JPH05312423A - Double inlet type freezer device - Google Patents
Double inlet type freezer deviceInfo
- Publication number
- JPH05312423A JPH05312423A JP11743992A JP11743992A JPH05312423A JP H05312423 A JPH05312423 A JP H05312423A JP 11743992 A JP11743992 A JP 11743992A JP 11743992 A JP11743992 A JP 11743992A JP H05312423 A JPH05312423 A JP H05312423A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- heat exchanger
- regenerator
- pulse tube
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1408—Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1412—Pulse-tube cycles characterised by heat exchanger details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1417—Pulse-tube cycles without any valves in gas supply and return lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1424—Pulse tubes with basic schematic including an orifice and a reservoir
- F25B2309/14241—Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、パルスチューブを利用
して100(−173℃)以下の極低温を実現する冷凍
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus which uses a pulse tube to realize an extremely low temperature of 100 (-173 ° C) or lower.
【0002】[0002]
【従来の技術】従来、この種の冷凍装置として図3に示
すものがある。2. Description of the Related Art Conventionally, there is a refrigerating apparatus of this type shown in FIG.
【0003】同図において1は内部に20K以下の極低
温にて液体状態となるガス状冷媒、例えばヘリウムが充
填されたコンプレッサであり、シリンダ2内にピストン
3が移動可能に設けられている。4はコンプレッサ1に
第1パイプ5を介して連結された蓄冷器であり、内部に
銅や鉛等の蓄冷材6を充填している。7はこの蓄冷器4
に第2パイプ8を介して連結されたパルスチューブであ
り、ステンレス鋼より形成されている。9は100K以
下の極低温を取り出すための低温取出用熱交換器であ
り、銅などの熱伝導性の高い材料からなり、第2パイプ
8の途中に設けられている。10は該パルスチューブ7
に第3パイプ11を介して連結されたバッファタンクで
あり、この第3パイプ11の途中にニードル弁等のオリ
フィス弁12が設けられている。13は蓄冷器4のコン
プレッサ1側端部に設けられた放熱用熱交換器、14は
パルスチューブ7のバッファタンク10側端部に設けら
れた放熱用熱交換器であり、水冷式あるいは空冷式の放
熱フィンが用いられている。また、これらの材料として
は熱伝導率の高い銅等が用いられている。In FIG. 1, reference numeral 1 denotes a compressor filled with a gaseous refrigerant, such as helium, which is in a liquid state at an extremely low temperature of 20 K or less, and a piston 3 is movably provided in a cylinder 2. Reference numeral 4 denotes a regenerator connected to the compressor 1 via a first pipe 5, and the inside thereof is filled with a regenerator material 6 such as copper or lead. 7 is this regenerator 4
Is a pulse tube connected to the second pipe 8 via a second pipe 8 and is made of stainless steel. Reference numeral 9 denotes a low-temperature extraction heat exchanger for extracting an extremely low temperature of 100 K or less, which is made of a material having high thermal conductivity such as copper and is provided in the middle of the second pipe 8. 10 is the pulse tube 7
Is a buffer tank connected via a third pipe 11, and an orifice valve 12 such as a needle valve is provided in the middle of the third pipe 11. Reference numeral 13 denotes a heat radiating heat exchanger provided at the end of the regenerator 4 on the compressor 1 side, and 14 denotes a heat radiating heat exchanger provided at the end of the pulse tube 7 on the buffer tank 10 side. Radiating fins are used. Further, copper or the like having high thermal conductivity is used as these materials.
【0004】尚、蓄冷器4、低温取出用熱交換器9、パ
ルスチューブ7、及びこれらを連結する第2パイプ8は
断熱のために真空チャンバ(真空度10-4torr以下)1
5に収納されている。The regenerator 4, the heat exchanger 9 for low temperature extraction, the pulse tube 7, and the second pipe 8 connecting them are vacuum chambers (vacuum degree 10 -4 torr or less) 1 for heat insulation.
It is stored in 5.
