JPH0531595A - Production of granular substance packed pipe - Google Patents
Production of granular substance packed pipeInfo
- Publication number
- JPH0531595A JPH0531595A JP3188960A JP18896091A JPH0531595A JP H0531595 A JPH0531595 A JP H0531595A JP 3188960 A JP3188960 A JP 3188960A JP 18896091 A JP18896091 A JP 18896091A JP H0531595 A JPH0531595 A JP H0531595A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- rolling
- powder
- welding
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000000126 substance Substances 0.000 title 1
- 238000005096 rolling process Methods 0.000 claims abstract description 35
- 239000000843 powder Substances 0.000 claims abstract description 29
- 238000003466 welding Methods 0.000 claims abstract description 29
- 239000008187 granular material Substances 0.000 claims abstract description 25
- 238000005097 cold rolling Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 5
- 238000009751 slip forming Methods 0.000 claims abstract description 3
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000010622 cold drawing Methods 0.000 claims 1
- 238000005491 wire drawing Methods 0.000 abstract description 6
- 238000005336 cracking Methods 0.000 abstract description 5
- 230000008961 swelling Effects 0.000 abstract description 2
- 230000004907 flux Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Metal Extraction Processes (AREA)
Abstract
(57)【要約】
【目的】 粉粒体を充填した管を冷間圧延する過程で管
に内面角張が発生することを防止し、もって製品サイズ
までの良好な縮径圧延と伸線を実現させる。
【構成】 金属帯板をこれの長手方向に送りながら成形
ロールにより連続的に管状体に成形し、この成形途中で
管状体の開口部から粉粒体を供給し、管状体の対向する
開口エッジ面を突合わせ溶接し、溶接により得られた管
を冷間圧延と伸線により縮径して粉粒体充填管を連続的
に製造する方法において、前記冷間圧延工程では粉粒体
充満率が少なくとも100%になるまでは、各圧延スタ
ンドのロール周速度を引張率が5〜40%になるように
設定して管に張力を付与しながら圧延する。これにより
冷間圧延時に管に内面角張は発生せず、管を製品サイズ
まで縮径する際に、割れ、断線は生じない。
(57) [Summary] [Purpose] Prevents internal swelling of the tube during the cold rolling of the tube filled with powder and granules, thus achieving good diameter reduction rolling and wire drawing up to the product size. Let [Structure] A metal strip is continuously formed into a tubular body by a forming roll while being fed in the longitudinal direction, and powder particles are supplied from the opening of the tubular body in the middle of this forming, and the opening edges of the tubular body facing each other are opposed. In a method of butt-welding the surfaces and continuously manufacturing a powder-filled tube by cold-rolling and wire-drawing the tube obtained by welding, in the cold rolling step, the powder-filled rate Until at least 100%, the rolling speed of each rolling stand is set so that the tensile ratio is 5 to 40%, and rolling is performed while applying tension to the pipe. As a result, the inner surface of the tube is not stretched during cold rolling, and cracking and disconnection do not occur when the tube is reduced in size to the product size.
Description
【0001】[0001]
【産業上の利用分野】この発明は炭素鋼、ステンレス
鋼、銅合金、アルミニュウム合金その他の金属管に粉粒
体を充填した粉粒体充填管の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder / granule-filled tube in which carbon steel, stainless steel, copper alloy, aluminum alloy or other metal tube is filled with the powder / granular material.
【0002】ここで、粉粒体とは溶接用フラックス、酸
化物超電導材、溶鋼用添加剤などの粉体、粒体または粉
体と粒体との混合物をいう。この発明は、溶接用フラッ
クス入りワイヤ、酸化物超電導材入りワイヤその他の粉
粒体充填管の製造に利用される。The term "powder / granulate" as used herein means a powder such as a flux for welding, an oxide superconducting material, an additive for molten steel or the like, a particle or a mixture of the powder and the particle. INDUSTRIAL APPLICABILITY The present invention is used for manufacturing a flux-cored wire for welding, a wire containing an oxide superconducting material, and other powder-filled tubes.
