【発明の詳細な説明】[Detailed description of the invention]
本発明は高純度シリカゲルに関する。更に詳し
くは、電子材料等、高純度を要する特殊な分野に
用いられる樹脂等の充填剤、接着剤、研磨剤、基
板、パツケージ材料等の中間原料として適用でき
る高純度シリカゲルに関する。
従来、シリカはゴム、樹脂等の補強充填剤など
として広く利用されており、最近では電子技術の
発展により、利用する上でより高純度のシリカの
要望が多くなつてきている。たとえば、LSI、或
いは超LSIのパツケージ材料として用いる場合、
パツケージ材料中にα−放射体、特にウラン、ト
リウム等が微量でも存在すると放射性崩壊を伴つ
てα−粒子が放出され、これがICチツプ中に貫
入してダイナミツクRAM、CCDの記憶ノード付
近に大量の電子−正孔対を生成し、このためソフ
トエラーを生じ易く、特に放射性不純物の含有量
の少ない高純度のシリカを必要とする。その他た
とえばナトリウム、カリウム、カルシウムなどの
金属、硫酸根、塩化物などの電解質、その他の可
溶性物質などのようなイオン性不純物のない高純
度シリカが望ましい。
しかしながら、従来のシリカゲルはウラン、ト
リウムなどの放射性不純物や、特にアルカリ成分
を多量に内蔵しており、特に電子材料等の使用に
は不向きであつた。
そこで、本発明者は鋭意研究を行なつた結果、
電子材料等に使用することができるシリカゲルを
得た。
即ち、本発明は放射性不純物が10ppb以下、イ
オン性不純物がシリカゲルを煮沸浸出した抽出水
の25℃における電気伝導度として100μS/cm以下
の不純物量であることを特徴とする高純度シリカ
ゲルである。
本発明にかかる高純度シリカゲルの特徴として
は、放射性物質やイオン性不純物が著しく少ない
高純度シリカである。
放射性物質としては、主としてウランである
が、他にトリウム等の高密度電離放射線であるα
線を放出する化学物質であり、その量が放射化分
析に基づいて、元素合計量として10ppb以下、好
ましくは5ppb以下であることが望ましく、10ppb
をこえると高集積度IC、LSI,VLSIの樹脂封止
剤フイラーとして用いた場合、前述の放射線によ
るソフトエラーを発生する原因となるので好まし
くない。
又、シリカゲル中に含有するイオン性不純物は
シリカゲルを煮沸浸出した抽出水の25℃における
電気伝導度が100μS/cm以下、好ましくは10μS/
cm以下が望ましく、100μS/cmをこえるとシリカ
ゲルを充填した樹脂封止剤として用いた場合、イ
オン性物質の遊離によつて、IC、LSI、VLSIの
リード線、リードフレーム等への腐食が起り易く
なるので好ましくない。
イオン性不純物というのは、主としてナトリウ
ム、カリウム等のアルカリ金属塩であるが、その
他カルシウム、マグネシウム等のアルカリ土類金
属塩をいい、陰イオンとしては塩素イオン、硫酸
イオン等があげられる。つまり、本発明の高純度
シリカゲル中にはこのようなイオン性金属塩を実
質的に含有してはいないということである。
このような不純物質は、所望の分析手段で直接
測定できるけれども、本発明では特に純水にてシ
リカゲルの試料を10重量%スラリーとして調製
し、これを8時間煮沸した抽出水を検体として25
℃の電気伝導度を測定することによつてイオン性
不純物含有量の代用特性値とした。
これは、製品の品質特性として直接利用できる
と共に直接分析するよりも簡便かつ明瞭であり、
更に品質評価としては極めて厳しい評価法である
ということができる。
本発明の上記高純度シリカゲルは、例えば、珪
酸アルカリ水溶液と酸との反応によりシリカゲル
を生成させる湿式法により製造することができ、
更に言えば、この時のシリカゲルの生成反応を常
に遊離酸濃度IN以上の強酸性領域で行なわせ、
次いで生成するシリカゲルを脱水、洗浄及び乾燥
処理することによつて製造することができる。
上記のシリカゲルの生成反応を常に強酸性領域
で行わせるというのは、反応の当初から終了まで
は勿論、所望すれば終了後の熟成も含めて母液分
離に到るまで常に強酸性雰囲気であるということ
である。
常に、強酸性領域でシリカを生成させる方法と
しては、具体的には主として、次の2つの態様が
挙げられる。
その1つは、珪酸アルカリ水溶液と酸とを同時
かつ個別的に添加する方式であり、この場合反応
系内は常に強酸性に維持する。
他の1つは、酸の水溶液中へ珪酸アルカリ水溶
液を添加して行く方式であり、この際酸は反応終
了後においても大過剰になつている様にする。
本反応において、反応温度は特に限定する必要
はないけれども、多くの場合50℃以上の加温状態
がよく、特に70〜100℃が好適である。珪酸アル
カリと酸との反応は比較的徐々に混合して行わせ
ることがよく、又、酸の過剰量は遊離酸濃度とし
てIN以上、特に1〜5Nの範囲が実用的で好まし
い。
ここで遊離酸とは、珪酸アルカリ中のアルカリ
分を中和するに要する反応当量よりも過剰に存在
する酸をいうものであり、その濃度は反応系の液
について試料として採取したものについて、例え
ば水酸化ナトリウム規定溶液で中和滴定すること
により求めることができる。