【0005】上記の構成においてコンプレッサ1のピス
トン3の図3下方向への移動による圧縮過程においてコ
ンプレッサ1で圧縮されたガス状冷媒は、放熱用熱交換
器13及び蓄冷器4を通る間に冷却されてパルスチュー
ブ7内に流入し、このパルスチューブ7内の残留冷媒は
圧縮されてその圧縮熱が放熱用熱交換器14に放熱され
てバッファタンク10内に流入する。In the above structure, the gaseous refrigerant compressed by the compressor 1 in the compression process by the downward movement of the piston 3 of the compressor 1 in FIG. 3 is cooled while passing through the heat radiating heat exchanger 13 and the regenerator 4. The residual refrigerant in the pulse tube 7 is compressed and the residual refrigerant in the pulse tube 7 is compressed and the compression heat is radiated to the heat radiating heat exchanger 14 to flow into the buffer tank 10.
【0006】その後、ピストン3の図3上方向への移動
による膨張過程においてコンプレッサ1内へガス状冷媒
を吸引動作することでパルスチューブ7内のガス状冷媒
を復帰移動させ、パルスチューブ7内で断熱膨張させ
て、更に低温化させて低温取出用熱交換器9及び蓄冷器
4を冷却してコンプレッサ1に帰還させる。After that, during the expansion process by moving the piston 3 in the upward direction in FIG. 3, the gaseous refrigerant in the pulse tube 7 is returned and moved by sucking the gaseous refrigerant into the compressor 1 to move in the pulse tube 7. Adiabatic expansion is performed and the temperature is further lowered to cool the low temperature extraction heat exchanger 9 and the regenerator 4 and return to the compressor 1.
【0007】このようにガス状冷媒の往復移動サイクル
を繰り返すことにより、低温取出用熱交換器9にて極低
温を得るようにしたものである。By repeating the reciprocating movement cycle of the gaseous refrigerant in this way, a cryogenic temperature is obtained in the low temperature take-out heat exchanger 9.
【0008】しかしながら、この冷凍装置では、低温取
出用熱交換器9が或る程度低温(約100K)になって
くると、膨張過程においてバッファタンク10、及びパ
ルスチューブ7内の高温端にある室温付近の高い温度の
ガス状冷媒が低温取出用熱交換器9に流入し、低温用取
出用熱交換器9で得られる温度が限られてしまうという
問題があった。However, in this refrigerating apparatus, when the low-temperature extraction heat exchanger 9 becomes low temperature (about 100K) to some extent, the buffer tank 10 and the room temperature at the high temperature end in the pulse tube 7 are expanded during the expansion process. There is a problem that a high temperature gaseous refrigerant in the vicinity flows into the low temperature extraction heat exchanger 9 and the temperature obtained in the low temperature extraction heat exchanger 9 is limited.
【0009】この対策として、Cryogenics、vol 30、P2
57〜261、1990年では、図2に示すダブルインレット型
冷凍装置が提案されている。この冷凍装置は、新たにオ
リフィス弁12、及び放熱用熱交換器14間の第3パイ
プ11と、第1パイプ5との間を第4パイプ16にて接
続し、その中間部に流量を調整するオリフィス弁17を
設けた構成となっている。As a countermeasure against this, Cryogenics, vol 30, P2
57-261, 1990, the double inlet type refrigerating apparatus shown in FIG. 2 is proposed. In this refrigeration system, the third pipe 11 between the orifice valve 12 and the heat radiating heat exchanger 14 and the first pipe 5 are newly connected by the fourth pipe 16, and the flow rate is adjusted to the intermediate portion. The orifice valve 17 is provided.
【0010】このダブルインレット型冷凍装置では、コ
ンプレッサ1のピストン3の図2下方向への移動による
圧縮過程においてコンプレッサ1で圧縮されたガス状冷
媒は、放熱用熱交換器13、及び蓄冷器4に流入すると
共に、その一部が第4パイプ16、オリフィス弁17を
介してバッファタンク10、及び放熱用熱交換器14に
流入する。In this double inlet type refrigerating apparatus, the gaseous refrigerant compressed by the compressor 1 in the compression process by the downward movement of the piston 3 of the compressor 1 in FIG. 2 is used as a heat radiating heat exchanger 13 and a regenerator 4. And a part thereof flows into the buffer tank 10 and the heat radiating heat exchanger 14 through the fourth pipe 16 and the orifice valve 17.
