JPH05306180A - Production of carbon fiber reinforced carbon-inorganic compound composite material - Google Patents
Production of carbon fiber reinforced carbon-inorganic compound composite materialInfo
- Publication number
- JPH05306180A JPH05306180A JP4140103A JP14010392A JPH05306180A JP H05306180 A JPH05306180 A JP H05306180A JP 4140103 A JP4140103 A JP 4140103A JP 14010392 A JP14010392 A JP 14010392A JP H05306180 A JPH05306180 A JP H05306180A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- felt
- composite material
- carbon fibers
- inorganic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は耐熱衝撃性や、耐酸化消
耗性を要求される素材として極めて好適な、炭素繊維強
化炭素−無機化合物複合材料の製造方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon fiber reinforced carbon-inorganic compound composite material, which is extremely suitable as a material required to have thermal shock resistance and oxidation wear resistance.
【0002】[0002]
【従来の技術】炭素繊維強化炭素複合材料は従来から使
用されており、その特徴は非酸化性雰囲気下で耐熱衝撃
性に優れ、2000℃以上の超高温領域においても金属
のような機械的強度の低下がみられず、しかもアルミニ
ウムよりも軽いという点にある。このため、この複合材
料は、核融合炉内材料や航空宇宙機器の部材として欠か
せない材料となっている。2. Description of the Related Art Carbon fiber reinforced carbon composite materials have been used for a long time and are characterized by excellent thermal shock resistance in a non-oxidizing atmosphere and mechanical strength like metal even in an ultrahigh temperature range of 2000 ° C. or higher. It does not show a decrease in the electric field and is lighter than aluminum. For this reason, this composite material has become an indispensable material for materials in fusion reactors and aerospace equipment.
【0003】しかし、炭素材料特有の酸化に弱いという
欠点を併せ持っているため、様々な対策が考えられてい
る。たとえばHowever, since it also has the drawback of being weak against oxidation peculiar to carbon materials, various measures have been considered. For example
【0004】a)化学的蒸着法を用いて炭素複合材料の
空隙表面に、酸化防止の働きのあるホウ素を析出させる
方法(特開昭61−222977号)。A) A method of depositing boron having an antioxidant function on the surface of voids of a carbon composite material by using a chemical vapor deposition method (JP-A-61-2222977).
【0005】b)炭素繊維強化炭素複合材料のマトリッ
クス炭素を、選択的に炭化ホウ素に転換する方法(特開
平3−252360号)。B) A method of selectively converting matrix carbon of a carbon fiber reinforced carbon composite material into boron carbide (Japanese Patent Laid-Open No. 3-252360).
【0006】c)炭素繊維をホウ素を含む樹脂等の結合
材によって焼結する方法(特開昭60−200860
号)。C) A method of sintering carbon fibers with a binder such as a resin containing boron (JP-A-60-200860).
issue).
【0007】d)生コークスに短炭素繊維とセラミック
ス粉末を分散させたものを焼結する方法。 等がある。D) A method of sintering raw coke in which short carbon fibers and ceramic powder are dispersed. Etc.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上記
a)やb)のいわゆるコーティング法では、機械的衝
撃、熱的衝撃または長期間の使用によってコーティング
層が剥離や損耗、欠損し、その部分から急激に酸化が進
行する。However, in the so-called coating method of the above a) or b), the coating layer peels off, wears, or breaks due to mechanical shock, thermal shock, or long-term use, and the coating layer is rapidly abraded. Oxidation progresses.
【0009】またc)の様に素材全体に酸化を防止する
物質を分散させる方法では、樹脂等の結合材を使用して
いるため、焼成中に結合材の分解により発生するガスや
マトリックス炭素自身の収縮が起こる。その結果、素材
は非常にポーラスで強度も不十分となる。さらに結合材
に含有され得るホウ素量には限界があり、十分な耐酸化
性を発揮するには至っていない。また結合材の樹脂を焼
成炭化する際に、本来断熱材であるフェルト成形体内部
に温度勾配ができ、剥離の原因ともなっている。当然な
がら成形体の厚さにも限界があった。Further, in the method of dispersing a substance for preventing oxidation in the whole material as in c), since a binder such as a resin is used, gas generated by decomposition of the binder during firing and matrix carbon itself. Contraction occurs. As a result, the material is very porous and of insufficient strength. Furthermore, there is a limit to the amount of boron that can be contained in the binder, and sufficient oxidation resistance has not been achieved. Further, when the binder resin is carbonized by firing, a temperature gradient is formed inside the felt molded body, which is originally a heat insulating material, which causes peeling. Of course, there was a limit to the thickness of the molded body.
