Nothing Special   »   [go: up one dir, main page]

JPH05318287A - Super-precision working machine - Google Patents

Super-precision working machine

Info

Publication number
JPH05318287A
JPH05318287A JP15586792A JP15586792A JPH05318287A JP H05318287 A JPH05318287 A JP H05318287A JP 15586792 A JP15586792 A JP 15586792A JP 15586792 A JP15586792 A JP 15586792A JP H05318287 A JPH05318287 A JP H05318287A
Authority
JP
Japan
Prior art keywords
work
data
machining
laser interferometer
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15586792A
Other languages
Japanese (ja)
Inventor
Masao Nakagawa
昌夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP15586792A priority Critical patent/JPH05318287A/en
Publication of JPH05318287A publication Critical patent/JPH05318287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To enhance the machining accuracy by measuring the actual shape of a work quickly and precisely by the on-machine system, and correcting the machining error by the in-process control on the basis of the data acquired from measurement. CONSTITUTION:A laser interferometer 9 not likely to be influenced by vibration and the straightness in movement of the guide surface is installed on the X-axis table 5 of a super-precision working lathe. The shape of the machining surface of a work 12 under machining is measured by this laser interferometer 9, and the acquired data is fed to an NC device 19 through a processor 16. The NC device 19 prepares the machining error correction data on the basis of this measuring data, to serve for controlling servo motors 7 and 10 which drive the spindle stock 6 and tool rest 8, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ワークの実形状をオ
ンマシンで測定して、加工誤差をインプロセス制御で補
正する超精密加工機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-precision processing machine which measures an actual shape of a work piece by an on-machine machine and corrects a processing error by in-process control.

【0002】[0002]

【従来の技術】一般に、旋盤等の超精密加工機を使用し
てワークを鏡面加工する場合には、加工面の形状測定を
欠かすことができない。形状測定手段としては、従来か
ら、電気マイクロメータが広く使用されているが、これ
を加工機上に設置すると、振動及び案内面の移動真直度
の影響を受けて大きな測定誤差が発生するため、機上で
の形状測定は不可能であった。したがって、従来は、加
工後にワークをチャックから外して測定し、その加工誤
差をNC加工データにフィードバックし、ワークをチャ
ックに再度取り付けて、誤差補正のための再加工を行う
よにしていた。
2. Description of the Related Art Generally, when a work is mirror-finished by using an ultra-precision processing machine such as a lathe, it is essential to measure the shape of the machined surface. Conventionally, an electric micrometer has been widely used as the shape measuring means.However, when this is installed on a processing machine, a large measurement error occurs due to the influence of vibration and movement straightness of the guide surface. The shape measurement on the machine was impossible. Therefore, conventionally, the work is detached from the chuck after the measurement, the machining error is fed back to the NC machining data, the work is reattached to the chuck, and the remachining is performed to correct the error.

【0003】[0003]

【発明が解決しようとする課題】このため、従来の超精
密加工機によると、形状測定のためにワークをチャック
に脱着する必要があって、作業能率が悪くなるばかりで
なく、取り付け誤差により加工精度も低下するという問
題点があった。そこで、この発明の課題は、ワークの実
形状をオンマシンで迅速かつ正確に測定でき、その測定
データに基づき加工誤差をインプロセス制御により補正
して、加工精度を向上できる超精密加工機を提供するこ
とにある。
Therefore, according to the conventional ultra-precision processing machine, it is necessary to remove the work from the chuck for shape measurement, which not only deteriorates the work efficiency, but also causes the work due to the mounting error. There was a problem that the accuracy was also lowered. Therefore, an object of the present invention is to provide an ultra-precision machine capable of measuring the actual shape of a work piece on-machine quickly and accurately and correcting the machining error by in-process control based on the measured data to improve the machining accuracy. To do.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明の超精密加工機は、ワークの形状を測定
するために加工機上に設置されたレーザ干渉計と、この
レーザ干渉計の測定データに基づきワークの加工誤差を
補正するNC制御装置とから構成される。
In order to solve the above-mentioned problems, an ultra-precision processing machine according to the present invention is provided with a laser interferometer installed on the processing machine for measuring the shape of a work and the laser interference. And an NC control device that corrects the machining error of the workpiece based on the measurement data of the meter.