原料に用いる酸としては無機酸又は有機酸のい
ずれであつても全く差支えないが、通常は硫酸、
塩酸、硝酸等の強酸が好ましい。
他方、珪酸アルカリ水溶液は多くの場合珪酸ソ
ーダ水溶液であるが、珪酸カリウム水溶液であつ
ても差支えない。
使用濃度としてはSiO2として多くとも20重量
%の範囲がよい。これより濃くなると、酸との反
応により生成するシリカが不均質なゲルとして急
激に生成し易く、また混合操作上にトラブルを生
じ易くなるからであり、他方、下限は特に限定す
る理由はないけれども製造の効率の面から自ずと
限定される。
なお、使用する両原料は、出来るだけ精製され
たものを使用することは当然であるが、例えば、
一般過は勿論、プレコートフイルター、ミクロ
フイルターあるいは限外過などの所望の過操
作等によつて、予め微細浮遊粒子等を除去して精
製しておくことが好ましい。
珪酸アルカリ水溶液においては、特に、例えば
メタ珪酸アルカリやセスキ珪酸アルカリの如き結
晶性珪酸アルカリを溶解して調製した水溶液は放
射性不純物等が著しく低減でき、更に必要に応じ
て再結晶して調製した水溶液を用いればより原料
として好適となる。
ところで、上記の反応は、前記の如くその当初
から終了後の母液の分離に到るまで常に強酸性領
域で行なうことが必要であるが、この間充分に反
応系が均一になるべく充分な混合が達成されなけ
ればならない。
混合は、通常攪拌、高速攪拌あるいはセン断力
に基づく分散など反応装置の設計に応じた所望の
混合又は分散手段を採用することが望ましい。
なお、本反応の珪酸アルカリ水溶液と酸との混
合は如何なる混合方式を採用してもよく、例えば
バツチ式又は連続式のいずれの操作でも行うこと
ができ、これは専ら製造工程上の都合により任意
に選択することができる。
反応終了後は必要とあらば暫く混合保持を続け
て熟成を行い、次いで母液分離する。
過ケーキは、水洗後、乾燥、粉砕して製品化
工程に流して直接得てもよいが、過ケーキに酸
の洗浄による精製操作を加えることにより製品の
純度を一層向上させることができる。
乾燥はスラリーの噴霧乾燥によるか、又は過
ケーキを所望の乾燥装置、例えばロータリーキル
ン、箱型乾燥機等を用いて乾燥を行うとよい。
本発明の高純度シリカゲルは、特に放射性不純
物、イオン性不純物が実質的に存在していないた
めに、ICパツケージ用充填剤のシリカ源として
好適である。従つて、例えば、本発明にかかる高
純度シリカゲルは多くとも15重量%の水分を含む
含水シリカとなつているけれども、これを完全脱
水して溶融シリカ粒子にしたものは前記充填剤と
して好適である。勿論、本発明にかかる製品はそ
のまま、従来、シリカが使用されている他の用途
に直接使用できることは云うまでもない。
また、本発明の高純度シリカゲルは今後開かれ
るであろう新たな電子工学分野において充分適用
することのできる優れた製品である。
以下、本発明について実施例をあげてさらに具
体的に説明する。
実施例1〜3および比較例1〜2
市販の珪酸ソーダ溶液(Na2O9.2重量%、SiO2
28.5重量%)を水で希釈し、SiO210.0重量%の珪
酸ソーダ水溶液を調製した。加熱装置及び攪拌装
置付の反応容器を用い、この反応器に上記珪酸ソ
ーダ水溶液及び36.5重量%塩酸を同時に添加し、
シリカを沈殿させた。反応生成スラリーの温度
は、90〜95℃に保ち、反応継続中スラリーは充分
に攪拌した。反応生成スラリーの液性は、常に強
酸性に保ち、液中の遊離塩酸の濃度は珪酸ソーダ
水溶液及び塩酸の添加割合を調節することにより
一定値に設定した。反応終了後、スラリーを過
し、ケーキを洗浄、乾燥してシリカ粉末を得た。
なお、比較例1,2として遊離塩酸濃度の低い
条件で行つた以外は同様の操作で上記に準じて反
応を行つてシリカ粉末を得た。
以上各種の遊離塩酸濃度で反応を行い、得られ
たシリカ粉末の分析結果を表1に示す。
The present invention relates to high purity silica gel. More specifically, the present invention relates to high-purity silica gel that can be used as an intermediate raw material for fillers such as resins, adhesives, abrasives, substrates, package materials, etc. used in special fields requiring high purity such as electronic materials. Conventionally, silica has been widely used as a reinforcing filler for rubbers, resins, etc., and recently, with the development of electronic technology, there has been an increasing demand for higher purity silica for use. For example, when used as a package material for LSI or super LSI,