【0010】さらにd)のような耐酸化性に優れかつ機
械的衝撃にも強い材料が提案されたが、マトリックスが
コークスの為耐熱衝撃性に欠けるという問題点があっ
た。本発明は上記従来の欠点を克服することであり、こ
れを換言すれば、耐酸化性に優れ、しかも耐熱衝撃性に
優れた炭素繊維強化炭素−無機化合物複合材料の製造方
法を提供することである。Further, a material such as d) which is excellent in oxidation resistance and strong against mechanical shock has been proposed, but there is a problem that the matrix is coke and thus lacks in thermal shock resistance. The present invention is to overcome the above-mentioned conventional drawbacks, in other words, to provide a method for producing a carbon fiber-reinforced carbon-inorganic compound composite material having excellent oxidation resistance and also excellent thermal shock resistance. is there.
【0011】[0011]
【課題を解決するための手段】本発明者らは鋭意研究し
た結果、耐酸化性を発揮するホウ素またはケイ素化合物
の粉末を、フェルトを構成している炭素繊維表面に均一
に付着させた炭素繊維フェルトを素材として用い、これ
に熱分解炭素(以下PyCという)を含浸・析出せしめ、
更に熱処理することによって解決できることを見いだし
た。Means for Solving the Problems As a result of intensive studies by the present inventors, a carbon fiber in which a powder of a boron or silicon compound exhibiting oxidation resistance is uniformly adhered to the surface of the carbon fiber forming the felt. Felt is used as a material, and pyrolytic carbon (hereinafter referred to as PyC) is impregnated and deposited on it.
It was found that it can be solved by further heat treatment.
【0012】[0012]
【発明の作用】まず原料となるフェルトを構成する炭素
繊維は、ピッチ系、PAN系、レーヨン系のいずれでも良
い。さらに炭素繊維は炭化処理の施されていないもの、
炭化を終えたもの、黒鉛化処理されたものなど目的に応
じて使い分ければ良く、特に制限はない。さらにこれ等
を不純物がppmオーダーまで高純度化しても良い。しか
し炭素繊維強化炭素−無機化合物複合材を高温処理する
際に繊維収縮や分解ガス発生をできるだけ少なくする
し、良質の材料を得るためには黒鉛化され、また高純度
化されたフェルトを出発原料として用いることが好まし
い。The carbon fiber forming the felt as a raw material may be any of pitch type, PAN type and rayon type. Furthermore, carbon fibers that have not been carbonized,
There is no particular limitation as long as it has been carbonized or has been graphitized, and it may be used properly. Further, these impurities may be highly purified to the order of ppm of impurities. However, in order to minimize fiber shrinkage and decomposition gas generation during high-temperature treatment of carbon fiber-reinforced carbon-inorganic compound composites, and to obtain good quality materials, graphitized and highly purified felt is used as a starting material. It is preferable to use as.
【0013】フェルトの厚さについても特に制限はない
が、1〜20mmが望ましく、さらに好ましくは3〜15
mmである。この際炭素繊維フェルトの厚さが1mm未満で
は所望の厚さを得るために何層も積層しなくてはなら
ず、作業が増え作業が繁雑になり、また逆に20mmより
厚くなると無機粉末を均一に付着させることが困難とな
る。The thickness of the felt is not particularly limited, but it is preferably 1 to 20 mm, more preferably 3 to 15 mm.
mm. At this time, if the thickness of the carbon fiber felt is less than 1 mm, many layers must be laminated to obtain a desired thickness, and the work increases and the work becomes complicated. It becomes difficult to adhere uniformly.
【0014】フェルトに付着させる無機化合物の粉末
は、ガラス状酸化防止被膜を作って炭素材の耐酸化性を
高めることが広く知られているホウ素やケイ素の無機化
合物が主なものである。例えばB4C、SiC、Ti
B2、ZrB2、BN、B単体等を挙げることができる。
また上記無機化合物の粉末は、単独もしくは2種類以上
を組み合わせて使用することも可能である。またこれら
粉末の粒径は均一分散化が十分行えるようにするため5
0μm以下が好ましい。The inorganic compound powder adhered to the felt is mainly an inorganic compound of boron or silicon, which is widely known to form a glassy antioxidative coating to enhance the oxidation resistance of the carbon material. For example B 4 C, SiC, Ti
Examples include B 2 , ZrB 2 , BN, and B alone.
Further, the powder of the above-mentioned inorganic compound can be used alone or in combination of two or more kinds. In addition, the particle size of these powders should be 5 in order to achieve uniform dispersion.
It is preferably 0 μm or less.
【0015】本発明の炭素繊維強化炭素−無機化合物複
合材は上記の原料を用い、図1に示す工程に沿って製造
される。The carbon fiber reinforced carbon-inorganic compound composite material of the present invention is manufactured by using the above raw materials and following the steps shown in FIG.