【0005】[0005]

【作用】この発明の超精密加工機によれば、振動及び案
内面の移動真直度の影響を受けにくいレーザ干渉計が使
用されるので、これを加工機上に設置して、加工中にお
けるワークの実形状をオンマシンで迅速かつ正確に測定
できる。そして、レーザ干渉計の測定データはNC制御
装置に入力され、ここでワークの加工誤差を補正する補
正データが作成される。したがって、加工誤差をインプ
ロセス制御により自動補正できて、ワークの高精度加工
が可能になる。
According to the ultra-precision processing machine of the present invention, a laser interferometer is used which is not easily affected by vibration and movement straightness of the guide surface. The actual shape of can be measured on-machine quickly and accurately. Then, the measurement data of the laser interferometer is input to the NC control device, and here, correction data for correcting the machining error of the work is created. Therefore, the machining error can be automatically corrected by the in-process control, and the workpiece can be machined with high precision.

【0006】[0006]

【実施例】以下、この発明を超精密加工旋盤に具体化し
た一実施例を図面に基づいて説明する。図1に示すよう
に、超精密加工旋盤のベース1上には除振台2を介して
ベッド3が据え付けられ、そのベッド3上にはZ軸テー
ブル4及びX軸テーブル5がそれぞれ摺動可能に支持さ
れている。Z軸テーブル4上にはビルトインモータを内
蔵した主軸台6が設置され、サーボモータ7によりZ軸
方向へ送られる。X軸テーブル5上には刃物台8及びレ
ーザ干渉計9が設置され、これらはサーボモータ10に
よりX軸方向へ一体に送られる。そして、主軸台6には
チャック11によりワーク12が把持され、刃物台8に
は工具13が取付けられ、各サーボモータ7,10には
位置検出器14,15が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an ultra-precision machining lathe will be described below with reference to the drawings. As shown in FIG. 1, a bed 3 is installed on a base 1 of an ultraprecision lathe via a vibration isolation table 2, and a Z-axis table 4 and an X-axis table 5 can slide on the bed 3, respectively. Supported by. A headstock 6 containing a built-in motor is installed on the Z-axis table 4 and is sent in the Z-axis direction by a servomotor 7. A tool rest 8 and a laser interferometer 9 are installed on the X-axis table 5, and these are fed integrally by a servomotor 10 in the X-axis direction. Then, the work piece 12 is held by the chuck 11 on the headstock 6, the tool 13 is attached to the tool rest 8, and the position detectors 14 and 15 are provided on the servomotors 7 and 10, respectively.

【0007】レーザ干渉計9はレーザ光(平行線)によ
りワーク12の端面を撮像するCCDカメラを装備し、
撮像により得た測定データをアナログ信号でプロセッサ
16に出力する。プロセッサ16には測定データをデジ
タル化するA/D変換器17と、加工面の凹凸形状を表
す3次元データを作成する3次元データ処理回路18と
が設けられている。プロセッサ16はNC制御装置19
に接続され、ここには、プロセッサ16の出力に基づき
加工面の干渉縞パターン(図4参照)及び3次元形状
(図5参照)をCRTディスプレイ20に表示するため
のデータ処理を行うCRT映像処理回路21と、レーザ
干渉計9の測定データとNC加工データとに基づきX軸
及びZ軸の形状誤差補正データを作成するX送り・Z送
り補正回路22とが設けられている。そして、NC制御
装置19は形状誤差補正信号を位置検出器14,15に
出力して、サーボモータ7,10を制御するように構成
されている。
The laser interferometer 9 is equipped with a CCD camera for picking up an image of the end face of the work 12 by laser light (parallel lines).
The measurement data obtained by imaging is output to the processor 16 as an analog signal. The processor 16 is provided with an A / D converter 17 for digitizing the measurement data, and a three-dimensional data processing circuit 18 for producing three-dimensional data representing the uneven shape of the processed surface. The processor 16 is an NC controller 19
CRT image processing for performing data processing for displaying the interference fringe pattern (see FIG. 4) and the three-dimensional shape (see FIG. 5) of the processed surface on the CRT display 20 based on the output of the processor 16. A circuit 21 and an X-feed / Z-feed correction circuit 22 for creating X-axis and Z-axis shape error correction data based on the measurement data of the laser interferometer 9 and the NC processing data are provided. Then, the NC control device 19 is configured to output a shape error correction signal to the position detectors 14 and 15 to control the servomotors 7 and 10.