If even a small amount of α-emitters, especially uranium, thorium, etc., are present in the package material, α-particles will be released through radioactive decay, and these will penetrate into the IC chip and cause a large amount of α-particles to be deposited near the memory nodes of dynamic RAM and CCD. It generates electron-hole pairs and is therefore prone to soft errors, requiring particularly high purity silica with a low content of radioactive impurities. High-purity silica free of other ionic impurities such as metals such as sodium, potassium, and calcium, electrolytes such as sulfate radicals, chlorides, and other soluble substances is desirable. However, conventional silica gel contains large amounts of radioactive impurities such as uranium and thorium, and especially alkali components, and is therefore unsuitable for use in electronic materials. Therefore, as a result of intensive research, the present inventor found that
Silica gel that can be used for electronic materials, etc. was obtained. That is, the present invention is a high-purity silica gel characterized by having radioactive impurities of 10 ppb or less and ionic impurities having an electrical conductivity of 100 μS/cm or less at 25° C. of extracted water obtained by boiling and leaching silica gel. The high purity silica gel according to the present invention is characterized by high purity silica containing significantly less radioactive substances and ionic impurities. The main radioactive substance is uranium, but there are also high-density ionizing radiations such as thorium, α
It is a chemical substance that emits radiation, and its amount is preferably 10 ppb or less as a total element amount, preferably 5 ppb or less, based on activation analysis, and 10 ppb
Exceeding this is not preferable because it may cause the aforementioned soft errors due to radiation when used as a resin encapsulant filler for highly integrated ICs, LSIs, and VLSIs. In addition, the ionic impurities contained in silica gel have an electrical conductivity of 100 μS/cm or less at 25°C of the extracted water obtained by boiling and leaching the silica gel, preferably 10 μS/cm or less.