【0016】まず無機化合物の粉末を水、アルコール、
有機溶剤等の分散媒と混合し、スラリーとする。スラリ
ーの濃度は通常1〜3000(g/リットル)である。
こうして得られたスラリーをフェルトに浸透させ、次に
分散媒を真空乾燥機などで蒸発させて繊維表面に無機化
合物の粉末が付着したフェルトを得る。この時の粉末量
は、フェルト重量の10wt%以上が好ましく、特に好
ましくは50〜500wt%程度である。First, the inorganic compound powder is mixed with water, alcohol,
Mix with a dispersion medium such as an organic solvent to obtain a slurry. The concentration of the slurry is usually 1 to 3000 (g / liter).
The slurry thus obtained is permeated into the felt, and then the dispersion medium is evaporated by a vacuum dryer or the like to obtain a felt in which the powder of the inorganic compound is attached to the fiber surface. The powder amount at this time is preferably 10 wt% or more of the felt weight, and particularly preferably about 50 to 500 wt%.
【0017】次いでこのフェルトを必要に応じ積層し、
たとえば図2に示す治具で圧縮する。この積層は目的物
の厚みに応じて適宜に層数を選定すれば良く、通常10
〜150mm程度である。尚フェルトの厚みが充分厚い場
合には、積層する必要が無い場合もある。Next, the felts are laminated as needed,
For example, it is compressed by the jig shown in FIG. For this lamination, the number of layers may be appropriately selected according to the thickness of the target object, and usually 10
It is about 150 mm. If the felt is thick enough, it may not be necessary to stack it.
【0018】積層物は必要に応じ圧縮するが、この圧縮
は、フェルト空隙率の調整及びフェルト層間の圧着(フ
ェルトをある程度圧縮しておくと熱分解炭素を析出させ
た時フェルト同士の接着力が向上する効果がある)の目
的で行われ、圧縮手段自体は何等限定されないが、たと
えば図2に示す治具で圧縮する手段を例示出来る。但し
図2中(1)は抑え板であり、(2)はボルト状支柱、
(3)はナットを示す。また抑え板(1)の表面図を図
3に示す。但し図3中(4)はボルト状支柱(2)を挿
入するための穴である。The laminate is compressed as necessary. This compression is performed by adjusting the porosity of the felt and pressure bonding between the felt layers (if the felt is compressed to a certain degree, the adhesive force between the felts when the pyrolytic carbon is deposited). However, the compression means itself is not limited in any way. For example, a means for compression with a jig shown in FIG. 2 can be exemplified. However, in FIG. 2, (1) is a restraining plate, (2) is a bolt-shaped support,
(3) shows a nut. A surface view of the restraining plate (1) is shown in FIG. However, (4) in FIG. 3 is a hole for inserting the bolt-like support (2).
【0019】図2に示す治具は一例を示したものであ
り、治具を構成する材料としては2000℃以上の温度
で変形、変質しない材料が用いられ、例えば黒鉛材、炭
化珪素材、炭化珪素で被覆した黒鉛材、炭素繊維を用い
た炭素複合材、窒化ホウ素材などを用いることができ
る。The jig shown in FIG. 2 is an example, and a material that does not deform or deteriorate at a temperature of 2000 ° C. or higher is used as a material for forming the jig. For example, a graphite material, a silicon carbide material, or a carbonized material. A graphite material coated with silicon, a carbon composite material using carbon fibers, a boron nitride material, or the like can be used.
【0020】また抑え板(1)の構造としては、円形孔
を多数設けた平板や、網状、ハニカム状、格子状等の模
様を有する平板等、多数のガス拡散用の孔があいたもの
を用いることができる。As the structure of the restraining plate (1), a flat plate having a large number of circular holes, a flat plate having a net-like shape, a honeycomb-like shape, a lattice-like shape, or the like having a large number of gas diffusion holes is used. be able to.
【0021】それ等抑え板はボルト状の支柱や荷重によ
る圧縮手段等により、フェルトの空隙率を調節すること
ができる。The restraining plates can adjust the porosity of the felt by means of bolt-shaped columns or compression means by a load.
【0022】尚図4に、ハニカム状模様の抑え板を示
す。圧縮したフェルト(以下前駆体ということがある)
としては、その空隙率は0.5以上が好ましい。 ここで空隙率とは、下記[化1]Incidentally, FIG. 4 shows a pressing plate having a honeycomb pattern. Compressed felt (hereinafter sometimes referred to as precursor)
It is preferable that the porosity is 0.5 or more. Here, the porosity means the following [Chemical formula 1].
【0023】[0023]
【化1】 [Chemical 1]
【0024】 V:フェルト成形体の体積 (cm3) A:成形体中炭素繊維の占める体積 (cm3) B:成形体中無機化合物の粉末の占める体積 (cm3) C:成形体中熱分解炭素の占める体積(cm3) の式で求められる。これを言葉で表現すると、前駆体の
体積(嵩)に対する前駆体中の空間(熱分解炭素が析出
できる)の比率を示す。V: Volume of felt molded body (cm 3 ) A: Volume occupied by carbon fibers in molded body (cm 3 ) B: Volume occupied by powder of inorganic compound in molded body (cm 3 ) C: Heat in molded body Calculated by the formula of volume occupied by decomposed carbon (cm 3 ). Expressing this in words, it indicates the ratio of the space in the precursor (where pyrolytic carbon can be deposited) to the volume (bulk) of the precursor.