【0008】上記のように構成された超精密加工旋盤に
おいて、次に、レーザ干渉計9を使用してワーク12の
形状誤差を補正する方法を図2に示すフローチャートに
従って説明する。まず、主軸台6のZ軸方向及び刃物台
8のX軸方向への移動に伴い、ワーク12の端面が工具
13により切削され(ステップS1)、次いで、レーザ
干渉計9によりワーク12の端面形状が測定される(ス
テップS2)。この場合、振動及び案内面の移動真直度
の影響を受けにくいレーザ干渉計9を使用しているの
で、これを加工機のX軸テーブル5上に設置でき、ワー
ク12をチャック11に把持したままの状態で、その実
形状をオンマシン測定法により迅速かつ正確に測定する
ことができる。次に、レーザ干渉計9の測定データがプ
ロセッサ16において3次元形状処理され、加工面の凹
凸形状を表す3次元データが作成される(ステップS
3)。続いて、NC制御装置19にて、レーザ干渉計9
の測定データに基づきワーク12の加工誤差を補正する
ためのZ軸方向の位置決めデータが後述する手順により
作成される(ステップS4)。
A method of correcting the shape error of the work 12 by using the laser interferometer 9 in the ultra-precision machining lathe constructed as described above will now be described with reference to the flowchart shown in FIG. First, as the headstock 6 moves in the Z-axis direction and the tool rest 8 moves in the X-axis direction, the end face of the work 12 is cut by the tool 13 (step S1), and then the end face shape of the work 12 is cut by the laser interferometer 9. Is measured (step S2). In this case, since the laser interferometer 9 which is hardly affected by vibration and movement straightness of the guide surface is used, this can be installed on the X-axis table 5 of the processing machine, and the work piece 12 can be held by the chuck 11 while being held. In this state, the actual shape can be measured quickly and accurately by the on-machine measurement method. Next, the measurement data of the laser interferometer 9 is subjected to three-dimensional shape processing by the processor 16 to create three-dimensional data representing the uneven shape of the processed surface (step S).
3). Then, in the NC controller 19, the laser interferometer 9
Positioning data in the Z-axis direction for correcting the machining error of the work 12 is created based on the measurement data of (1) by the procedure described later (step S4).

【0009】その後、加工誤差の最大値δzmax が許容
値δzaと比較される(ステップS5)。加工誤差最大
値δzmax が許容値δzaより大きい場合には、NCデ
ータ中のZ軸位置決めデータが補正された後(ステップ
S6)、ワーク12が再切削される。そして、加工誤差
最大値δzmax が許容値δza以下になるまで前記各工
程が繰り返し実行され、加工誤差最大値δzmzx が許容
値δza以下になれば、このときの測定値及び評価が出
力される(ステップS7)。ここで、測定値として加工
面の干渉縞パターン及び3次元形状が、また、評価とし
ては、例えば、“GOOD”の表示がそれぞれNC制御
装置19のCRTディスプレイ20に表示される。した
がって、加工誤差をインプロセス制御により自動補正で
きて、ワーク12の高精度加工が可能になる。なお、測
定値を印字するためのプリンタをNC制御装置19に設
けてもよい。
Thereafter, the maximum value δzmax of the processing error is compared with the allowable value δza (step S5). When the machining error maximum value δzmax is larger than the allowable value δza, the Z-axis positioning data in the NC data is corrected (step S6), and the work 12 is recut. Then, the above steps are repeatedly executed until the maximum processing error δzmax becomes equal to or less than the allowable value δza. When the maximum processing error δzmzx becomes equal to or less than the allowable value δza, the measured value and the evaluation at this time are output (step S7). Here, the interference fringe pattern and the three-dimensional shape of the processed surface are displayed as the measured values, and, for example, “GOOD” is displayed as the evaluation on the CRT display 20 of the NC control device 19. Therefore, the machining error can be automatically corrected by the in-process control, and the workpiece 12 can be machined with high precision. A printer for printing the measured value may be provided in the NC control device 19.