【0011】この際、コンプレッサ1で圧縮されたガス
状冷媒が、放熱用熱交換器13及び蓄冷器4を通る間に
冷却されてパルスチューブ7内に流入し、このパルスチ
ューブ7内の残留冷媒は圧縮されてその圧縮熱が放熱用
熱交換器14に放熱され、バッファタンク10内に流入
する。At this time, the gaseous refrigerant compressed by the compressor 1 is cooled while passing through the heat radiating heat exchanger 13 and the regenerator 4 and flows into the pulse tube 7, and the residual refrigerant in the pulse tube 7 is cooled. Is compressed and its compression heat is radiated to the heat radiation heat exchanger 14, and flows into the buffer tank 10.
【0012】その後、ピストン3の図2上方向への移動
による膨張過程においてコンプレッサ1内へガス状冷媒
を吸引動作することでパルスチューブ7内のガス状冷媒
を復帰移動させ、パルスチューブ7内で断熱膨張させ
て、更に低温化させて低温取出用熱交換器9及び蓄冷器
4を冷却してコンプレッサ1に帰還させる。この際、バ
ッファタンク10、及びパルスチューブ7内の高温端に
ある室温付近の高い温度のガス状冷媒は、第4パイプ1
6、オリフィス弁17を介してコンプレッサ1に帰還す
ることになる。After that, in the expansion process by moving the piston 3 in the upward direction in FIG. 2, the gaseous refrigerant in the pulse tube 7 is moved back by moving the gaseous refrigerant in the pulse tube 7 by suctioning the gaseous refrigerant into the compressor 1. Adiabatic expansion is performed and the temperature is further lowered to cool the low temperature extraction heat exchanger 9 and the regenerator 4 and return to the compressor 1. At this time, the high temperature gaseous refrigerant near the room temperature at the high temperature end in the buffer tank 10 and the pulse tube 7 is the fourth pipe 1
6, it will be returned to the compressor 1 via the orifice valve 17.
【0013】これにより、膨張過程において低温取出用
熱交換器9へバッファタンク10、及びパルスチューブ
7内の高温端にある室温付近の高い温度のガス状冷媒が
低温取出用熱交換器9に流入するのを防止し、低温取出
用熱交換器9を更に低温化することが可能であった。As a result, during the expansion process, the high-temperature gaseous refrigerant near the room temperature at the high temperature end of the buffer tank 10 and the pulse tube 7 flows into the low temperature extraction heat exchanger 9 into the low temperature extraction heat exchanger 9. It was possible to prevent this from happening and to further lower the temperature of the low temperature extraction heat exchanger 9.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、上記ダ
ブルインレット型冷凍装置では、膨張過程においてバッ
ファタンク10、及び放熱用熱交換器14にある室温付
近の高い温度のガス状冷媒が、第4パイプ16、オリフ
ィス弁17を介してコンプレッサ1、及び蓄冷器4に流
入し、その結果、蓄冷器4の高温端部18において前記
ガス状冷媒が滞留し、蓄冷器4の高温端部18の温度を
上昇させていた。However, in the above double inlet type refrigerating apparatus, in the expansion process, the high temperature gaseous refrigerant near the room temperature in the buffer tank 10 and the heat radiating heat exchanger 14 is discharged to the fourth pipe 16. , Flows into the compressor 1 and the regenerator 4 via the orifice valve 17, and as a result, the gaseous refrigerant stays at the high temperature end 18 of the regenerator 4 and raises the temperature of the high temperature end 18 of the regenerator 4. I was letting it.
【0015】そのため、この冷凍装置を長時間の運転を
行った場合、蓄冷器4の高温端部18における温熱が低
温用取出用熱交換器9まで伝わり、得られる冷凍温度が
40〜50K程度となり、冷凍能力を低下させる新たな
問題を含んでいた。Therefore, when the refrigeration system is operated for a long time, the heat of the high temperature end 18 of the regenerator 4 is transmitted to the low temperature extraction heat exchanger 9 and the obtained refrigeration temperature is about 40 to 50K. , Included new problems that reduce refrigeration capacity.