【0025】この値が0.5よりも小さいと実質上の結
合材として作用するPyCの析出する空間が小さくなり、
圧縮繊維同士の接着が不十分となる恐れがある。この前
駆体は、熱分解炭素を前駆体内部にまで析出させること
により、炭素繊維同士、炭素繊維と無機化合物の粉末等
を強固に結合させ充分なる強度を得る。If this value is smaller than 0.5, the space for precipitation of PyC, which acts as a substantial binder, becomes small,
There is a risk of insufficient adhesion between the compressed fibers. By depositing pyrolytic carbon to the inside of the precursor, this precursor firmly bonds the carbon fibers to each other, the carbon fibers and the powder of the inorganic compound, and obtains sufficient strength.
【0026】本発明において熱分解炭素を浸透、析出さ
せる方法は常法に従えば良い。その一般的実施様態を示
すと炭素数1〜8程度の炭化水素例えばメタンやプロパ
ンを熱分解させ、基材上に熱分解炭素を浸透、析出させ
るものである。この際濃度調節用としてH2やArガス
等を用いて炭化水素濃度を3〜30%好ましくは5〜1
5%とし、全圧を100Torr好ましくは50Torr以下の
条件で操作することが好ましい。析出の温度範囲は一般
に800〜2500℃位までの広い範囲であるが、でき
るだけ多く含浸するためには、1300℃以下の比較的
低温域で熱分解炭素を析出させることが好ましい。熱分
解炭素の含浸量は空隙率が通常0.4以下好ましくは0.
3〜0.1程度になるまで含浸する。In the present invention, the method of infiltrating and precipitating pyrolytic carbon may be in accordance with a conventional method. In a general embodiment, a hydrocarbon having about 1 to 8 carbon atoms such as methane or propane is thermally decomposed, and the thermally decomposed carbon is permeated and deposited on the base material. At this time, the hydrocarbon concentration is adjusted to 3 to 30%, preferably 5 to 1 by using H 2 or Ar gas for adjusting the concentration.
It is preferable to operate at a total pressure of 5 Torr and a total pressure of 100 Torr, preferably 50 Torr or less. The temperature range for precipitation is generally a wide range of about 800 to 2500 ° C., but in order to impregnate as much as possible, it is preferable to precipitate pyrolytic carbon in a relatively low temperature range of 1300 ° C. or less. The impregnated amount of pyrolytic carbon has a porosity of usually 0.4 or less, preferably 0.1.
Impregnate until it becomes about 3 to 0.1.
【0027】この様にして得られた無機化合物の粉末を
含有するフェルト成形体は、樹脂を用いて何層ものフェ
ルトを接着させる方法に比べて剥離の恐れが無く、厚い
成形体を得ることができる。The felt compact containing the powder of the inorganic compound thus obtained has a greater risk of peeling than the method of adhering several layers of felt using a resin, and a thick compact can be obtained. it can.
【0028】次に不活性雰囲気もしくは真空下2000
〜3000℃で熱処理を行い、目的の炭素繊維強化炭素
−無機化合物複合材となる。つまり高温で熱処理するこ
とによって無機化合物の粉末は軟化、溶融、分解し、粉
末成分がより均一に分散した炭素繊維強化炭素−無機粉
末複合材を得ることができる。更に必要であれば真空炉
で例えば10Torr以下2000℃以上の条件で脱ガス処
理の工程をつけ加えることもできる。Next, under an inert atmosphere or vacuum, 2000
The target carbon fiber reinforced carbon-inorganic compound composite material is obtained by performing heat treatment at ˜3000 ° C. That is, the heat treatment at a high temperature softens, melts, and decomposes the powder of the inorganic compound, and the carbon fiber-reinforced carbon-inorganic powder composite material in which the powder components are more uniformly dispersed can be obtained. Further, if necessary, a degassing process may be added in a vacuum furnace under the conditions of 10 Torr or less and 2000 ° C. or more.