【0003】[0003]
【従来の技術】粉粒体充填管の一つとして、溶接用フラ
ックス入りシームレスワイヤがある。一般にワイヤ長さ
方向の接合部が溶接された溶接用フラックス入りワイヤ
を製造する技術としては、金属帯板をU断面からO断面
に連続的に成形して管状体とし、この成形過程において
金属粉や脱酸剤等の所望の成分を有するフラックスを管
状体の開口部から管状体内へ供給充填した後、管状体の
対向する開口エッジ面を突合わせ溶接し、引き続き管径
を縮小する冷間圧延と伸線を行って溶接用フラックス入
りワイヤを製造する方法が知られている。2. Description of the Related Art A flux-cored seamless wire for welding is one of the powder and granular material filling pipes. Generally, as a technique for manufacturing a flux-cored wire for welding in which a joint portion in the wire length direction is welded, a metal strip is continuously molded from a U cross section to an O cross section to form a tubular body, and a metal powder is used in this forming process. A flux containing a desired component such as a deoxidizer or deoxidizer is supplied from the opening of the tubular body into the tubular body, and then filled, and then the opposite opening edge surfaces of the tubular body are butt-welded, followed by cold rolling to reduce the pipe diameter. There is known a method for producing a flux-cored wire for welding by carrying out wire drawing.
【0004】上記突合わせ溶接として、低周波溶接、高
周波誘導溶接または高周波抵抗溶接が広く用いられてい
る。これらの溶接法は、いずれも金属帯板をほぼO字形
の管状体に成形したところで低周波電流、高周波電流に
より、開口のエッジ面を溶融温度まで加熱し、相対する
エッジ面を一対のスクイズロールにより圧接して溶接す
る。As the butt welding, low frequency welding, high frequency induction welding or high frequency resistance welding is widely used. In all of these welding methods, when the metal strip is formed into a substantially O-shaped tubular body, the low-frequency current and high-frequency current heat the edge surfaces of the opening to the melting temperature, and the opposite edge surfaces are paired with a pair of squeeze rolls. Weld by pressure welding.
【0005】そして、フラックスを内部に充填した溶接
管を冷間圧延する工程では、連続する複数段の圧延スタ
ンドに組み込まれた2ロールまたは3ロールの孔型ロー
ル列により順次管の外径圧下をはかり所望の径に縮径す
る。従来この管縮径のための冷間圧延は、出側管速度に
ロール周速度を一致させるいわゆる無張力圧延により実
施していた。Then, in the step of cold rolling the welded pipe having the flux filled therein, the outer diameter of the pipe is sequentially reduced by a two-roll or three-roll hole type roll row incorporated in a continuous multi-stage rolling stand. Scale to a desired diameter. Conventionally, cold rolling for reducing the pipe diameter has been carried out by so-called tensionless rolling in which the roll peripheral speed is made to match the exit pipe speed.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来の冷間圧延では管を縮径し、細径化していく過程で断
線あるいは割れが頻発する。その原因は縮径時に管内面
が自由な状態となって管外被の変形が不安定となり、内
面角張が生じることによる。すなわち縮径時に管外被の
内面側で不均一な増肉が発生し、管外面に接触する圧延
ロールの合せ目部に対応する管内面側に角張が生じる。
こうして内面角張が生じた管を縮径していくとある程度
細径になったところで角張の凹部から亀裂が発生し、こ
れが成長して管の割れさらには断線に至る。However, in the conventional cold rolling described above, disconnection or cracking frequently occurs in the process of reducing the diameter of the pipe and reducing the diameter of the pipe. The cause is that the inner surface of the tube becomes free when the diameter is reduced, and the deformation of the outer tube of the tube becomes unstable, resulting in the formation of the inner surface of the tube. That is, when the diameter is reduced, uneven thickness increase occurs on the inner surface side of the pipe jacket, and angular expansion occurs on the pipe inner surface side corresponding to the seam portion of the rolling roll contacting the pipe outer surface.
