Nothing Special   »   [go: up one dir, main page]

JPH05326240A - Dust core and manufacture thereof - Google Patents

Dust core and manufacture thereof

Info

Publication number
JPH05326240A
JPH05326240A JP4127309A JP12730992A JPH05326240A JP H05326240 A JPH05326240 A JP H05326240A JP 4127309 A JP4127309 A JP 4127309A JP 12730992 A JP12730992 A JP 12730992A JP H05326240 A JPH05326240 A JP H05326240A
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic field
dust core
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4127309A
Other languages
Japanese (ja)
Inventor
Tadahiko Horiguchi
忠彦 堀口
Etsuo Otsuki
悦夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4127309A priority Critical patent/JPH05326240A/en
Publication of JPH05326240A publication Critical patent/JPH05326240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a dust core having high mu (permeability) by orienting easy axis of magnetization of ferromagnetic powder along the flux of magnetic circuit. CONSTITUTION:Ferromagnetic powder, e.g. Fe-Si-Al based alloy powder, is admixed with a binder, e.g. an epoxy resin powder, and the mixture is filled in a die and subsequently compression molded and cured in magnetic field. The ferromagnetic powder to be employed has magnetically anisotropic flat shape where the ratio between long axis length and short axis length is about 10. Applying direction of magnetic field is set in parallel with the magnetic path at the time of compression molding. This method produces a dust core having higher relative dust density and mu than conventional ones. Powder can be oriented in parallel with the magnetic path by applying magnetic field in parallel with the magnetic path.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,トランスやノイズフィ
ルタ等のインダクタに用いられる圧粉磁芯及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dust core used in inductors such as transformers and noise filters, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来この種の分野には,圧粉磁芯が用い
られている。今までの圧粉磁芯は,直流を重畳しても一
定のμがとれかつ,金属の巻きコアに比べてμの周波数
特性が良好であるが,初透磁率μi が低く,用途が限ら
れていた。例えばノイズフィルタとしては,できるだけ
μの高い磁芯のインダクタが必要とされさらに直流を重
畳してもμが高いような磁芯が要求されている。現状の
圧粉磁芯では,この要求に答えることはできない。ま
た,金属薄帯の巻きコアはμは高いがわずかの磁場で磁
化が飽和してしまい電流の重畳されているような部分の
ノイズフィルタに用いることができない。磁芯材料がフ
ェライトの場合も同様な問題が伴う。
2. Description of the Related Art A dust core has been used in the field of this type. Conventional powder magnetic cores have a constant μ even if a direct current is superposed and have better frequency characteristics of μ compared to metal wound cores, but their initial permeability μ i is low and their applications are limited. It was being done. For example, as a noise filter, an inductor having a magnetic core having a μ as high as possible is required, and a magnetic core having a high μ even when a direct current is superposed is required. The current dust core cannot meet this requirement. Moreover, although the wound core of the metal ribbon has a high μ, it cannot be used as a noise filter in a portion where the magnetization is saturated by a slight magnetic field and the current is superposed. Similar problems occur when the magnetic core material is ferrite.

【0003】最近電源のスイッチング周波数の高周波化
が検討され始め,それに伴い圧粉磁芯をトランスに用い
ることが検討されている。しかし従来の圧粉磁芯ではμ
が不足している。
Recently, a study has been made on increasing the switching frequency of a power supply, and accordingly, the use of a dust core in a transformer is being studied. However, in the conventional dust core, μ
Is running out.

【0004】[0004]

【発明が解決しようとする課題】従来の圧粉磁芯は,金
属インゴットの粉砕粉末もしくは,アトマイズにより製
造された粉末を用いている。これらの粉末は球形もしく
はそれに近い等方的な形状をしている。そのため,得ら
れる圧粉磁芯の反磁場係数が大きく,また圧粉密度が上
りにくく,したがってμの向上は困難であった。
A conventional dust core uses a crushed powder of a metal ingot or a powder produced by atomization. These powders have a spherical shape or an isotropic shape close thereto. Therefore, the demagnetizing field coefficient of the obtained dust core is large, and the dust density is difficult to increase, so that it is difficult to improve μ.