cm or less, and if it exceeds 100 μS/cm, when used as a resin encapsulant filled with silica gel, corrosion may occur to IC, LSI, VLSI lead wires, lead frames, etc. due to release of ionic substances. This is not preferable because it makes it easier. Ionic impurities are mainly salts of alkali metals such as sodium and potassium, but also salts of alkaline earth metals such as calcium and magnesium, and examples of anions include chloride ions and sulfate ions. In other words, the high purity silica gel of the present invention does not substantially contain such ionic metal salts. Although such impurities can be directly measured using a desired analytical method, in the present invention, a 10% by weight slurry of a silica gel sample is prepared in pure water, and the extracted water obtained by boiling this slurry for 8 hours is used as a sample.
By measuring the electrical conductivity at °C, it was used as a substitute characteristic value for the content of ionic impurities. This can be used directly as a quality characteristic of the product, and is simpler and clearer than direct analysis.
Furthermore, it can be said that it is an extremely strict evaluation method for quality evaluation. The high-purity silica gel of the present invention can be produced, for example, by a wet method in which silica gel is produced by a reaction between an aqueous alkali silicate solution and an acid.
Furthermore, the silica gel production reaction at this time is always carried out in a strongly acidic region with a free acid concentration of IN or higher.
It can then be produced by dehydrating, washing and drying the resulting silica gel. The above-mentioned silica gel production reaction is always carried out in a strongly acidic region, which means that the atmosphere is always strongly acidic from the beginning to the end of the reaction, and if desired, including the aging after the end and even the separation of the mother liquor. That's true. As a method for always producing silica in a strongly acidic region, there are mainly the following two embodiments. One of them is a method in which an aqueous alkali silicate solution and an acid are added simultaneously and separately, and in this case, the inside of the reaction system is always kept strongly acidic. The other method is to add an aqueous alkali silicate solution to an aqueous acid solution, in which case the acid is kept in large excess even after the reaction is completed. In this reaction, the reaction temperature does not need to be particularly limited, but in most cases, a heating state of 50°C or higher is preferable, and a temperature of 70 to 100°C is particularly suitable. The reaction between the alkali silicate and the acid is preferably carried out by mixing them relatively gradually, and the excess amount of the acid is practically preferably within the free acid concentration of IN or higher, particularly in the range of 1 to 5N. Here, the free acid refers to an acid that exists in excess of the reaction equivalent required to neutralize the alkali content in the alkali silicate, and its concentration is determined based on the sample taken from the reaction system liquid, for example. It can be determined by neutralization titration with a normal sodium hydroxide solution. The acid used as a raw material can be either an inorganic acid or an organic acid, but usually sulfuric acid,
Strong acids such as hydrochloric acid and nitric acid are preferred. On the other hand, the alkaline silicate aqueous solution is often a sodium silicate aqueous solution, but it may also be a potassium silicate aqueous solution. The concentration used is preferably in the range of at most 20% by weight as SiO 2 . If the concentration is higher than this, the silica produced by reaction with the acid tends to rapidly form as a heterogeneous gel, and troubles are likely to occur in the mixing operation.On the other hand, there is no particular reason to limit the lower limit. This is naturally limited in terms of manufacturing efficiency. It goes without saying that both raw materials used should be as purified as possible, but for example,