When the diameter of the tube having the inner surface is reduced, a crack is generated from the recess of the angle when the diameter becomes small to some extent, which grows to cause the tube to be cracked or even disconnected.
【0007】この対策として従来では外径減少率を5%
以下に制限することにより、内面角張の発生を抑制する
ことが行なわれている。しかし、このような低外径減少
率の圧延では圧延スタンド数が増加するから経済的でな
い。なお、熱間圧延で管だけを製造する場合には、上記
内面角張対策としてストレッチレデューサを用い外径減
少率最大7%で圧延する方法も知られているが、この方
法は管内にフラックスを充填する溶接用フラックス入り
ワイヤの製造には、高熱によりフラックスが変質するの
で適用できない。As a measure against this, conventionally, the outer diameter reduction rate is 5%.
By limiting to the following, occurrence of inner surface angular tension is suppressed. However, rolling with such a low outer diameter reduction rate is not economical because the number of rolling stands increases. In the case of producing only a tube by hot rolling, there is also known a method of rolling at a maximum outside diameter reduction rate of 7% using a stretch reducer as a measure against the above-mentioned inner surface angular tension, but this method fills the tube with flux. This method cannot be applied to the production of welding flux-cored wires because the flux is altered by high heat.
【0008】そこで、この発明は外径減少率10%程度
の高外径減少率の冷間圧延でも、細径化で断線や割れを
誘発する内面角張を発生させない粉粒体充填管の製造方
法を提供しようとするものである。In view of this, the present invention is a method for producing a powder-filled tube which does not cause internal surface angulation which causes wire breakage and cracks even when cold rolling with a high outer diameter reduction rate of about 10%. Is to provide.
【0009】[0009]
【課題を解決するための手段】この発明の粉粒体充填管
の製造方法は、金属帯板をこれの長手方向に送りながら
成形ロールにより連続的に管状体に成形し、この成形途
中で管状体の開口部から粉粒体を供給し、管状体の対向
する開口エッジ面を突合わせ溶接し、溶接により得られ
た管を冷間圧延と伸線により縮径して粉粒体充填管を連
続的に製造する方法において、前記冷間圧延工程では下
記(1)式に示す粉粒体充満率が少なくとも100%に
なるまでは、各圧延スタンドのロール周速度を下記
(2)式に示す引張率が5〜40%になるように設定し
て管に張力を付与しながら圧延することを特徴とする。The method for manufacturing a powder-filled body filling tube of the present invention is such that a metal strip is continuously formed into a tubular body by a forming roll while being fed in the longitudinal direction of the metal strip, and a tubular body is formed during this forming. The powder and granules are supplied from the opening of the body, the opposite opening edge surfaces of the tubular body are butt-welded, and the pipe obtained by the welding is cold-rolled and wire-drawn to reduce the diameter of the powder-filled pipe. In the continuous manufacturing method, in the cold rolling step, the roll peripheral speed of each rolling stand is represented by the following equation (2) until the powder / granule filling rate represented by the following equation (1) reaches at least 100%. It is characterized in that the tensile ratio is set to be 5 to 40% and rolling is performed while applying tension to the pipe.
【0010】[0010]
【数2】 [Equation 2]
【0011】[0011]
【作用】一般に、連続圧延においては、ロールの入側外
被体積と出側外被体積は等しい、すなわち (入側外被断面積)×(入側管速度)=(出側外被断面
積)×(出側管速度)という関係が成り立つ。In general, in continuous rolling, the roll volume on the inlet side and the volume on the outlet side are the same, that is, (inlet side cross-sectional area) x (inlet tube speed) = (outlet side cross-sectional area). ) × (outlet pipe speed) holds.