【0029】本発明によれば従来の結合材を用いる方法
や、ホットプレス法を用いずに耐酸化性に優れた炭素繊
維強化炭素−無機化合物複合材を得ることができる。さ
らにフェルトを用いるため短炭素繊維分散型と違い、素
材は長い連続した炭素繊維が絡み合い、それを取り巻く
様に熱分解炭素が析出してマトリックスを形成してい
る。この結果炭素繊維フェルトと無機粉末と熱分解炭素
とは強固に接着されると共に熱分解炭素の持つ優れた耐
熱衝撃性により、亀裂、剥離、割れ等が防止できる。ま
た製造工程中無機化合物の粉末を溶媒に分散させて得ら
れるスラリー濃度を変えたり、分散させる粉末の種類を
変えることによって、所望の炭素繊維強化炭素−無機粉
末複合材を得ることができる。According to the present invention, a carbon fiber-reinforced carbon-inorganic compound composite material having excellent oxidation resistance can be obtained without using a conventional binding material method or a hot pressing method. Furthermore, unlike the short carbon fiber dispersion type, since a felt is used, a long continuous carbon fiber is entangled in the material, and pyrolytic carbon is deposited to surround it to form a matrix. As a result, the carbon fiber felt, the inorganic powder and the pyrolytic carbon are firmly adhered to each other, and cracks, peeling, cracking and the like can be prevented by the excellent thermal shock resistance of the pyrolytic carbon. Further, the desired carbon fiber reinforced carbon-inorganic powder composite material can be obtained by changing the concentration of the slurry obtained by dispersing the powder of the inorganic compound in the solvent during the manufacturing process or by changing the type of the powder to be dispersed.
【0030】以上要するに、本発明法に於いては、In summary, in the method of the present invention,
【0031】(A)空隙率の大きい炭素繊維フェルト中
に、酸化反応を抑える効果を有するホウ素、その化合物
及びケイ素化合物の少なくとも1種の粉末を、深部にま
で含浸せしめて、その繊維表面上に微細に分散沈積し、(A) A carbon fiber felt having a large porosity is impregnated deeply with at least one powder of boron, a compound thereof and a silicon compound having an effect of suppressing an oxidation reaction, and the fiber surface is impregnated with the powder. Finely dispersed and deposited,
【0032】(B)さらにその空隙部に難酸化性を有する
熱分解炭素を析出せしめ、繊維及び無機化合物の粉末の
表面を熱分解炭素で覆い、(B) Further, pyrolytic carbon having a hardly-oxidizing property is deposited in the voids, and the surfaces of the fiber and the powder of the inorganic compound are covered with pyrolytic carbon,
【0033】(C)さらに2000℃以上にて高温焼成
し、ホウ素及びケイ素成分の一層の均一微分散を行うこ
と、により極めて耐酸化性の高い炭素複合材料を得るこ
とができるものである。(C) A carbon composite material having extremely high oxidation resistance can be obtained by further baking at a high temperature of 2000 ° C. or higher to further uniformly finely disperse the boron and silicon components.
【0034】このような工程の組合わせにより得られた
炭素−無機複合材料は、相乗効果により従来の耐酸化性
炭素複合材に比べ格段に耐酸化性、耐熱衝撃性の高いも
のである。The carbon-inorganic composite material obtained by such a combination of steps has a significantly higher oxidation resistance and thermal shock resistance than the conventional oxidation resistant carbon composite material due to the synergistic effect.
【0035】[0035]
【実施例】以下に実施例を示し、本発明を詳細に説明す
る。The present invention will be described in detail below with reference to examples.
【0036】[0036]
【実施例1】黒鉛化されたレーヨン系フェルト(繊維径
10μm、密度0.05/cm3)を準備した。無機化合物
の粉末として炭化ホウ素(共立窯業原料(株)製:平均粒
径10μmのもの)を、メタノール1リットルに対し2k
gの割合で分散させスラリーを作成した。このスラリー
に、超音波振動を与えながら、100×100×10
(mm)の形状の前記フェルトへ浸透させた。次に真空乾
燥機で50℃で5時間メタノールを蒸発させて、炭化ホ
ウ素を70wt%含有したフェルトを得た。このフェルト
を重ね合わせ図2に示した黒鉛製治具で空隙率0.8に
圧縮して前駆体を得た。これを治具ごと真空炉に入れ、
1200℃、30Torrでメタン:水素=1:6の割合の
原料ガスを流し、前駆体内部に熱分解炭素を含浸した。
この空隙率が0.3になった時点で取り出すとフェルト
は熱分解炭素によって強固に結合されていた。次に非酸
化性雰囲気中500℃/hrの速度で2500℃まで加熱
し、30分間保持して高温処理し、炭素繊維強化炭素−
無機化合物複合材(100×100×50(mm))を得
た。Example 1 A graphitized rayon felt (fiber diameter 10 μm, density 0.05 / cm 3 ) was prepared. Boron carbide (manufactured by Kyoritsu Kiln Raw Materials Co., Ltd .: average particle size: 10 μm) was used as an inorganic compound powder in an amount of 2 k per 1 liter of methanol.