【0005】そこで,本発明の技術的課題は上述した問
題を解決し,μの高い圧粉磁芯とその製造方法を提供す
ることにある。
Therefore, a technical problem of the present invention is to solve the above-mentioned problems and to provide a dust core having a high μ and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは,種々の検
討の結果,上述の課題を解決するために,磁気的に異方
性を持つ形状,具体的には長軸長と短軸長との比の値が
1より大なる偏平状又は針状の粉末を用い,粉末の磁化
容易軸(長軸)を磁路に平行になるように配向させると
して圧粉磁芯を成形することがμの向上に有利であるこ
とを見出した。さらにこの粉末を磁路に平行に配向させ
るには,磁路に平行となるように磁場を印加しながら成
形することにより得られることも見出した。
As a result of various investigations, the present inventors have found that in order to solve the above-mentioned problems, a magnetically anisotropic shape, specifically, a long axis length and a short axis Molding a dust core by using flat or acicular powder with a ratio of length greater than 1 and orienting the easy axis (long axis) of the powder parallel to the magnetic path. Has been found to be advantageous for improving μ. Furthermore, they have found that in order to orient this powder parallel to the magnetic path, it can be obtained by molding while applying a magnetic field so as to be parallel to the magnetic path.

【0007】即ち,本発明によれば,磁気的に異方性を
有する強磁性粉末を含む圧粉体であって,前記強磁性粉
末の磁化容易軸が磁気回路の磁束に沿って配向している
ことを特徴とする圧粉磁芯が得られる。
That is, according to the present invention, there is provided a green compact containing a ferromagnetic powder having magnetic anisotropy, wherein the easy axis of magnetization of the ferromagnetic powder is oriented along the magnetic flux of the magnetic circuit. A powder magnetic core characterized by being present.

【0008】本発明によれば,磁気的に異方性を有する
強磁性粉末を磁場中で成形圧力を負荷して成形するに際
し,磁気回路の磁束の方向に沿って磁場を印加すること
により当該強磁性粉末の磁化容易軸を配向させることを
特徴とする圧粉磁芯の製造方法が得られる。
According to the present invention, when a ferromagnetic powder having magnetic anisotropy is formed by applying a forming pressure in a magnetic field, the magnetic field is applied along the direction of the magnetic flux of the magnetic circuit. A method for producing a dust core, characterized by orienting the easy axis of magnetization of a ferromagnetic powder, is obtained.

【0009】本発明によれば,前記圧粉磁芯の製造方法
において,前記成形圧力の負荷方向と前記磁場印加方向
とが直交するように成形することを特徴とする圧粉磁芯
の製造方法が得られる。
According to the present invention, in the method for producing a dust core, the method for producing a dust core is characterized in that molding is performed so that a load direction of the molding pressure and a magnetic field applying direction are orthogonal to each other. Is obtained.

【0010】ところで,本発明の粉末の形状は等方的で
はない(例えば偏平,針状)であるため等方的な形状の
粉末を用いた場合よりも粉末間のすきまが小さくなり圧
粉密度を上げることが可能となる。また,形状による反
磁場の効果が小さくなる。さらに磁路に対して磁化容易
方向を揃えるので圧粉磁芯のμは高くなる。
By the way, since the shape of the powder of the present invention is not isotropic (for example, flat or needle-like), the gap between the powders is smaller than that when the powder having an isotropic shape is used, and the green compact density is obtained. It is possible to raise. Also, the effect of the demagnetizing field due to the shape is reduced. Further, since the direction of easy magnetization is aligned with the magnetic path, μ of the dust core is increased.

【0011】ここで,本発明において,トロイダル型の
形状の圧粉磁芯を製造する際には,形成される圧粉体の
中心部に大電流を印加し,圧粉磁芯の磁気回路の磁束の
方向に磁場誘起させながら成形すると高性能な圧粉磁芯
が得られる。
Here, in the present invention, when a toroidal-shaped dust core is manufactured, a large current is applied to the center of the green compact to form a magnetic circuit of the dust core. A high-performance dust core can be obtained by molding while inducing a magnetic field in the direction of magnetic flux.

【0012】即ち,本発明によれば,前記したいずれか
の圧粉磁芯の製造方法において,前記圧粉磁芯はトロイ
ダル型を有し,成形の際に,中心に電気伝導体を設けて
通電し,形成される圧粉体に磁場を印加することを特徴
とする圧粉磁芯の製造方法が得られる。
That is, according to the present invention, in any one of the above-described methods for manufacturing a dust core, the dust core has a toroidal shape, and an electric conductor is provided at the center during molding. A method for producing a powder magnetic core is obtained, which is characterized by energizing and applying a magnetic field to the formed powder compact.