【0012】従来の粉粒体充填管の製造における溶接直
後の冷間圧延では、このスタンド出側管速度にロール周
速度(=カリバ底部の速度)を一致させるいわゆる無張
力圧延が実施されている。ところがこの方法によると、
粉粒体を充填して管開口部を溶接した直後の粉粒体充填
管を最大10%の外径減少率で縮径圧延し、その後焼鈍
(650℃×5hr)を施しさらに縮径圧延を続けたとこ
ろある程度細径になったところで割れまたは断線が頻発
した。この原因を調査したところ溶接直後の縮径圧延の
段階でロール圧延により管に内面角張が生じ、そして焼
鈍後の縮径圧延の段階で内面角張の凹部が起点となって
亀裂が発生し、この亀裂が管の細径化にともなって成長
して管の割れや断線に発展することが確認された。In the conventional cold rolling immediately after welding in the manufacture of the powder-and-granule-filled pipe, so-called tensionless rolling is performed in which the roll peripheral velocity (= velocity at the bottom of the carver) is made to coincide with the stand outlet pipe velocity. .. However, according to this method,
Immediately after filling the granular material and welding the pipe opening, the granular material-filled tube is subjected to a diameter reduction rolling with a maximum outer diameter reduction rate of 10%, and then subjected to annealing (650 ° C x 5 hr) and further diameter reduction rolling. When continued, cracks or disconnections frequently occurred when the diameter decreased to some extent. Upon investigating the cause of this, an internal surface tension was generated in the pipe by roll rolling at the stage of diameter reduction rolling immediately after welding, and a crack was generated from the concave portion of the inner surface tension at the stage of diameter reduction rolling after annealing, It was confirmed that the cracks grow as the diameter of the pipe becomes smaller and develop into cracks and breaks in the pipe.
【0013】この対策として本発明者らは熱間圧延では
ストレッチレデューサで適用される管長手方向に張力を
付与する方法を検討した。その結果溶接直後の粉粒体が
充填された溶接管に対して上記(1)式の粉粒体充満率
が少なくとも100%になるまでは、各圧延スタンドの
ロール周速度を上記(2)式の引張率が5〜40%にな
るように設定して管に長手方向の張力を加えながら冷間
圧延すれば、内面角張の発生は抑制されて、以後の細径
化のための縮径圧延、伸線を実施する際に割れや断線は
発生せず、製品ワイヤ径0.8〜2.0mmφにいたるま
で円滑に縮径できることが判明した。As a countermeasure against this, the present inventors have examined a method of applying a tension in the longitudinal direction of a pipe which is applied by a stretch reducer in hot rolling. As a result, the roll peripheral speed of each rolling stand is set to the above formula (2) until the filling ratio of the above formula (1) becomes at least 100% for the welded pipe filled with the powder and granules immediately after welding. If the cold rolling is performed while setting the tensile ratio of 5 to 40% and applying tensile force in the longitudinal direction to the tube, the occurrence of inner surface angular expansion is suppressed, and the diameter reduction rolling for the subsequent diameter reduction. It was found that cracking and disconnection did not occur during wire drawing, and that the product wire diameter could be smoothly reduced to 0.8 to 2.0 mmφ.
【0014】なお上記(1)式で示される粉粒体充満率
は粉粒体がタップ密度で管内に充満するときの管内体積
占有率(=管内断面積占有率)である。そしてこの充満
率が100%とは所望の粉粒体充填率を得るために必要
な粉粒体を管内に充填した管が縮径圧延され管内断面積
が減少しついには粉粒体がタップ密度(DIN5319
4)で管内に充満した状態になり、その後は管内の粉粒
体が圧密されていくその限界のところである。The powder / granule filling rate represented by the above equation (1) is the tube volume occupying rate (= tube cross-sectional area occupying rate) when the powder / granular elements are filled in the tube at the tap density. When the filling rate is 100%, the tube filled with the powder and granules necessary for obtaining the desired packing rate of the powder and granules is subjected to diameter reduction rolling to reduce the cross-sectional area in the tube and finally the powder and granules have a tap density. (DIN5319
At 4), the inside of the pipe is filled with the powder, and then the powder and granules inside the pipe are compacted.