It is preferable to remove fine suspended particles and the like in advance for purification, not only by general filtration, but also by a desired filtration operation such as a precoat filter, microfilter, or ultrafiltration. In the aqueous aqueous silicate solution, in particular, an aqueous solution prepared by dissolving a crystalline alkali silicate such as an alkali metasilicate or an alkali sesquisilicate can significantly reduce radioactive impurities, and an aqueous solution prepared by recrystallizing if necessary. If used, it becomes more suitable as a raw material. By the way, as mentioned above, it is necessary to always carry out the above reaction in a strongly acidic region from the beginning to the separation of the mother liquor after completion, but during this time sufficient mixing must be achieved to make the reaction system uniform. It must be. For mixing, it is desirable to employ a desired mixing or dispersion means depending on the design of the reaction apparatus, such as normal stirring, high-speed stirring, or dispersion based on shearing force. Note that any mixing method may be used to mix the aqueous alkali silicate solution and the acid in this reaction, for example, it can be carried out in either a batch method or a continuous method; can be selected. After the reaction is completed, if necessary, the mixture is continued to be mixed for a while for ripening, and then the mother liquor is separated. The percake may be directly obtained by washing with water, drying, pulverizing, and sending it to the product production process, but the purity of the product can be further improved by adding a purification operation to the percake by washing with an acid. The drying may be carried out by spray drying the slurry or by drying the overcake using a desired drying device such as a rotary kiln, box dryer, etc. The high-purity silica gel of the present invention is suitable as a silica source for a filler for IC packages, especially since it is substantially free of radioactive impurities and ionic impurities. Therefore, for example, although the high-purity silica gel according to the present invention is hydrated silica containing at most 15% by weight of water, fused silica particles obtained by completely dehydrating this are suitable as the filler. . Of course, it goes without saying that the product according to the present invention can be directly used as is for other uses in which silica has been conventionally used. Furthermore, the high purity silica gel of the present invention is an excellent product that can be fully applied to new fields of electronics that will open up in the future. Hereinafter, the present invention will be described in more detail with reference to Examples. Examples 1 to 3 and Comparative Examples 1 to 2 Commercially available sodium silicate solution (Na 2 O 9.2% by weight, SiO 2
(28.5% by weight) was diluted with water to prepare a sodium silicate aqueous solution containing 10.0% by weight of SiO2 . Using a reaction vessel equipped with a heating device and a stirring device, simultaneously add the above sodium silicate aqueous solution and 36.5% by weight hydrochloric acid to this reactor,
Silica was precipitated. The temperature of the reaction product slurry was maintained at 90 to 95°C, and the slurry was sufficiently stirred during the reaction. The liquid properties of the reaction product slurry were always kept strongly acidic, and the concentration of free hydrochloric acid in the liquid was set at a constant value by adjusting the addition ratio of the aqueous sodium silicate solution and hydrochloric acid. After the reaction was completed, the slurry was filtered, and the cake was washed and dried to obtain silica powder. Incidentally, as in Comparative Examples 1 and 2, silica powder was obtained by carrying out the reaction in the same manner as described above, except that the reaction was carried out under conditions where the concentration of free hydrochloric acid was low. The reactions were carried out at various concentrations of free hydrochloric acid, and the analysis results of the obtained silica powders are shown in Table 1.
【表】
実施例 4,5
塩酸の代りに硫酸あるいは硝酸を使用した以外
は実施例1の方法に準じてシリカ粉末を得た。得
られたシリカ粉末の分析結果を表2に示す。[Table] Examples 4 and 5 Silica powder was obtained according to the method of Example 1, except that sulfuric acid or nitric acid was used instead of hydrochloric acid. Table 2 shows the analysis results of the obtained silica powder.