【0013】これは,上述したのと同様に電流により誘
起させた磁場が磁気的に異方性な粉末の磁化容易軸(長
軸)を磁気回路の磁束の方向に配向させるからである。
This is because the magnetic field induced by the current causes the easy axis (long axis) of the magnetically anisotropic powder to be oriented in the direction of the magnetic flux of the magnetic circuit, as described above.

【0014】以下で述べる本発明の実施例では,偏平状
の粉末についてのみ説明したが針状の粉末を用いても同
様の効果が期待できる。また,以下に述べる実施例にお
いては,磁性粉末とバインダーとの混合物を金型内に挿
入後,圧縮成形して加熱硬化させて成形する方法につい
てのみ説明したが,当然他の手段を用いても同様の効果
が期待できる。
In the embodiments of the present invention described below, only flat powders have been described, but the same effect can be expected even when acicular powders are used. Further, in the embodiments described below, only the method of inserting the mixture of the magnetic powder and the binder into the mold, compression-molding and heat-curing the mixture, but naturally other means may be used. The same effect can be expected.

【0015】[0015]

【実施例】以下,本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)強磁性粉末としてFe−Si
−Al(エル)系合金粉末にバインダーとしてエポキシ
系の樹脂粉末を混合して,金型内に挿入し,磁場又は無
磁場中で,成形圧力10トン/cm2 で圧縮成形し,10
0〜200℃の温度で硬化させた。本発明の実施例1に
係る強磁性粉末として,長軸長と短軸長との比の値が略
10であるような偏平で,磁気的に異方的であるような
形状であるものを用い,比較のために従来例に係る強磁
性粉末として,長軸長と短軸長との比が略1であり,磁
気的な等方的な形状をしている粉末を用いた。また,圧
縮成形時の磁場の印加方向は,磁路に対して平行になる
ようにし,磁場の強さを10kOe とした。
(Example 1) Fe-Si as a ferromagnetic powder
-Al (L) alloy powder is mixed with epoxy resin powder as a binder, inserted into a mold, and compression molded at a molding pressure of 10 ton / cm 2 in a magnetic field or no magnetic field.
It was cured at a temperature of 0 to 200 ° C. As the ferromagnetic powder according to Example 1 of the present invention, a flat powder having a ratio of the major axis length to the minor axis length of about 10 and a magnetically anisotropic shape is used. For comparison, as a ferromagnetic powder according to the conventional example, a powder having a ratio of major axis length to minor axis length of about 1 and a magnetically isotropic shape was used for comparison. The direction of the magnetic field applied during compression molding was parallel to the magnetic path, and the magnetic field strength was 10 kOe.

【0017】表1は本発明の実施例1及び従来例の圧粉
磁芯の周波数10kHz の透磁率μ及び相対圧粉体密度を
示している。
Table 1 shows the magnetic permeability μ and the relative green compact density of the dust core of Example 1 of the present invention and the conventional example at a frequency of 10 kHz.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明らかなように,実施例1に係る
粉末を用いれば,従来よりも相対圧粉体密度が高く,ま
た,μの大きな圧粉磁芯が得られること判る。更に,磁
場を,磁路と平行になるように印加しながら成形すれ
ば,μがさらに大きくなることがわかる。
As is apparent from Table 1, it can be seen that by using the powder according to Example 1, a powder magnetic core having a higher relative green compact density and a larger μ can be obtained than before. Furthermore, it can be seen that μ is further increased by molding while applying a magnetic field so that it is parallel to the magnetic path.

【0020】本発明の実施例1に係る粉末は,形状異方
性を有しており,粉末の長手方向が磁化容易軸となる。
よって,粉末が配向していることを確認するためには,
製造した圧粉磁芯を磁路に沿って切断し,その断面を観
察して,粉末の長軸が磁路方向に並んでいることが分か
れば良い。そこで,実施例1によって,磁場中で圧縮成
形して製造した圧粉磁芯を磁路に沿って切断し,その断
面を光学顕微鏡で観察したところ,粉末粒子の長手方向
が磁路と平行に並んでおり,粉末が磁路に沿って,配向
していることが確認できた。
The powder according to Example 1 of the present invention has shape anisotropy, and the longitudinal direction of the powder is the easy axis of magnetization.
Therefore, to confirm that the powder is oriented,
It suffices if the manufactured powder magnetic core is cut along the magnetic path and the cross section is observed to find that the long axes of the powder are aligned in the magnetic path direction. Therefore, according to Example 1, the powder magnetic core manufactured by compression molding in a magnetic field was cut along the magnetic path, and its cross section was observed with an optical microscope. The longitudinal direction of the powder particles was found to be parallel to the magnetic path. It was confirmed that the powders were lined up and oriented along the magnetic path.