【0015】この粉粒体の圧密が開始すると、管外被の
変形挙動がそれまでとは変化し、粉粒体充満率が100
%未満のときとは異なる外被変化を示すようになる。そ
のため管長手方向の張力の付与が内面角張をひき起こす
管外被の不均一な変形の防止に有効である範囲は、この
圧密開始点までと判断し、粉粒体充満率が少なくとも1
00%になるまで上記張力を管長手方向に付与すること
にした。管長手方向に付与する張力の範囲を引張率5〜
40%としたのは、5%未満では外被の不均一な変形の
防止には効果がなく、また40%を超えるとロールと管
との間のスリップが激しくなり安定した圧延ができなく
なるからである。When compaction of the powder and granules is started, the deformation behavior of the pipe jacket changes from that until then, and the powder and granule filling rate is 100.
It will show a different coat change than when it is less than%. Therefore, the range in which the application of tension in the longitudinal direction of the pipe is effective in preventing the non-uniform deformation of the pipe jacket that causes the inner surface swelling is judged to be up to this consolidation start point, and the filling rate of the granular material is at least 1.
It was decided to apply the above tension in the longitudinal direction of the tube until it reached 00%. The range of tension applied in the longitudinal direction of the pipe is a tensile ratio of 5
The reason for setting 40% is that if it is less than 5%, it is not effective in preventing uneven deformation of the jacket, and if it exceeds 40%, slip between the roll and the pipe becomes severe and stable rolling cannot be performed. Is.
【0016】[0016]
【実施例】溶接用フラックス入りワイヤの製造を例とし
て、図1に示す工程ブロック図に従って実施例を説明す
る。EXAMPLE An example of manufacturing a flux-cored wire for welding will be described with reference to the process block diagram shown in FIG.
【0017】リールから巻き戻した鋼帯を、これの長手
方向に送りながら成形ロールによりU断面からO断面の
管状体に成形し、この成形の途中で管状体の開口部から
フラックスを供給する。使用した鋼帯は炭素鋼の帯鋼
(JIS SPHC)、幅62.9、肉厚2.2mm、密
度7.85g/cm3 で、使用したフラックスはルチール
系フラックス、タップ密度1.8g/cm3 で、このフラ
ックスを管状体内に充填率12.0%になるように供給
した。The steel strip unwound from the reel is formed into a tubular body having a U-section to an O-section by a forming roll while being fed in the longitudinal direction thereof, and flux is supplied from the opening of the tubular body during the forming. The steel strip used is a carbon steel strip (JIS SPHC), width 62.9, wall thickness 2.2 mm, density 7.85 g / cm 3 , flux used is rutile flux, tap density 1.8 g / cm 3. In 3 , the flux was supplied into the tubular body so that the filling rate was 12.0%.
【0018】次いで、フラックスが充填された管状体の
対向する開口エッジ面を高周波誘導溶接する。溶接条件
は入熱量85〜95kVA 、溶接速度15m/min であっ
た。溶接直後の管は管外径21.7mm、肉厚2.2mm、
またフラックス充満率34.1%である。Next, high-frequency induction welding is performed on the opposing opening edge surfaces of the tubular body filled with the flux. The welding conditions were a heat input of 85 to 95 kVA and a welding speed of 15 m / min. Immediately after welding, the pipe has an outer diameter of 21.7 mm and a wall thickness of 2.2 mm.
The flux filling rate is 34.1%.
【0019】次いで3ロール型、8スタンド構成の圧延
機により表1の圧延スケジュールで冷間圧延(1次)
し、フラックス充満率100%以上のフラックス充填管
を得た。このときのパイプ外径は10.7mmである。表
1は引張率を0%(実施例No.0)から10%ずつ増加
させた場合の実施例(実施例No.1〜5)において、そ
れぞれ圧延スタンドNo.1〜8の各スタンド出口でのフ
ラックス充満率α、管平均肉厚tm 、圧延ロール周速度
Vn を示している。ただし、表1中のNo.はスタンドN
o.、Dm は管平均外径、Rは外径減少率をそれぞれ表
わしている。Then, cold rolling (primary) was performed according to the rolling schedule shown in Table 1 by a rolling machine having a 3-roll type and an 8-stand structure.