【0016】本発明は斯かる従来技術の問題点に鑑みて
なされたものであって、上記ダブルインレット型冷凍装
置において、蓄冷器の高温端部における温度上昇を防止
し、冷凍能力の低下を防止した極低温用の冷凍装置を提
供するものである。The present invention has been made in view of the above problems of the prior art, and in the above double inlet type refrigerating apparatus, the temperature rise at the high temperature end of the regenerator is prevented, and the reduction of the refrigerating capacity is prevented. The present invention provides a cryogenic refrigeration device.
【0017】[0017]
【課題を解決するための手段】本発明は、内部にガス状
冷媒が充填されたコンプレッサと、該コンプレッサに第
1パイプを介して配管接続され、蓄冷材が充填された蓄
冷器と、該蓄冷器に第2パイプを介して配管接続された
中空のパルスチューブと、前記第2パイプの途中に設け
られた低温取出用交換器と、前記パルスチューブに第3
パイプを介して配管接続されたバッファタンクと、前記
第1パイプ、及び第3パイプ間に配管接続された第4パ
イプと、を備え、前記蓄冷器の高温端部周面に放熱用熱
交換器を設けたものである。DISCLOSURE OF THE INVENTION The present invention relates to a compressor having a gaseous refrigerant filled therein, a regenerator connected to the compressor through a first pipe and filled with a regenerator material, and the regenerator. A hollow pulse tube pipe-connected to the container via a second pipe, a low temperature take-out exchanger provided in the middle of the second pipe, and a third part to the pulse tube.
A heat exchanger for radiating heat is provided on a peripheral surface of a high temperature end of the regenerator, the buffer tank being pipe-connected through a pipe, and the fourth pipe being pipe-connected between the first pipe and the third pipe. Is provided.
【0018】[0018]
【作用】本発明によれば、蓄冷器の高温端部周面に設け
られた放熱用熱交換器により、前記高温端部にて発生す
る温熱が確実に放熱される。According to the present invention, the heat radiating heat exchanger provided on the peripheral surface of the high temperature end of the regenerator surely radiates the heat generated at the high temperature end.
【0019】[0019]
【実施例】以下本発明の冷凍装置の一実施例を図1に基
づいて説明する。尚、前述の図2装置と同じ構成につい
ては同一符号を付して示している。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the refrigerating apparatus of the present invention will be described below with reference to FIG. The same components as those of the above-mentioned FIG. 2 device are designated by the same reference numerals.
【0020】同図において、蓄冷器4の高温端部18周
面には、水冷式の放熱用熱交換器21が設けられてい
る。In the figure, a water-cooling type heat-radiating heat exchanger 21 is provided on the peripheral surface of the high temperature end portion 18 of the regenerator 4.
【0021】尚、放熱用熱交換器21、蓄冷器4、低温
取出用熱交換器9、パルスチューブ7、及びこれらを連
結する第2パイプ8は断熱のために真空チャンバ(真空
度10-4torr以下)15に収納され、放熱用熱交換器2
1に冷却水が真空チャンバ15外部から供給されてい
る。The heat radiating heat exchanger 21, the regenerator 4, the low temperature extracting heat exchanger 9, the pulse tube 7, and the second pipe 8 connecting them are vacuum chambers (vacuum degree 10 -4) for heat insulation. (Torr or less) 15 is housed in the heat radiation heat exchanger 2
1, cooling water is supplied from the outside of the vacuum chamber 15.
【0022】従って、コンプレッサ1のピストン3の図
1上方向への移動による膨張過程において、第4パイプ
16から流入する高温のガス状冷媒が蓄冷器4の高温端
部18にて滞留し温熱が発生することになるが、高温端
部18周面に設けられた放熱用熱交換器21にて水冷さ
れ、高温端部18が温度上昇するのが防止される。Therefore, in the expansion process by the upward movement of the piston 3 of the compressor 1 in FIG. 1, the high-temperature gaseous refrigerant flowing from the fourth pipe 16 stays at the high-temperature end 18 of the regenerator 4 and heat is generated. Although generated, it is prevented that the temperature of the high temperature end portion 18 rises due to water cooling by the heat radiating heat exchanger 21 provided on the peripheral surface of the high temperature end portion 18.