【0021】(実施例2)強磁性粉末としてFe−Si
−Al(エル)系合金粉末にバインダーとしてエポキシ
系の樹脂粉末を混合して,金型に挿入し,磁場又は無磁
場中で,成形圧力を変化させて圧縮成形し,100〜2
00℃の温度で硬化させた。
(Example 2) Fe-Si as a ferromagnetic powder
-Epoxy resin powder as a binder is mixed with Al-based alloy powder, and the mixture is inserted into a mold and compression-molded by changing the molding pressure in a magnetic field or no magnetic field.
Cured at a temperature of 00 ° C.

【0022】本発明の実施例1に係る強磁性粉末とし
て,長軸長と短軸長との比の値が略10であるような偏
平で,磁気的に異方的であるような形状であるものを用
い,比較のために従来例に係る強磁性粉末として,長軸
長と短軸長との比の値が略1であり,磁気的な等方的な
形状をしている粉末を用いた。
The ferromagnetic powder according to Example 1 of the present invention has a flat shape such that the ratio of the major axis length to the minor axis length is about 10, and is magnetically anisotropic. For comparison, as a ferromagnetic powder according to a conventional example, a powder having a ratio of major axis length to minor axis length of about 1 and having a magnetically isotropic shape was used for comparison. Using.

【0023】また,圧縮成形時の磁場の印加方向は,磁
路に対して平行になるようにし,磁場の強さを10kOe
とした。
The direction of the magnetic field applied during compression molding should be parallel to the magnetic path, and the magnetic field strength should be 10 kOe.
And

【0024】表2は本発明の実施例2及び従来例の圧粉
磁芯の周波数10kHz の透磁率μ及び相対圧粉体密度を
示している。
Table 2 shows the magnetic permeability μ and the relative green compact density at a frequency of 10 kHz for the dust cores of Example 2 of the present invention and the conventional example.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように,実施例2に係る
圧粉磁芯は,従来よりも相対圧粉体密度が高く,また,
μの成形圧依存性が高く,高性能であることがわかる。
As is clear from Table 2, the dust core according to Example 2 has a higher relative green compact density than the conventional one, and
It can be seen that μ is highly dependent on the molding pressure and has high performance.

【0027】また,実施例2によって,磁場中で成形し
て製造した圧粉磁芯を実施例1と同様に,磁路に沿って
切断し,その断面を光学顕微鏡で観察したところ,粉末
粒子の長手方向が磁路と平行に並んでおり,粉末が磁路
に沿って,配向していることが確認できた。
The powder magnetic core produced by molding in a magnetic field according to Example 2 was cut along the magnetic path in the same manner as in Example 1, and its cross section was observed with an optical microscope to find powder particles. It was confirmed that the longitudinal direction of was parallel to the magnetic path, and the powder was oriented along the magnetic path.

【0028】(実施例3)強磁性粉末としてFe−Si
−Al系合金粉末にバインダーとしてエポキシ系の樹脂
粉末を混合して,金型に挿入し,磁場の強さの異なる磁
場中で,成形圧力10トン/cm2 で圧縮成形し,100
〜200℃の温度で硬化させた。
(Example 3) Fe-Si as a ferromagnetic powder
-Epoxy resin powder as a binder is mixed with Al-based alloy powder, inserted into a mold, and compression-molded at a molding pressure of 10 ton / cm 2 in a magnetic field having different magnetic field strengths.
Cured at a temperature of ~ 200 ° C.

【0029】本発明の実施例3に係る強磁性粉末とし
て,長軸長と短軸長との比の値が略10であるような偏
平で,磁気的に異方的であるような形状であるものを用
い,比較のために従来例に係る強磁性粉末として,長軸
長と短軸長との比の値が略1であり,磁気的な等方的な
形状をしている粉末を用いた。また,圧縮成形時の磁場
の印加方向は,磁路に対して平行になるようにした。
The ferromagnetic powder according to the third embodiment of the present invention has a flat shape such that the ratio of the major axis length to the minor axis length is about 10, and is magnetically anisotropic. For comparison, as a ferromagnetic powder according to a conventional example, a powder having a ratio of major axis length to minor axis length of about 1 and having a magnetically isotropic shape was used for comparison. Using. The direction of the magnetic field applied during compression molding was set parallel to the magnetic path.