Then, a flux-filled tube having a flux filling rate of 100% or more was obtained. The outer diameter of the pipe at this time is 10.7 mm. Table 1 shows rolling stand Nos. In the examples (Examples Nos. 1 to 5) when the tensile ratio was increased from 0% (Example No. 0) by 10%. Flux filling rate in each stand outlet of 1 to 8 alpha, tube average thickness t m, shows a rolling roll peripheral velocity V n. However, No. 1 in Table 1 Stand N
o. , D m represents the tube outer diameter, and R represents the outer diameter reduction rate.
【0020】図2は表1の管平均外径とフラックス充満
率との関係を各実施例ごとに示した図である。図2から
縮径が進むにつれてフラックス充満率が漸増し管平均外
径11.08mm(スタンドNo.7の出口)ではすべての
実施例で100%を超えていることがわかる。フラック
ス充満率が100%を超えると管内のフラックスは圧密
状態となる。FIG. 2 is a diagram showing the relationship between the tube average outer diameter and the flux filling rate in Table 1 for each example. It can be seen from FIG. 2 that the flux filling rate gradually increases as the diameter decreases, and exceeds 100% in all the examples at a tube average outer diameter of 11.08 mm (outlet of stand No. 7). If the flux filling rate exceeds 100%, the flux in the tube becomes a consolidated state.
【0021】[0021]
【表1】 [Table 1]
【0022】こうして冷間圧延(1次)により得られた
管外径10.7mmの管に焼鈍・冷却を施したのちさらに
表2に示す圧延スケジュールに基づいて冷間圧延(2
次)を実施した。この冷間圧延(2次)では3ロール
型、10スタンド構成の圧延機によりオーバル、ラウン
ドの繰返しによる冷間圧延を施し、管外径10.7mmか
ら3.2mmまで縮径した。引き続いて焼鈍・冷却ののち
伸線を行ってワイヤ外径1.2mmの製品サイズまで縮径
して巻き取った。The tube having an outer diameter of 10.7 mm obtained by cold rolling (primary) was annealed and cooled, and then cold rolled (2) according to the rolling schedule shown in Table 2.
The following) was carried out. In this cold rolling (secondary), cold rolling was performed by repeating oval and round by a rolling machine having a three-roll type and a ten-stand structure, and the pipe outer diameter was reduced from 10.7 mm to 3.2 mm. Subsequently, after annealing / cooling, wire drawing was performed to reduce the wire diameter to a product size of 1.2 mm and wound.
【0023】[0023]
【表2】 [Table 2]
【0024】表2の冷間圧延(2次)の結果を表3に示
す。The results of the cold rolling (secondary) in Table 2 are shown in Table 3.
【0025】[0025]
【表3】 [Table 3]
【0026】表3から明らかなように、実施例No.0
(引張率0%)では縮径中に管に割れ、断線が発生して
いる。これは溶接直後の表1の冷間圧延(1次)の際に
管内面に角張りが生じ、この角張りの凹部が今回の冷間
圧延(2次)中に亀裂となり、縮径により成長して管に
割れ、断線を誘発することによる。またNo.5(引張率
50%)では、、1次冷間圧延での引張率が高すぎるこ
とによりロールのスリップが激しくなって安定した圧延
ができない。これに対してNo.1,2,3,4では引張
率が10〜40%と適正範囲にあることから割れ、断線
が発生することなく良好な圧延状態を示した。As is apparent from Table 3, Example No. 0
At (tensile ratio 0%), the pipe was cracked and wire breakage occurred during the diameter reduction. This is because during the cold rolling (primary) shown in Table 1 immediately after welding, the inner surface of the pipe is squared, and the concave part of this square becomes a crack during the cold rolling (secondary) of this time and grows due to the diameter reduction. Then the pipe breaks, causing a wire break. In addition, No. At 5 (tensile ratio 50%), the tensile ratio in the primary cold rolling was too high, and slipping of the roll became severe, so that stable rolling could not be performed. On the other hand, No. In Nos. 1, 2, 3 and 4, the tensile ratio was in the proper range of 10 to 40%, and therefore a good rolled state was shown without cracking or disconnection.