【0023】このため、冷凍装置の長時間運転を行った
場合、蓄冷器4の高温端部18における温熱が低温用取
出用熱交換器9まで伝わり、冷凍能力を低下させること
がない。Therefore, when the refrigeration system is operated for a long time, the heat at the high temperature end 18 of the regenerator 4 is not transferred to the low temperature extraction heat exchanger 9 and the refrigerating capacity is not lowered.
【0024】このようにガス状冷媒の往復移動サイクル
を繰り返すことにより、低温取出用熱交換器9にて極低
温が得られることになり、この結果、低温取出用熱交換
器9に30〜40Kの極低温が得られることが確認され
た。By repeating the reciprocating movement cycle of the gaseous refrigerant in this way, an extremely low temperature can be obtained in the low temperature taking-out heat exchanger 9, and as a result, the low temperature taking-out heat exchanger 9 has a temperature of 30-40K. It was confirmed that a very low temperature of
【0025】尚、上記実施例では、放熱用熱交換器21
として水冷式熱交換器を用いた場合について説明した
が、この他に空冷式熱交換器を用いても同様の効果を奏
することができる。In the above embodiment, the heat radiating heat exchanger 21 is used.
Although the case where the water-cooled heat exchanger is used has been described as above, the same effect can be obtained by using an air-cooled heat exchanger in addition to this.
【0026】但し、空冷式熱交換器を設ける場合には、
蓄冷器4の高温端部18のみを真空チャンバ15の外部
に設け、その高温端部周面に空冷式熱交換器を取付け、
外気にて空冷可能とする必要がある。However, when an air-cooled heat exchanger is provided,
Only the high temperature end 18 of the regenerator 4 is provided outside the vacuum chamber 15, and an air-cooled heat exchanger is attached to the peripheral surface of the high temperature end.
It is necessary to be air-cooled by the outside air.
【0027】[0027]
【発明の効果】以上述べた通り本発明によれば、蓄冷器
の高温端部周面に設けられた放熱用熱交換器により、前
記高温端部にて発生する温熱が確実に放熱される。As described above, according to the present invention, the heat radiating heat exchanger provided on the peripheral surface of the high temperature end of the regenerator surely radiates the heat generated at the high temperature end.
【0028】従って、冷凍装置の長時間運転を行った場
合に、蓄冷器の高温端部における温度上昇を防止し、冷
凍能力の低下を防止した極低温用の冷凍装置を実現する
ことができる。Therefore, when the refrigeration system is operated for a long time, it is possible to realize a cryogenic refrigeration system in which the temperature rise at the high temperature end of the regenerator is prevented and the refrigeration capacity is prevented from being lowered.
【図1】本発明の一実施例を示すダブルインレット型冷
凍装置のシステム構成図である。FIG. 1 is a system configuration diagram of a double inlet type refrigerating apparatus showing an embodiment of the present invention.
【図2】従来のダブルインレット型冷凍装置のシステム
構成図である。FIG. 2 is a system configuration diagram of a conventional double inlet refrigeration system.
【図3】従来の冷凍装置のシステム構成図である。FIG. 3 is a system configuration diagram of a conventional refrigeration system.
1 コンプレッサ 4 蓄冷器 5 第1パイプ 7 パルスチューブ 8 第2パイプ 9 低温取出用熱交換器 10 バッファタンク 11 第3パイプ 12 オリフィス弁 16 第4パイプ 17 オリフィス弁 18 高温端部 21 放熱用熱交換器 1 Compressor 4 Regenerator 5 1st pipe 7 Pulse tube 8 2nd pipe 9 Low temperature extraction heat exchanger 10 Buffer tank 11 3rd pipe 12 Orifice valve 16 4th pipe 17 Orifice valve 18 High temperature end 21 Radiation heat exchanger
Claims (1)
サと、 該コンプレッサに第1パイプを介して配管接続され、蓄
冷材が充填された蓄冷器と、 該蓄冷器に第2パイプを介して配管接続された中空のパ
ルスチューブと、 前記第2パイプの途中に設けられた低温取出用交換器
と、 前記パルスチューブに第3パイプを介して配管接続され
たバッファタンクと、 前記第1パイプ、及び第3パイプ間に配管接続された第
4パイプと、を備え、 前記蓄冷器の高温端部周面に放熱用熱交換器を設けたこ
とを特徴とするダブルインレット型冷凍装置。1. A compressor having a gaseous refrigerant filled therein, a regenerator connected to the compressor through a first pipe and filled with a regenerator material, and a regenerator through a second pipe. A hollow pulse tube connected by piping, a low temperature extraction exchanger provided in the middle of the second pipe, a buffer tank connected by piping to the pulse tube via a third pipe, the first pipe, And a fourth pipe connected between the third pipe and a third pipe, and a heat radiating heat exchanger is provided on the peripheral surface of the high temperature end of the regenerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11743992A JPH05312423A (en) | 1992-05-11 | 1992-05-11 | Double inlet type freezer device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11743992A JPH05312423A (en) | 1992-05-11 | 1992-05-11 | Double inlet type freezer device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05312423A true JPH05312423A (en) | 1993-11-22 |
Family
ID=14711681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11743992A Pending JPH05312423A (en) | 1992-05-11 | 1992-05-11 | Double inlet type freezer device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05312423A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1352199A1 (en) * | 2001-01-19 | 2003-10-15 | Praxair Technology, Inc. | Cryogenic pulse tube system |
EP1431682A1 (en) * | 2001-08-30 | 2004-06-23 | Aisin Seiki Kabushiki Kaisha | Pulse tube refrigerating machine |
JP2014231953A (en) * | 2013-05-29 | 2014-12-11 | 住友重機械工業株式会社 | Stirling type pulse pipe refrigeration machine |
-
1992
- 1992-05-11 JP JP11743992A patent/JPH05312423A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1352199A1 (en) * | 2001-01-19 | 2003-10-15 | Praxair Technology, Inc. | Cryogenic pulse tube system |
EP1352199A4 (en) * | 2001-01-19 | 2009-02-25 | Praxair Technology Inc | Cryogenic pulse tube system |
EP1431682A1 (en) * | 2001-08-30 | 2004-06-23 | Aisin Seiki Kabushiki Kaisha | Pulse tube refrigerating machine |
US7047750B2 (en) * | 2001-08-30 | 2006-05-23 | Aisin Seiki Kabushiki Kaisha | Pulse tube refrigerating machine |
EP1431682A4 (en) * | 2001-08-30 | 2009-02-25 | Aisin Seiki | Pulse tube refrigerating machine |
JP2014231953A (en) * | 2013-05-29 | 2014-12-11 | 住友重機械工業株式会社 | Stirling type pulse pipe refrigeration machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3347870B2 (en) | Superconducting magnet and regenerative refrigerator for the magnet | |
JP2001355929A (en) | Pulse tube cryogenic refrigerating device using integrated buffer volume | |
JPS5880474A (en) | Cryogenic cooling device | |
JP3702964B2 (en) | Multistage low temperature refrigerator | |
JP2005515386A (en) | A cryopump with a two-stage pulse tube refrigerator | |
US6532748B1 (en) | Cryogenic refrigerator | |
JPS61256158A (en) | Refrigeration system | |
JPH05312423A (en) | Double inlet type freezer device | |
JP2001272126A (en) | Pulse tube refrigerating machine, and superconductive magnet device using pulse tube refrigerating machine | |
JP7034877B2 (en) | Very low temperature cooling device | |
US7272937B2 (en) | Cooling device | |
JPS63302259A (en) | Cryogenic generator | |
JP2831809B2 (en) | Cryogenic refrigeration equipment | |
JPH031053A (en) | Refrigerating machine | |
JP6529850B2 (en) | Cryogenic refrigerator and operating method of cryogenic refrigerator | |
JP2834897B2 (en) | Refrigeration equipment | |
JP2008215783A (en) | Cryogenic refrigerating machine and cryogenic refrigerating method | |
JPH03286967A (en) | Pulse pipe type freezer | |
JPH0674584A (en) | Cryogenic refrigerator and operating method thereof | |
JP2723342B2 (en) | Cryogenic refrigerator | |
JPH08313095A (en) | Cold storage type refrigerating machine | |
JPH084652A (en) | Cryopump | |
JP2698477B2 (en) | Cryogenic refrigerator | |
CN118168181A (en) | Pulse tube refrigerator and cooling method thereof | |
JPH05118683A (en) | Refrigerator |