A slurry was prepared by dispersing at a ratio of g. While applying ultrasonic vibration to this slurry, 100 × 100 × 10
The felt having a shape of (mm) was infiltrated. Next, methanol was evaporated in a vacuum dryer at 50 ° C. for 5 hours to obtain a felt containing 70 wt% of boron carbide. This felt was overlaid and compressed with a graphite jig shown in FIG. 2 to a porosity of 0.8 to obtain a precursor. Put this together with the jig into the vacuum furnace,
A raw material gas was supplied at a ratio of methane: hydrogen = 1: 6 at 1200 ° C. and 30 Torr to impregnate the inside of the precursor with pyrolytic carbon.
When the porosity was taken out at the time of 0.3, the felt was firmly bonded by the pyrolytic carbon. Next, in a non-oxidizing atmosphere, it is heated to 2500 ° C. at a rate of 500 ° C./hr, kept for 30 minutes and subjected to high temperature treatment.
An inorganic compound composite material (100 × 100 × 50 (mm)) was obtained.
【0037】[0037]
【実施例2】無機化合物の粉末として粒径10μm(共
立窯業原料(株)製)の炭化ケイ素粉を1kgと、ホウ化チ
タン(TiB2)粉1kgを混合した無機粉末をメタノー
ル1リットルに分散させたスラリーを使用し、それ以外
は実施例1と同様の方法により炭素繊維強化炭素−無機
化合物複合体を得た。Example 2 As an inorganic compound powder, 1 kg of silicon carbide powder having a particle size of 10 μm (manufactured by Kyoritsu Kiln Raw Materials Co., Ltd.) and 1 kg of titanium boride (TiB 2 ) powder were mixed and dispersed in 1 liter of methanol. A carbon fiber-reinforced carbon-inorganic compound composite was obtained by the same method as in Example 1 except that the slurry thus obtained was used.
【0038】[0038]
【比較例1】無機化合物の粉末を使用せず、その他は実
施例1と同様に行った。Comparative Example 1 The same procedure as in Example 1 was carried out except that no inorganic compound powder was used.
【0039】[0039]
【比較例2】比較例1で得られた材料に、化学的蒸着法
により膜厚100μmのSiC層を形成させた。Comparative Example 2 A SiC layer having a film thickness of 100 μm was formed on the material obtained in Comparative Example 1 by a chemical vapor deposition method.
【0040】[0040]
【比較例3】高温処理の温度として、その最高温度を1
800℃とし、それ以外は実施例1と同様の方法で複合
体を得た。[Comparative Example 3] As the temperature for high temperature treatment, the maximum temperature is 1
A composite was obtained in the same manner as in Example 1 except that the temperature was 800 ° C.
【0041】[0041]
【実験例1】実施例1、2及び比較例1、2、3の各材
料について、それぞれのかさ比重、曲げ強さ、熱伝導
率、熱膨張係数を測定した。その結果を表1に示す。[Experimental Example 1] The bulk specific gravity, bending strength, thermal conductivity and coefficient of thermal expansion of each material of Examples 1 and 2 and Comparative Examples 1, 2 and 3 were measured. The results are shown in Table 1.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【実験例2】実施例1、2及び比較例1、2、3の材料
について、予め所定の温度で熱しておき、これを20℃
の水に入れて急冷し、クラックが発生するかどうか調べ
た。試料形状はφ30×3mm、参考材として等方性黒鉛
材料(東洋炭素(株)製「IG−11」)を用いた。その
結果最高1500℃に熱した試料を水中で急冷してもク
ラックは全く生じなかった。しかし等方性黒鉛材料(I
G−11)は500℃で微細なクラックが発生してしま
った。[Experimental Example 2] The materials of Examples 1 and 2 and Comparative Examples 1, 2 and 3 were heated at a predetermined temperature in advance, and this was heated to 20 ° C.
It was put into water and rapidly cooled, and it was examined whether cracks occurred. The sample shape was φ30 × 3 mm, and an isotropic graphite material (“IG-11” manufactured by Toyo Tanso Co., Ltd.) was used as a reference material. As a result, cracks did not occur at all even when the sample heated to a maximum temperature of 1500 ° C. was rapidly cooled in water. However, isotropic graphite materials (I
G-11) had fine cracks at 500 ° C.
【0044】[0044]
【実験例3】空気中800℃で実施例1、2及び比較例
1、2の材料について、20、40、60、80、10
0時間酸化消耗実験を行った(試料形状10×20×3
0mm;直方体形状)。酸化消耗率(Y)は[化2]から
求めた。[Experimental Example 3] 20, 40, 60, 80, 10 for the materials of Examples 1 and 2 and Comparative Examples 1 and 2 at 800 ° C in air.
Oxidation consumption experiment was performed for 0 hours (sample shape 10 × 20 × 3
0 mm; rectangular parallelepiped shape). The oxidation consumption rate (Y) was obtained from [Chemical Formula 2].
【0045】[0045]
【化2】 [Chemical 2]
【0046】 M:実験前の試料重量(g) Nx:X時間後の試料重量(g) その結果を表2に示す。M: sample weight before experiment (g) Nx: sample weight after X hours (g) The results are shown in Table 2.