【0027】[0027]
【発明の効果】この発明によれば、粉粒体が充填された
溶接管を冷間圧延する過程で、粉粒体充満率が少なくと
も100%になるまでは、各圧延スタンドのロール周速
度を引張率が5〜40%になるように設定して管に張力
を付与しながら圧延する。これにより外径減少率が10
%程度の高外径減少率の冷間圧延でも管に内面角張は発
生しない。従って粉粒体が充填された溶接管を製品ワイ
ヤ径に縮径していくときに割れや断線等の不都合は発生
せず、良好に縮径圧延、伸線することができる。よっ
て、粉粒体充填管の連続的製造における生産効率の向上
を図ることが可能である。According to the present invention, in the process of cold rolling a welded tube filled with powdery or granular material, the roll peripheral speed of each rolling stand is controlled until the powdery or granular material filling rate becomes at least 100%. Rolling is performed while setting the tensile ratio to 5 to 40% and applying tension to the pipe. This reduces the outer diameter by 10
Even when cold rolling with a high outside diameter reduction rate of about%, the inner surface of the pipe does not have an angular tension. Therefore, when the welded pipe filled with the powder or granular material is reduced in diameter to the product wire diameter, no inconvenience such as cracking or disconnection occurs, and the diameter-reducing rolling and wire drawing can be favorably performed. Therefore, it is possible to improve the production efficiency in the continuous production of the powder / granule-filled pipe.
【図1】溶接用フラックス入りワイヤ製造の工程ブロッ
ク図である。FIG. 1 is a process block diagram of manufacturing a flux-cored wire for welding.
【図2】冷間圧延(1次)における管平均外径とフラッ
クス充満率の関係を示した図である。FIG. 2 is a diagram showing a relationship between a tube average outer diameter and a flux filling rate in cold rolling (primary).
フロントページの続き (72)発明者 山田 巖 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 (72)発明者 橋本 晴次 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内Front Page Continuation (72) Iwao Yamada, Inventor Iwao Yamada, 3-5-4 Tsukiji, Chuo-ku, Tokyo Inside Nippon Steel Welding Industry Co., Ltd. (72) Haruji Hashimoto, 3-5-4 Tsukiji, Chuo-ku, Tokyo Inside the Iron Welding Industry Co., Ltd.
Claims (1)
成形ロールにより連続的に管状体に成形し、この成形途
中で管状体の開口部から粉粒体を供給し、管状体の対向
する開口エッジ面を突合わせ溶接し、溶接により得られ
た管を冷間圧延と伸線により縮径して粉粒体充填管を連
続的に製造する方法において、 前記冷間圧延工程では下記(1)式に示す粉粒体充満率
が少なくとも100%になるまでは、各圧延スタンドの
ロール周速度を下記(2)式に示す引張率が5〜40%
になるように設定して管に張力を付与しながら圧延する
ことを特徴とする粉粒体充填管の製造方法。 【数1】 Claim: What is claimed is: 1. A metal strip is continuously formed into a tubular body by a forming roll while being fed in the longitudinal direction of the metal strip, and powder particles are supplied from the opening of the tubular body during the forming. Butt-welding the opposite opening edge surfaces of the tubular body, in a method for continuously producing a powder-and-granule-filled tube by reducing the diameter of the tube obtained by welding by cold rolling and drawing, In the rolling process, the roll peripheral speed of each rolling stand is 5 to 40% as shown in the following formula (2) until the powdery or granular material filling ratio shown in the following formula (1) becomes at least 100%.