【0030】表3は本発明の実施例3及び従来例の圧粉
磁芯の周波数10kHz の透磁率μの印加磁場依存性を示
している。
Table 3 shows the applied magnetic field dependence of the magnetic permeability μ of the powder magnetic core of Example 3 of the present invention and the conventional example at a frequency of 10 kHz.

【0031】[0031]

【表3】 [Table 3]

【0032】表3から明らかなように,実施例3に係る
圧粉磁芯は,磁場依存性が強く,従来のものよりも,高
性能であることがわかる。また,実施例3によって,製
造した圧粉磁芯を実施例1及び2と同様に,磁路に沿っ
て切断し,その断面を光学顕微鏡で観察したところ,粉
末粒子の長手方向が磁路と平行に並んでおり,粉末が磁
路に沿って,配向していることが確認できた。
As is clear from Table 3, the dust core according to Example 3 has a strong magnetic field dependency and is higher in performance than the conventional one. Further, the dust core produced according to Example 3 was cut along the magnetic path in the same manner as in Examples 1 and 2, and its cross section was observed with an optical microscope. It was confirmed that they were arranged in parallel and the powder was oriented along the magnetic path.

【0033】(実施例4)強磁性粉末として,長軸長と
短軸長との比が異なる種々のFe−Si−Al(エル)
系合金粉末にバインダーとしてエポキシ系の樹脂粉末を
混合して,金型に挿入し,磁場中で,成形圧力10トン
/cm2 で圧縮成形し,100〜200℃の温度で硬化さ
せた。また,圧縮成形時の磁場の印加方向は,磁路に対
して平行になるようにし,磁場の強さを10kOe とし
た。
(Example 4) As the ferromagnetic powder, various Fe-Si-Al (ell) having different ratios of the major axis length and the minor axis length were used.
Epoxy resin powder as a binder was mixed with the system alloy powder, which was inserted into a mold, compression-molded in a magnetic field at a molding pressure of 10 ton / cm 2 , and cured at a temperature of 100 to 200 ° C. The direction of the magnetic field applied during compression molding was parallel to the magnetic path, and the magnetic field strength was 10 kOe.

【0034】表4は本発明の実施例4の周波数10kHz
の透磁率μ及び相対圧粉体密度を示している。
Table 4 shows a frequency of 10 kHz according to the fourth embodiment of the present invention.
The magnetic permeability μ and the relative green compact density are shown.

【0035】[0035]

【表4】 [Table 4]

【0036】表4から明らかなように,長軸長と短軸長
との比が大きい粉末を用いた方が,μの大きな圧粉磁芯
が得られること判る。また,実施例4によって,製造し
た圧粉磁芯を実施例1乃至3と同様に,磁路に沿って切
断し,その断面を光学顕微鏡で観察したところ,粉末粒
子の長手方向が磁路と平行に並んでおり,粉末が磁路に
沿って,配向していることが確認できた。
As is clear from Table 4, it is understood that a powder magnetic core having a large μ can be obtained by using the powder having a large ratio of the major axis length to the minor axis length. In addition, the powder magnetic core produced in Example 4 was cut along the magnetic path in the same manner as in Examples 1 to 3, and its cross section was observed with an optical microscope. The longitudinal direction of the powder particles was found to be the magnetic path. It was confirmed that they were arranged in parallel and the powder was oriented along the magnetic path.

【0037】(実施例5)強磁性粉末として長軸長と短
軸長との比が10の偏平で磁気的に異方的な形状形状を
有するFe−Si−Al(エル)系合金粉末にバインダ
ーとしてエポキシ系の樹脂粉末を混合して,金型に挿入
し,磁場中及び無磁場中で,成形圧力10トン/cm2
E型磁芯を圧縮成形し,100〜200℃の温度で硬化
させた。
(Embodiment 5) As a ferromagnetic powder, an Fe-Si-Al alloy powder having a flat and magnetically anisotropic shape with a major axis to minor axis ratio of 10 was used. Epoxy resin powder is mixed as a binder, inserted into a mold, and the E-type magnetic core is compression molded at a molding pressure of 10 ton / cm 2 in a magnetic field and no magnetic field, at a temperature of 100 to 200 ° C. Cured.