【0047】実施例1、2ともに安定した耐酸化消耗性
を示しており、100時間を経過した時点でも比較例
1、2の材料に比べ極めて酸化性の小さい材料であるこ
とが判る。比較例2は実験開始20時間後の重量測定
時、炉から試料を取り出したところ、800℃→20℃
の熱衝撃でSiCコーティング層にクラックが発生し
た。その後は比較例1と同様に酸化消耗が急激に進行し
た。Both Examples 1 and 2 show stable oxidation and wear resistance, and it can be seen that even after 100 hours have elapsed, the material is much less oxidative than the materials of Comparative Examples 1 and 2. In Comparative Example 2, when the sample was taken out of the furnace at the time of weighing 20 hours after the start of the experiment, the temperature was 800 ° C → 20 ° C.
Due to the thermal shock, a crack was generated in the SiC coating layer. After that, as in Comparative Example 1, oxidation consumption rapidly progressed.
【0048】[0048]
【表2】 [Table 2]
【0049】[0049]
【実験例4】実施例1、比較例3の材料について、破断
面の走査電子顕微鏡写真とX線マイクロアナライザーに
よるホウ素マッピングを行った。この結果を図5(実施
例1)、及び図6(比較例3)に示す。但し図5及び6
は夫々その模擬的な概略図である。実施例1の材料中の
ホウ素成分は繊維及びマトリックスに均一に分散してい
ることがわかる。比較例3はホウ素成分が局在してお
り、このため酸化を抑える効果が低かったと考えられ
る。[Experimental Example 4] The materials of Example 1 and Comparative Example 3 were subjected to scanning electron microscope photographs of fracture surfaces and boron mapping with an X-ray microanalyzer. The results are shown in FIG. 5 (Example 1) and FIG. 6 (Comparative Example 3). However, FIGS.
Is a schematic diagram of each of them. It can be seen that the boron component in the material of Example 1 is uniformly dispersed in the fiber and matrix. It is considered that in Comparative Example 3, the boron component was localized, and therefore the effect of suppressing the oxidation was low.
【0050】[0050]
【発明の効果】こうして作製した炭素繊維強化炭素−無
機化合物複合材は、耐熱衝撃性に優れ空気中800℃で
100時間後の酸化による重量減少率が10wt%以下
と極めて長時間安定した耐酸化性を示す。核融合炉用材
料、例えば第一壁、中性子吸収材等や宇宙航空機用材
料、金属溶融装置用治具、例えばルツボ、ボート、連鋳
用ノズル用材料として極めて好適な材料である。The carbon fiber-reinforced carbon-inorganic compound composite material produced in this manner is excellent in thermal shock resistance, and the weight loss rate due to oxidation after 100 hours in air at 800 ° C. is 10 wt% or less, which is stable for an extremely long time Shows sex. It is extremely suitable as a material for a fusion reactor, for example, a first wall, a neutron absorber, a spacecraft material, a jig for a metal melting device, for example, a material for a crucible, a boat, a nozzle for continuous casting.
【0051】[0051]
【0052】[0052]
【図1】[Figure 1]
【0053】図1は本発明法の一例のフローシートであ
る。FIG. 1 is a flow sheet of an example of the method of the present invention.
【0054】[0054]
【図2】[Fig. 2]
【0055】図2は本発明法実施に際し使用する治具の
一例を示す。FIG. 2 shows an example of a jig used for carrying out the method of the present invention.
【0056】[0056]
【図3】[Figure 3]
【0057】図3は上記治具の一構成要素である抑え板
の表面の説明図である。FIG. 3 is an explanatory view of the surface of a holding plate which is one of the constituent elements of the jig.
【0058】[0058]
【図4】[Figure 4]
【0059】図4は上記治具の一構成要素である抑え板
の表面の説明図である。FIG. 4 is an explanatory view of the surface of the holding plate which is one of the components of the above jig.
【0060】[0060]
【図5】[Figure 5]
【0061】図5は本発明の材料の走査電子顕微鏡写真
(その1)とX線マイクロアナライザーによるホウ素マ
ッピングの写真(その2)の模擬的な概略図である。FIG. 5 is a schematic diagram of a scanning electron microscope photograph (No. 1) of the material of the present invention and a photograph of boron mapping by an X-ray microanalyzer (No. 2).