The method for producing a powder-and-particles-filled tube is characterized in that the tube is rolled while applying tension to the tube. [Equation 1]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3188960A JP2792758B2 (en) | 1991-07-29 | 1991-07-29 | Manufacturing method of powder filled tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3188960A JP2792758B2 (en) | 1991-07-29 | 1991-07-29 | Manufacturing method of powder filled tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0531595A true JPH0531595A (en) | 1993-02-09 |
JP2792758B2 JP2792758B2 (en) | 1998-09-03 |
Family
ID=16232948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3188960A Expired - Fee Related JP2792758B2 (en) | 1991-07-29 | 1991-07-29 | Manufacturing method of powder filled tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2792758B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008528802A (en) * | 2005-01-28 | 2008-07-31 | インジェクション アロイズ リミテッド | Wire for refining molten metal and associated manufacturing method |
CN108588328A (en) * | 2018-04-20 | 2018-09-28 | 无锡市伟达包芯线厂 | A kind of alloying pellet welding core-spun yarn production technology |
-
1991
- 1991-07-29 JP JP3188960A patent/JP2792758B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008528802A (en) * | 2005-01-28 | 2008-07-31 | インジェクション アロイズ リミテッド | Wire for refining molten metal and associated manufacturing method |
US9200349B2 (en) | 2005-01-28 | 2015-12-01 | Injection Alloys Limited | Wire for refining molten metal and associated method of manufacture |
CN108588328A (en) * | 2018-04-20 | 2018-09-28 | 无锡市伟达包芯线厂 | A kind of alloying pellet welding core-spun yarn production technology |
CN108588328B (en) * | 2018-04-20 | 2019-12-24 | 无锡市伟达新材料科技有限公司 | Alloy particle welding cored wire production process |
Also Published As
Publication number | Publication date |
---|---|
JP2792758B2 (en) | 1998-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4460118A (en) | Method for forming electric welded pipe | |
JP2792758B2 (en) | Manufacturing method of powder filled tube | |
US20060124624A9 (en) | Flux cored wire for gas shield arc welding | |
JPH02307686A (en) | Production of stainless electric welded steel tube | |
JP2722926B2 (en) | Method and apparatus for manufacturing welded pipe | |
JP2864397B2 (en) | Manufacturing method of clad pipe | |
RU2122908C1 (en) | Method for making steel-copper wire | |
JPH1034201A (en) | Manufacture of round billet for manufacturing seamless steel tube containing chromium excellent in workability | |
JP3474396B2 (en) | Wire drawing method for fine flux cored wire | |
JPH04197513A (en) | How to core a coiled steel pipe | |
JPS5913316B2 (en) | Manufacturing method of small diameter flux-cored wire | |
JP3342953B2 (en) | Manufacturing method of ERW steel pipe | |
JP3518416B2 (en) | Manufacturing method of ERW steel pipe | |
JP3030597B2 (en) | Welded pipe manufacturing method | |
JP3348646B2 (en) | Manufacturing method of forged steel pipe | |
JPH0584595A (en) | Manufacture of granular particle packed pipe | |
JP2732937B2 (en) | Manufacturing method of flux cored wire for welding | |
JPH0275497A (en) | Manufacture of flux cored wire | |
JPH05104285A (en) | Manufacturing equipment of flux cored wire for welding | |
JPS63281713A (en) | Production of electric resistance welded tube | |
JP2732935B2 (en) | Manufacturing method of powder filled tube | |
JPH07121469B2 (en) | Hot rolling method for powdered material | |
JPS5861978A (en) | Copper wire for welding electrode wire for can making | |
JPH08300187A (en) | Manufacturing method of flux-cored wire for stainless steel | |
JPS62275522A (en) | Manufacture of welding pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090619 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100619 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |