83
が減少し、抵抗71、81と抵抗74、84が増加し、
結局、出力電圧変化は生じない。この結果を表1に整理
する。Therefore, when the resistors 72 and 82 are regarded as one resistance, the output voltage when acceleration in the x direction occurs is canceled out by the resistance value change, and the combined resistance (resistance value of resistance).
Does not seem to change. Similarly, resistors 73 and 83,
Similarly, the combined resistance of the resistors 71 and 81 and the resistors 74 and 84 does not change. The output voltage when acceleration in the y-direction is generated is the resistance 72, 82 and the resistance 73, 83.
Decrease, the resistances 71 and 81 and the resistances 74 and 84 increase,
After all, the output voltage does not change. The results are summarized in Table 1.
【0015】[0015]
【表1】 以上の結果、ブリッジの出力電圧はx方向の加速度に対
してのみ反応することとなる。 (実施例2)他の実施例を図5に示す。[Table 1] As a result, the output voltage of the bridge responds only to the acceleration in the x direction. (Embodiment 2) Another embodiment is shown in FIG.
【0016】この実施例は、1チップ上に支持部31を
共通としてカンチレバー3a,3bを設けたものであ
り、カンチレバー3a,3bは一列に配設されている。
図6はカンチレバー3a,3bを並行配設したものであ
り、図5の場合よりチップサイズを縮小できる。 (実施例3)他の実施例を図7に示す。In this embodiment, cantilevers 3a and 3b are provided on one chip with a common support portion 31, and the cantilevers 3a and 3b are arranged in a line.
In FIG. 6, the cantilevers 3a and 3b are arranged in parallel, and the chip size can be reduced as compared with the case of FIG. (Embodiment 3) Another embodiment is shown in FIG.
【0017】この実施例は、片持ちビーム5、5上のゲ
−ジ71〜74、81〜84の配置順序を変更したもの
であり、作用効果は同じである。また、z方向に加速度
が生じた場合にゲージ72、82、71、81の各抵抗
値が同一方向へ増加または減少し、ゲージ73、83、
74、84の各抵抗値がゲージ72、82、71、81
の各抵抗値とは逆方向に変化するように配置し、更に、
x方向及びy方向に加速度が生じた場合には、ゲージの
抵抗値が相殺されるように配設又は配線してもよい。In this embodiment, the arrangement order of the gauges 71 to 74 and 81 to 84 on the cantilever beams 5 and 5 is changed, and the operation and effect are the same. Further, when acceleration occurs in the z direction, the resistance values of the gauges 72, 82, 71, 81 increase or decrease in the same direction, and the gauges 73, 83,
The resistance values of 74 and 84 are gauges 72, 82, 71 and 81.
Arranged so that it changes in the opposite direction to each resistance value of
When acceleration is generated in the x direction and the y direction, the gauges may be arranged or wired so as to cancel the resistance value of the gauge.
【図1】本発明の一実施例を示す一部破断平面図、FIG. 1 is a partially cutaway plan view showing an embodiment of the present invention,
【図2】図1のカンチレバーの断面図、2 is a cross-sectional view of the cantilever of FIG. 1,
【図3】図2のカンチレバーの片持ちビーム部分の拡大
平面図、FIG. 3 is an enlarged plan view of a cantilever beam portion of the cantilever shown in FIG.
【図4】図1のブリッジ結線図、FIG. 4 is a bridge connection diagram of FIG.
【図5】他の実施例を示す一部破断平面図、FIG. 5 is a partially cutaway plan view showing another embodiment,
【図6】図5の他の態様を示す平面図、FIG. 6 is a plan view showing another embodiment of FIG.
【図7】他の実施例を示す一部拡大平面図、FIG. 7 is a partially enlarged plan view showing another embodiment,
【図8】従来の加速度センサの要部平面図。FIG. 8 is a plan view of a main part of a conventional acceleration sensor.
5は片持ちビーム、6はマス、71〜74、81〜84
は歪みゲージ5 is a cantilever beam, 6 is a mass, 71-74, 81-84
Is a strain gauge
Claims (1)
マスが固定される第1、第2の片持ちビームと、 異なる前記両ビーム上にそれぞれ所定方向に配設された
各4個の歪みゲージを有し、前記各歪みゲージを、所定
方向への加速度による各歪みゲージの抵抗値変化を検出
し、前記方向と直角な方向への加速度による各歪みゲー
ジの抵抗値変化を相殺するブリッジ回路とを備えること
を特徴とする加速度センサ。1. A first and a second cantilever beam extending from a fixed end in a predetermined direction and having a mass fixed to the other end, and each of the beams being arranged on the different beams in the predetermined direction. It has four strain gauges, each of the strain gauges detects a change in resistance value of each strain gauge due to acceleration in a predetermined direction, and detects a change in resistance value of each strain gauge due to acceleration in a direction perpendicular to the direction. An acceleration sensor comprising: a bridge circuit that cancels out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14447492A JPH05340956A (en) | 1992-06-04 | 1992-06-04 | Acceleration sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14447492A JPH05340956A (en) | 1992-06-04 | 1992-06-04 | Acceleration sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05340956A true JPH05340956A (en) | 1993-12-24 |
Family
ID=15363143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14447492A Pending JPH05340956A (en) | 1992-06-04 | 1992-06-04 | Acceleration sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05340956A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010055716A1 (en) * | 2008-11-13 | 2010-05-20 | 三菱電機株式会社 | Acceleration sensor |
US9297825B2 (en) | 2013-03-05 | 2016-03-29 | Analog Devices, Inc. | Tilt mode accelerometer with improved offset and noise performance |
US9470709B2 (en) | 2013-01-28 | 2016-10-18 | Analog Devices, Inc. | Teeter totter accelerometer with unbalanced mass |
EP2041869B1 (en) * | 2006-06-29 | 2016-11-30 | Rakon UK Limited | An oscillator |
US10073113B2 (en) | 2014-12-22 | 2018-09-11 | Analog Devices, Inc. | Silicon-based MEMS devices including wells embedded with high density metal |
US10078098B2 (en) | 2015-06-23 | 2018-09-18 | Analog Devices, Inc. | Z axis accelerometer design with offset compensation |
-
1992
- 1992-06-04 JP JP14447492A patent/JPH05340956A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2041869B1 (en) * | 2006-06-29 | 2016-11-30 | Rakon UK Limited | An oscillator |
WO2010055716A1 (en) * | 2008-11-13 | 2010-05-20 | 三菱電機株式会社 | Acceleration sensor |
JPWO2010055716A1 (en) * | 2008-11-13 | 2012-04-12 | 三菱電機株式会社 | Acceleration sensor |
US9470709B2 (en) | 2013-01-28 | 2016-10-18 | Analog Devices, Inc. | Teeter totter accelerometer with unbalanced mass |
US9297825B2 (en) | 2013-03-05 | 2016-03-29 | Analog Devices, Inc. | Tilt mode accelerometer with improved offset and noise performance |
US10073113B2 (en) | 2014-12-22 | 2018-09-11 | Analog Devices, Inc. | Silicon-based MEMS devices including wells embedded with high density metal |
US10078098B2 (en) | 2015-06-23 | 2018-09-18 | Analog Devices, Inc. | Z axis accelerometer design with offset compensation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5081867A (en) | Semiconductor sensor | |
JPH07113647B2 (en) | Semiconductor acceleration sensor | |
EP3534126B1 (en) | Sensing device, in particular load sensing device | |
JPH06194379A (en) | Semiconductor acceleration detector | |
US20030057447A1 (en) | Acceleration sensor | |
US6763719B2 (en) | Acceleration sensor | |
JP3009104B2 (en) | Semiconductor sensor and semiconductor sensor package | |
JP2006098321A (en) | Semiconductor-type three-axis acceleration sensor | |
JPH05340956A (en) | Acceleration sensor | |
JPH05281251A (en) | Acceleration sensor and manufacture thereof | |
JP3282570B2 (en) | Semiconductor acceleration sensor | |
JP3345649B2 (en) | Silicon accelerometer | |
CN100422697C (en) | Acceleration transducer | |
JPH08211091A (en) | Semiconductor acceleration detecting device | |
JPH07128365A (en) | Semiconductor acceleration sensor and fabrication thereof | |
JP4665733B2 (en) | Sensor element | |
JP2007333665A (en) | Acceleration sensor and manufacturing method therefor | |
JP3034620B2 (en) | 3D acceleration sensor | |
JP4466344B2 (en) | Acceleration sensor | |
JPH03214064A (en) | Acceleration sensor | |
JP2746298B2 (en) | Force detector for two or more components | |
JPH08160066A (en) | Acceleration sensor | |
JP2001330622A (en) | Semiconductor acceleration sensor | |
JP2006300904A (en) | Physical quantity sensor | |
EP0555727A1 (en) | Semiconductor accelerometer |