【0038】また,図1は成形時の磁場の印加方向を示
している。図中で(a)磁場中圧縮成形時の印加方向
は,形成される圧粉磁芯の磁気回路の磁束の方向に沿う
ように磁場を印加したもの(実施例5),(b)圧粉磁
芯の磁気回路の磁束の方向と磁場が一部同一方向になる
ように成形したもの(比較例1)について行っている。
一方,(c)は無磁場を示す(比較例2)。尚,成形圧
力は,図においては,紙面に垂直方向に印加している。
FIG. 1 shows the magnetic field application direction during molding. In the figure, (a) the magnetic field is applied so that the direction of application during compression molding in a magnetic field is along the direction of the magnetic flux of the magnetic circuit of the dust core to be formed (Example 5), (b) dust This is performed for a magnetic core (comparative example 1) molded so that the magnetic flux direction of the magnetic circuit is partly the same as the magnetic field.
On the other hand, (c) shows no magnetic field (Comparative Example 2). The molding pressure is applied in the direction perpendicular to the paper surface in the figure.

【0039】表5は本発明の実施例5の周波数10kHz
の透磁率μ及び相対圧粉体密度を示している。併せて,
無磁場中で成形したものの同条件での測定値も示してい
る。尚,表5中の番号は,図1中の番号に対応してい
る。
Table 5 shows a frequency of 10 kHz according to the fifth embodiment of the present invention.
The magnetic permeability μ and the relative green compact density are shown. together,
The measured values under the same conditions of those molded in a non-magnetic field are also shown. The numbers in Table 5 correspond to the numbers in FIG.

【0040】[0040]

【表5】 [Table 5]

【0041】表5から明らかなように,E型圧粉磁芯の
磁気回路の磁束の方向に沿うように,磁場を印加する
と,透磁率μ及び相対圧粉体密度が高くなることがわか
る。
As is clear from Table 5, when the magnetic field is applied along the magnetic flux of the magnetic circuit of the E-type dust core, the magnetic permeability μ and the relative green compact density increase.

【0042】また,実施例5によって,磁場中で圧縮成
形して製造した圧粉磁芯を実施例1乃至4と同様に磁路
に沿って切断し,その断面を光学顕微鏡で観察したとこ
ろ,粉末粒子の長手方向が磁路と平行に並んでおり,粉
末が磁路に沿って,配向していることが確認できた。
The powder magnetic core produced by compression molding in a magnetic field according to Example 5 was cut along the magnetic path in the same manner as in Examples 1 to 4, and its cross section was observed with an optical microscope. It was confirmed that the longitudinal direction of the powder particles was parallel to the magnetic path, and the powder was oriented along the magnetic path.

【0043】(実施例6)強磁性粉末として長軸長と短
軸長との比の値が10の偏平で磁気的に異方的な形状形
状を有するFe−Si−Al(エル)系合金粉末にバイ
ンダーとしてエポキシ系の樹脂粉末を混合して,金型に
挿入し,磁場中及び無磁場中で,成形圧力10トン/cm
2 でトロイダル型圧粉磁芯を圧縮成形し,100〜20
0℃の温度で硬化させた。
(Embodiment 6) As a ferromagnetic powder, a Fe-Si-Al alloy having a flat and magnetically anisotropic shape having a ratio of the major axis length to the minor axis length of 10 is obtained. Epoxy resin powder as a binder is mixed with the powder, and it is inserted into a mold and the molding pressure is 10 tons / cm in a magnetic field and no magnetic field.
2. Compress the toroidal dust core with 2 to 100 ~ 20
Cured at a temperature of 0 ° C.

【0044】また,図2は成形時の磁場の印加方向を示
している。図示のように,トロイダル型の圧粉磁芯5の
成形時に,パルス電流を印加し,圧粉磁芯5の磁気回路
の磁束の方向に沿うように磁場を誘起させた。この圧粉
磁芯の平均磁路長は,2cm,中心部を通る電流Iは,約
10000Aのパルス電流とした。磁気回路を通る磁場
Hは,約6kOe である。
FIG. 2 shows the application direction of the magnetic field during molding. As shown in the figure, when the toroidal dust core 5 was molded, a pulse current was applied to induce a magnetic field along the direction of the magnetic flux of the magnetic circuit of the dust core 5. The average magnetic path length of this dust core was 2 cm, and the current I passing through the central portion was a pulse current of about 10000A. The magnetic field H passing through the magnetic circuit is about 6 kOe.

【0045】表6は本発明の実施例6のトロイダル型圧
粉磁芯の周波数10kHz の透磁率μ及び相対圧粉体密度
を示している。併せて,無磁場中で成形したものの同条
件での測定値(比較例3)も示している。表6中の番号
は,図2中の番号に対応している。
Table 6 shows the magnetic permeability μ and the relative compact density of the toroidal type dust core of Example 6 of the present invention at a frequency of 10 kHz. In addition, the measured values (Comparative Example 3) under the same conditions of those molded in a non-magnetic field are also shown. The numbers in Table 6 correspond to the numbers in FIG.

【0046】[0046]

【表6】 [Table 6]

【0047】尚,本発明の実施例で使用した合金系につ
いては,Fe−Si−Al(エル)系についてのみ説明
したが他の合金系でも同様の効果が期待できる。また,
本発明の実施例では,バインダーとしてエポキシ系の樹
脂についてのみ示したが他の種類の熱硬化性樹脂等であ
っても同様の効果が得られることは明らかである。ま
た,実施例中では,一部の成形方法について述べたが,
他の成形方法を用いても,同様の効果が得られることは
明らかである。
Regarding the alloy system used in the examples of the present invention, only the Fe-Si-Al (ell) system has been described, but the same effect can be expected with other alloy systems. Also,
In the examples of the present invention, only the epoxy-based resin is shown as the binder, but it is clear that the same effect can be obtained even if other kinds of thermosetting resins are used. In addition, although some molding methods have been described in the examples,
It is clear that the same effect can be obtained by using other molding methods.

【0048】[0048]

【発明の効果】以上述べたごとく,本発明によれば,磁
気的に異方的な形状,具体的には長軸長と短軸長の比の
値が1より大きな偏平状もしくは針状の粉末を用い,磁
路と平行になるように配向させると,従来の圧粉磁芯よ
りもμの高いものが得られる。さらにこの粉末を磁路と
平行になるように配向させるには,磁路と平行に磁場を
印加すればよく,従来よりも高性能な圧粉磁芯を製造で
きる。
As described above, according to the present invention, a magnetically anisotropic shape, specifically, a flat shape or a needle shape in which the ratio of the major axis length to the minor axis length is greater than 1. By using powder and orienting it so that it is parallel to the magnetic path, one with a higher μ than the conventional dust core can be obtained. Further, in order to orient the powder so as to be parallel to the magnetic path, a magnetic field may be applied parallel to the magnetic path, and a dust core having higher performance than the conventional one can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】E型の圧粉磁芯を成形する際の磁場の印加方向
を示す図である。
FIG. 1 is a diagram showing a magnetic field application direction when molding an E-shaped dust core.

【図2】トロイダル型の圧粉磁芯を成形する際に印加す
る電流およびそれにより誘起される磁場を示す図であ
る。
FIG. 2 is a diagram showing a current applied when molding a toroidal dust core and a magnetic field induced by the current.

【符号の説明】[Explanation of symbols]

1,2,3 E型圧粉磁芯 5 トロイダル型圧粉磁芯 1,2,3 E type dust core 5 Toroidal type dust core

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁気的に異方性を有する強磁性粉末を含
む圧粉体であって,前記強磁性粉末の磁化容易軸が磁気
回路の磁束に沿って配向していることを特徴とする圧粉
磁芯。
1. A powder compact containing ferromagnetic powder having magnetic anisotropy, wherein the easy axis of magnetization of the ferromagnetic powder is oriented along the magnetic flux of a magnetic circuit. Dust core.
【請求項2】 磁気的に異方性を有する強磁性粉末を磁
場中で成形圧力を負荷して成形するに際し,磁気回路の
磁束の方向に沿って磁場を印加することにより当該強磁
性粉末の磁化容易軸を配向させることを特徴とする圧粉
磁芯の製造方法。
2. When a ferromagnetic powder having magnetic anisotropy is formed by applying a forming pressure in a magnetic field, a magnetic field is applied along the direction of the magnetic flux of the magnetic circuit, thereby A method for manufacturing a dust core, which comprises orienting an axis of easy magnetization.
【請求項3】 請求項2記載の圧粉磁芯の製造方法にお
いて,前記成形圧力の負荷方向と前記磁場印加方向とが
直交するように成形することを特徴とする圧粉磁芯の製
造方法。
3. The method for manufacturing a powder magnetic core according to claim 2, wherein the molding is performed so that a load direction of the molding pressure and a magnetic field applying direction are orthogonal to each other. ..
【請求項4】 請求項2又は3記載の圧粉磁芯の製造方
法において,前記圧粉磁芯はトロイダル型を有し,成形
の際に,中心に電気伝導体を設けて通電し,形成される
圧粉体に磁場を印加することを特徴とする圧粉磁芯の製
造方法。
4. The method for manufacturing a dust core according to claim 2 or 3, wherein the dust core has a toroidal shape, and at the time of molding, an electric conductor is provided at the center to conduct electricity. A method for manufacturing a dust core, comprising applying a magnetic field to the green compact.
JP4127309A 1992-05-20 1992-05-20 Dust core and manufacture thereof Pending JPH05326240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127309A JPH05326240A (en) 1992-05-20 1992-05-20 Dust core and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127309A JPH05326240A (en) 1992-05-20 1992-05-20 Dust core and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05326240A true JPH05326240A (en) 1993-12-10