【0010】前記加工誤差補正データを作成する手順を
図3に示すフローチャートに従って説明する。補正の基
準点はワーク12の中心に設定される。このため、切削
工程に先立ち、まず、ワーク12の直径Dがマイクロメ
ータ等により測定されてNC制御装置19に入力され
(ステップS11)、次いで、補正開始の座標値χn
(χn=D/2)が算出される(ステップS12)。ワ
ーク12が切削されると、次に、レーザ干渉計9の測定
データからDになるデータラインがサーチされて、図6
に示すように、ワーク12の中心を通る断面形状データ
が収集される(ステップS13)。図6において、δ0
〜δ3:ワークの中心及びそこを通る各点の加工誤差、
δzmax :加工誤差最大値、D:ワークの直径、δi
(χi):補正データ、n:ワークの半径の分割数であ
る。なお、nはNC位置決め分解能(例えば、0.1μ
m)により決定され、NC位置決め分解能≦D/2nで
あって、nの最大値は nmax ≦ D/[2×(NC位置決め分解能)] である。
A procedure for creating the processing error correction data will be described with reference to the flowchart shown in FIG. The correction reference point is set at the center of the work 12. Therefore, prior to the cutting process, first, the diameter D of the work 12 is measured by a micrometer or the like and input to the NC control device 19 (step S11), and then the correction start coordinate value χn.
(Χn = D / 2) is calculated (step S12). When the work 12 is cut, the data line D is next searched from the measurement data of the laser interferometer 9, and FIG.
As shown in, the cross-sectional shape data passing through the center of the work 12 is collected (step S13). In FIG. 6, δ0
~ Δ3: processing error at the center of the work and each point passing therethrough,
δzmax: maximum machining error, D: workpiece diameter, δi
(Χi): correction data, n: number of divisions of the radius of the work. Note that n is the NC positioning resolution (for example, 0.1 μ
m), NC positioning resolution ≦ D / 2n, and the maximum value of n is nmax ≦ D / [2 × (NC positioning resolution)].

【0011】続いて、前記測定データの初期値化が実行
され、補正開始点χnの加工誤差値δz(χn)が0に
セットされる(ステップS14)。その後、X軸方向各
位置の補正データが δi(χi)=δz(χi)−δ
z(χn) により演算され(ステップS15)、この
演算結果に従い、位置と補正値とを対応させた補正テー
ブルが作成される(ステップS16)。そして、この補
正データはNCサーボヘフィードバックされ(ステップ
S17)、これによって主軸台6のサーボモータ7が制
御される。
Subsequently, the measurement data is initialized, and the processing error value δz (χn) at the correction start point χn is set to 0 (step S14). After that, the correction data at each position in the X-axis direction is δi (χi) = δz (χi) −δ
It is calculated by z (χn) (step S15), and a correction table that associates the position with the correction value is created according to the calculation result (step S16). Then, this correction data is fed back to the NC servo (step S17), whereby the servo motor 7 of the headstock 6 is controlled.

【0012】なお、上記実施例では、ワーク12の端面
加工について説明したが、ワーク12の周面加工にもこ
の発明を適用することができ、この場合は、レーザ干渉
計9の周面形状測定データに基づいて刃物台8のサーボ
モータ10が制御される。また、この発明は旋盤のみに
限定されるものではなく、研削盤またはラッピングマシ
ン等の各種の超精密加工機に応用してもよく、その他、
レーザ干渉計9の設置場所を加工機上の任意位置に変更
したりするなど、本発明の趣旨を逸脱しない範囲で各部
の構成を適宜に変更して具体化することも可能である。
Although the end surface processing of the work 12 has been described in the above embodiment, the present invention can be applied to the peripheral surface processing of the work 12. In this case, the peripheral surface shape of the laser interferometer 9 is measured. The servo motor 10 of the tool rest 8 is controlled based on the data. Further, the present invention is not limited to only a lathe, and may be applied to various ultra-precision processing machines such as a grinder or a lapping machine.
The configuration of each part can be appropriately changed and embodied within a range not departing from the spirit of the present invention, such as changing the installation location of the laser interferometer 9 to an arbitrary position on the processing machine.

【0013】[0013]

【発明の効果】以上に詳述したように、この発明によれ
ば、振動及び案内面の移動真直度の影響を受けにくいレ
ーザ干渉計の測定データに基づいて、NC制御装置がワ
ークの加工誤差補正データを作成するように構成したの
で、レーザ干渉計を加工機上に設置して、ワークの実形
状をオンマシンで迅速かつ正確に測定できるとともに、
加工誤差をインプロセス制御により自動補正して、ワー
クを高精度加工できるという優れた効果を奏する。
As described above in detail, according to the present invention, the NC control device causes the machining error of the workpiece based on the measurement data of the laser interferometer which is less likely to be affected by the vibration and the movement straightness of the guide surface. Since it is configured to create the correction data, the laser interferometer can be installed on the processing machine to measure the actual shape of the workpiece on-machine quickly and accurately.
This has an excellent effect that the machining error is automatically corrected by the in-process control and the workpiece can be machined with high precision.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す超精密加工旋盤の斜視
図である。
FIG. 1 is a perspective view of an ultra-precision machining lathe showing an embodiment of the present invention.

【図2】図1の超精密加工旋盤において、レーザ干渉計
を使用してワークの形状誤差を補正する方法を示すフロ
ーチャートである。
2 is a flowchart showing a method of correcting a shape error of a work by using a laser interferometer in the ultra-precision machining lathe shown in FIG.

【図3】図2の誤差補正方法において、加工誤差補正デ
ータを作成する手順を示すフローチャートである。
FIG. 3 is a flowchart showing a procedure for creating processing error correction data in the error correction method of FIG.

【図4】ワーク加工面の干渉縞パターンを示すCRTデ
ィスプレイの正面図である。
FIG. 4 is a front view of a CRT display showing an interference fringe pattern on a work surface.

【図5】ワーク加工面の3次元形状を示すCRTディス
プレイの正面図である。
FIG. 5 is a front view of a CRT display showing a three-dimensional shape of a work surface.

【図6】ワークの中心を通る断面形状を示す模式図であ
る。
FIG. 6 is a schematic view showing a cross-sectional shape passing through the center of a work.

【符号の説明】[Explanation of symbols]

1・・ベース、2・・除振台、3・・ベッド、4・・Z
軸テーブル、5・・X軸テーブル、6・・主軸台、7,
10・・サーボモータ、8・・刃物台、9・・レーザ干
渉計、11・・チャック、12・・ワーク、13・・工
具、14,15・・位置検出器、16・・プロセッサ、
19・・NC制御装置、20・・CRTディスプレイ。
1 ... Base, 2 ... Vibration isolation table, 3 ... Bed, 4 ... Z
Axis table, 5 ... X-axis table, 6 ... spindle headstock, 7,
10 ... Servo motor, 8 ... Turret, 9 ... Laser interferometer, 11 ... Chuck, 12 ... Work, 13 ... Tool, 14, 15 ... Position detector, 16 ... Processor,
19 ... NC control device, 20 ... CRT display.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ワークの形状を測定するために加工機上
に設置されたレーザ干渉計と、前記レーザ干渉計の測定
データに基づきワークの加工誤差を補正するNC制御装
置とを具備することを特徴とする超精密加工機。
1. A laser interferometer installed on a processing machine for measuring a shape of a work, and an NC controller for correcting a working error of the work based on measurement data of the laser interferometer. Characteristic ultra-precision processing machine.
JP15586792A 1992-05-21 1992-05-21 Super-precision working machine Pending JPH05318287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15586792A JPH05318287A (en) 1992-05-21 1992-05-21 Super-precision working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15586792A JPH05318287A (en) 1992-05-21 1992-05-21 Super-precision working machine

Publications (1)

Publication Number Publication Date
JPH05318287A true JPH05318287A (en) 1993-12-03

Family

ID=15615240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15586792A Pending JPH05318287A (en) 1992-05-21 1992-05-21 Super-precision working machine

Country Status (1)

Country Link
JP (1) JPH05318287A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771666A1 (en) * 1997-12-01 1999-06-04 Zygo Corp IN SITU METROLOGY SYSTEM AND METHOD
NL1022293C2 (en) * 2002-12-31 2004-07-15 Tno Device and method for manufacturing or processing optical elements and / or optical form elements, as well as such elements.
NL1026526C2 (en) * 2004-06-30 2005-05-31 Tno Optical element forming or working apparatus, has at least one measuring device which operates to measure changes in form of surface being worked when roughness are formed on the surface
JP2005240182A (en) * 2004-02-27 2005-09-08 Nanofilm Technologies Internatl Pte Ltd System and method for continuous arc vapor deposition by a plurality of usable targets
KR100519046B1 (en) * 2003-04-17 2005-10-06 화천기공 주식회사 Work inspect method and apparatus of the machine tools
JP2006300817A (en) * 2005-04-22 2006-11-02 Soatec Inc Optical measuring instrument, optical measuring device, and optical measuring system
KR100936263B1 (en) * 2008-01-17 2010-01-12 인하대학교 산학협력단 Measuring system for the end-mill
CN109732402A (en) * 2019-03-14 2019-05-10 西安交通大学 Multi-thread lathe space geometry error measure discrimination method based on laser interferometer
JP2020116713A (en) * 2019-01-25 2020-08-06 ファナック株式会社 Precision machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287107A (en) * 1989-04-27 1990-11-27 Rikagaku Kenkyusho Two-dimensional information acquisition device
JPH0493150A (en) * 1990-08-01 1992-03-25 Matsushita Electric Ind Co Ltd Nc machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287107A (en) * 1989-04-27 1990-11-27 Rikagaku Kenkyusho Two-dimensional information acquisition device
JPH0493150A (en) * 1990-08-01 1992-03-25 Matsushita Electric Ind Co Ltd Nc machine tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771666A1 (en) * 1997-12-01 1999-06-04 Zygo Corp IN SITU METROLOGY SYSTEM AND METHOD
NL1022293C2 (en) * 2002-12-31 2004-07-15 Tno Device and method for manufacturing or processing optical elements and / or optical form elements, as well as such elements.
WO2004058452A3 (en) * 2002-12-31 2004-12-02 Tno Apparatus and method for manufacturing or working optical elements and/or optical forming elements, and such element.
US7556554B2 (en) 2002-12-31 2009-07-07 Nederlandse Organistie voor toegepastnatuurwetenschappelijk Onderzoek TNO Apparatus and method for manufacturing optical objects
KR100519046B1 (en) * 2003-04-17 2005-10-06 화천기공 주식회사 Work inspect method and apparatus of the machine tools
JP2005240182A (en) * 2004-02-27 2005-09-08 Nanofilm Technologies Internatl Pte Ltd System and method for continuous arc vapor deposition by a plurality of usable targets
NL1026526C2 (en) * 2004-06-30 2005-05-31 Tno Optical element forming or working apparatus, has at least one measuring device which operates to measure changes in form of surface being worked when roughness are formed on the surface
JP2006300817A (en) * 2005-04-22 2006-11-02 Soatec Inc Optical measuring instrument, optical measuring device, and optical measuring system
KR100936263B1 (en) * 2008-01-17 2010-01-12 인하대학교 산학협력단 Measuring system for the end-mill
JP2020116713A (en) * 2019-01-25 2020-08-06 ファナック株式会社 Precision machine tool
CN109732402A (en) * 2019-03-14 2019-05-10 西安交通大学 Multi-thread lathe space geometry error measure discrimination method based on laser interferometer

Similar Documents

Publication Publication Date Title
JP4071576B2 (en) Machine Tools
EP0129092A2 (en) Numerical control device for use with a machine tool and a machine tool having such a device
JPH05318287A (en) Super-precision working machine
EP0453571A1 (en) Method of correcting positional fluctuations of machine
JPH0493150A (en) Nc machine tool
JPH04240050A (en) On-machine measuring instrument
CN115415846B (en) Efficient and precise machining method for normal round holes of special-shaped products based on three-axis machine tool
Li et al. On-machine self-calibration method for compensation during precision fabrication of 900-mm-diameter zerodur aspheric mirror
JP3162936B2 (en) Edge position correction device for rotary tools
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JP4545501B2 (en) Tool centering method and tool measuring method
JP2001269843A (en) Measuring method for center position of rotating tool
JPH08229774A (en) Deformation correcting machining method for machine tool
JPH05185304A (en) Automatic lathe
JPH06138921A (en) Measuring method and automatic correction method for linear interpolation feeding accuracy of numerically controlled machine tool
JP2002066918A (en) Profile correction grinding method in roll grinding processing and roll grinding processing control device
JPH0732247A (en) Thermal displacement correction in center work
JPH0783976B2 (en) Lathe thermal displacement compensation method
JPS59142045A (en) Numerically controlled machine tool
JPH06246589A (en) Noncircular workpiece error correcting method by in-machine measurement
EP4219048B1 (en) Turning method, machining system, and machining program
JP3044311B2 (en) NC correction method in multi-station processing
JPH0445292B2 (en)
JP2571141Y2 (en) Measurement position correction jig device
EP0408747A1 (en) Length measuring method by using laser beams