【表】
実施例 6
実施例1で用いたものと同じ原料溶液及び反応
装置を用い、36.5重量%塩酸を反応器に装入し、
充分攪拌しながら、珪酸ソーダ水溶液を添加し、
シリカを沈殿させた。反応中反応生成スラリーの
温度は70〜75℃に保持した。
反応終了時、反応生成スラリーの液中の遊離塩
酸濃度は3.3Nであつた。スラリーを過し、ケ
ーキを洗浄、乾燥してシリカ粉末を得た。シリカ
粉末の分析結果は、ウラン[U]2±2ppb、ト
リウム[Th]2±2ppb、抽出水電気伝導度(25
℃)13μS/cmであつた。
この過ケーキの一部を採り、イオン交換水で
洗浄したのち、ケーキを強力な剪断力の下で流動
化し、これをヤマト科学(株)製「ミニスプレー」で
噴霧乾燥し、流動性の優れたシリカ粉末を得た。
比較例 3
実施例1で用いたものと同じ原料溶液及び反応
装置を用い、珪酸ソーダ水溶液を反応器に装入
し、充分に攪拌しながら36.5重量%塩酸を反応器
に添加した。反応中、反応スラリーの温度は90〜
95℃に保持した。反応終了時の反応生成スラリー
の液中の遊離塩酸濃度は3.3Nであつた。
スラリーを過し、ケーキを洗浄、乾燥してシ
リカ粉末を得た。シリカ粉末の分析結果はウラン
[U]102±5ppb、トリウム[Th]186±9ppbで
あつた。[Table] Example 6 Using the same raw material solution and reactor as those used in Example 1, 36.5% by weight hydrochloric acid was charged into the reactor,
While stirring thoroughly, add the sodium silicate aqueous solution,
Silica was precipitated. During the reaction, the temperature of the reaction product slurry was maintained at 70-75°C. At the end of the reaction, the concentration of free hydrochloric acid in the reaction product slurry was 3.3N. The slurry was filtered, and the cake was washed and dried to obtain silica powder. The analysis results of the silica powder are uranium [U] 2 ± 2 ppb, thorium [Th] 2 ± 2 ppb, extracted water electrical conductivity (25
°C) was 13 μS/cm. After taking a portion of this excess cake and washing it with ion-exchanged water, the cake was fluidized under strong shearing force, and then spray-dried using "Mini Spray" manufactured by Yamato Scientific Co., Ltd., to achieve excellent fluidity. A silica powder was obtained. Comparative Example 3 Using the same raw material solution and reaction apparatus as those used in Example 1, an aqueous sodium silicate solution was charged into the reactor, and 36.5% by weight hydrochloric acid was added to the reactor with sufficient stirring. During the reaction, the temperature of the reaction slurry is 90~
It was held at 95°C. The concentration of free hydrochloric acid in the reaction product slurry at the end of the reaction was 3.3N. The slurry was filtered, and the cake was washed and dried to obtain silica powder. The analysis results of the silica powder were uranium [U] 102±5 ppb and thorium [Th] 186±9 ppb.
【特許請求の範囲】[Claims]
1 酸化物換算で化学組成が
(a) MgO純度が97.5wt%以上であり、
(b) CaOの含有率1.0〜2.0wt%であり、
(c) B2O2の含有率が、0.01〜0.1wt%であり、
(d) SiO2の含有率が、0.3wt%以下であり、
(e) MgO、CaO、B2O3、SiO2以外の不純物の含
有率が2wt%以下である
ようにして、水酸化マグネシウム、あるいは軽焼
マグネシアに対して、丸みを有し、かつ15μ以上
の平均粒子径を持つマグネシア単結晶あるいは5
個以下の結晶からなる集合体をMgO換算で0.2〜
20wt%配合した後、加圧成型し、1800℃以上の
温度で焼成したことを特徴とする嵩比重が
3.35g/c.c.以上、見掛け気孔率が3.0%以下でマグ
ネシアの平均結晶系が100μ以上であるマグネシ
アクリンカーの製造方法。
1 The chemical composition in terms of oxides is (a) MgO purity is 97.5 wt% or more, (b) CaO content is 1.0 to 2.0 wt%, and (c) B 2 O 2 content is 0.01 to 2.0 wt%. 0.1wt%, (d) the content of SiO 2 is 0.3wt% or less, and (e) the content of impurities other than MgO, CaO, B 2 O 3 and SiO 2 is 2wt% or less. Magnesium hydroxide, or light calcined magnesia, is rounded and has an average particle size of 15μ or more.
Aggregates consisting of less than 2 crystals are converted into MgO from 0.2 to
After blending 20wt%, it is pressure molded and fired at a temperature of 1800℃ or higher.
A method for producing magnesia clinker having an apparent porosity of 3.35 g/cc or more, an apparent porosity of 3.0% or less, and an average magnesia crystal system of 100 μ or more.