Family

ID=14956763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127309A Pending JPH05326240A (en) 1992-05-20 1992-05-20 Dust core and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05326240A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306715A (en) * 1996-05-15 1997-11-28 Tokin Corp Electronic device and method of fabricating the same
JP2008263098A (en) * 2007-04-13 2008-10-30 Tohoku Univ Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
WO2009044514A1 (en) * 2007-10-03 2009-04-09 Hitachi Metals, Ltd. Coil component
JP2010010501A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Oriented dust core
JP2012033727A (en) * 2010-07-30 2012-02-16 Nec Tokin Corp Manufacturing method of magnetic element and magnetic element
CN106373693A (en) * 2016-11-15 2017-02-01 彭晓领 Method for preparing complete orientation soft magnetic composite material
KR20190048708A (en) * 2017-10-31 2019-05-09 주식회사 노피온 Magnetic field induction materials for wireless charging and manufacturing method thereof
WO2024190463A1 (en) * 2023-03-16 2024-09-19 株式会社オートネットワーク技術研究所 Core piece, reactor, converter and power conversion device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306715A (en) * 1996-05-15 1997-11-28 Tokin Corp Electronic device and method of fabricating the same
JP2008263098A (en) * 2007-04-13 2008-10-30 Tohoku Univ Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
WO2009044514A1 (en) * 2007-10-03 2009-04-09 Hitachi Metals, Ltd. Coil component
JP2010010501A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Oriented dust core
JP2012033727A (en) * 2010-07-30 2012-02-16 Nec Tokin Corp Manufacturing method of magnetic element and magnetic element
CN106373693A (en) * 2016-11-15 2017-02-01 彭晓领 Method for preparing complete orientation soft magnetic composite material
KR20190048708A (en) * 2017-10-31 2019-05-09 주식회사 노피온 Magnetic field induction materials for wireless charging and manufacturing method thereof
WO2024190463A1 (en) * 2023-03-16 2024-09-19 株式会社オートネットワーク技術研究所 Core piece, reactor, converter and power conversion device

Similar Documents

Publication Publication Date Title
US4543208A (en) Magnetic core and method of producing the same
US6717504B2 (en) Magnetic core including bias magnet and inductor component using the same
JP2010538494A (en) Bias gap inductor and manufacturing method thereof
JPWO2006022262A1 (en) Manufacturing method of magnetic core parts
JPWO2002021543A1 (en) Permanent magnet, magnetic core using it as a magnet for magnetic bias, and inductance component using the same
CN101499343A (en) Composite soft-magnetic powder material and permanent magnet bias magnetic core
CN110853910B (en) Preparation method of high-permeability low-loss soft magnetic composite material and magnetic ring thereof
JP2958807B2 (en) Inductor and manufacturing method thereof
WO2014092169A1 (en) Inductance component, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member
JP2007214425A (en) Powder magnetic core and inductor using it
JPH05326240A (en) Dust core and manufacture thereof
JPH11176680A (en) Manufacture of core
JPH05299232A (en) Resin molded magnetic material
JP2611056B2 (en) Method for manufacturing magnetic material and induction magnet
JP3860456B2 (en) Magnetic core and inductance component using the same
JP2000114022A (en) Powder-molded magnetic core
JPH08167518A (en) High frequency dust core and manufacture thereof
JPH04304601A (en) Magnetic material and induction electromagnetic apparatus
JP2022516212A (en) Soft magnetic composite material with two-dimensional magnetic moment and high operating frequency band and its preparation method
JPH10270226A (en) Powder-molded magnetic core and manufacture therefor
JPH06283356A (en) Anisotropic dust core and its manufacturing method
JP2001274029A (en) Core for choke coil, its manufacturing method, and choke coil
JP2007042931A (en) Coil component and its manufacturing method
JPH0512994Y2 (en)
JP2018074072A (en) Coil component

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020327