【0062】[0062]
【図6】[Figure 6]
【0063】図6は比較例の材料の走査電子顕微鏡写真
(その1)とX線マイクロアナライザーによるホウ素マ
ッピングの写真(その2)の模擬的な概略図である。FIG. 6 is a schematic diagram of a scanning electron microscope photograph (No. 1) of the material of the comparative example and a photograph of boron mapping by an X-ray microanalyzer (No. 2).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長岡 勝秀 香川県三豊郡大野原町大字中姫2181−2 東洋炭素株式会社大野原工場内 (72)発明者 平岡 利治 香川県三豊郡大野原町大字中姫2181−2 東洋炭素株式会社大野原工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhide Nagaoka 2181 Nakahime, Onohara Town, Mitoyo-gun, Kagawa Toyo Carbon Co., Ltd. Onohara Plant (72) Inventor Toshiharu Hiraoka 2181 Nakahime, Onohara Town, Mitoyo-gun, Kagawa Prefecture -2 Toyo Tanso Co., Ltd. Onohara factory
Claims (2)
及びケイ素化合物の少なくとも1種を担持させ、必要に
応じ圧縮後、熱分解炭素を含浸・析出せしめ、次いで熱
処理することを特徴とする炭素繊維強化炭素−無機化合
物複合材料の製造方法。1. A carbon fiber characterized in that a carbon fiber felt is loaded with at least one of boron, a compound thereof and a silicon compound, compressed if necessary, impregnated and precipitated with pyrolytic carbon, and then heat treated. A method for producing a reinforced carbon-inorganic compound composite material.
1に記載の製造方法。2. The manufacturing method according to claim 1, wherein the heat treatment temperature is 2000 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4140103A JPH05306180A (en) | 1992-04-30 | 1992-04-30 | Production of carbon fiber reinforced carbon-inorganic compound composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4140103A JPH05306180A (en) | 1992-04-30 | 1992-04-30 | Production of carbon fiber reinforced carbon-inorganic compound composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05306180A true JPH05306180A (en) | 1993-11-19 |
Family
ID=15261015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4140103A Pending JPH05306180A (en) | 1992-04-30 | 1992-04-30 | Production of carbon fiber reinforced carbon-inorganic compound composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05306180A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347837A (en) * | 2005-06-17 | 2006-12-28 | Society Of Japanese Aerospace Co Inc | Method for manufacturing continuous fiber-reinforced composite material |
JP2008081379A (en) * | 2006-09-28 | 2008-04-10 | Ihi Corp | Ceramic-based composite material and its production method |
ES2344397A1 (en) * | 2009-02-24 | 2010-08-25 | Universitat Politecnica De Catalunya | Method of obtaining tricalcico alpha-stabilized phosphate with alphagene elements and tricalcico alpha-stabilized phosphate obtained. (Machine-translation by Google Translate, not legally binding) |
KR101521442B1 (en) * | 2014-03-07 | 2015-05-21 | 한국과학기술연구원 | Inorganic particle impregnated carbon felts and method thereof |
KR101865217B1 (en) * | 2016-04-26 | 2018-06-07 | 한국과학기술연구원 | method for manufacturing inorganic particle coated carbon felts and inorganic particle coated carbon felts thereby |
CN113125027A (en) * | 2021-04-19 | 2021-07-16 | 福建康碳复合材料科技有限公司 | Anti-adhesion method between ceramic thermocouple and corundum ceramic protection tube for vapor deposition furnace |
-
1992
- 1992-04-30 JP JP4140103A patent/JPH05306180A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347837A (en) * | 2005-06-17 | 2006-12-28 | Society Of Japanese Aerospace Co Inc | Method for manufacturing continuous fiber-reinforced composite material |
JP2008081379A (en) * | 2006-09-28 | 2008-04-10 | Ihi Corp | Ceramic-based composite material and its production method |
US8728383B2 (en) | 2006-09-28 | 2014-05-20 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Ceramic composite material |
ES2344397A1 (en) * | 2009-02-24 | 2010-08-25 | Universitat Politecnica De Catalunya | Method of obtaining tricalcico alpha-stabilized phosphate with alphagene elements and tricalcico alpha-stabilized phosphate obtained. (Machine-translation by Google Translate, not legally binding) |
KR101521442B1 (en) * | 2014-03-07 | 2015-05-21 | 한국과학기술연구원 | Inorganic particle impregnated carbon felts and method thereof |
KR101865217B1 (en) * | 2016-04-26 | 2018-06-07 | 한국과학기술연구원 | method for manufacturing inorganic particle coated carbon felts and inorganic particle coated carbon felts thereby |
CN113125027A (en) * | 2021-04-19 | 2021-07-16 | 福建康碳复合材料科技有限公司 | Anti-adhesion method between ceramic thermocouple and corundum ceramic protection tube for vapor deposition furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4981822A (en) | Composite containing coated fibrous material | |
EP0891956B1 (en) | Silicon-silicon carbide material and silicon carbide fiber-reinforced silicon-silicon carbide composite material | |
JP2008137830A (en) | Ceramic composite member and method of manufacturing the same | |
JP3673436B2 (en) | Carbon-based metal composite material and manufacturing method thereof | |
JP2007513854A5 (en) | ||
US20050020431A1 (en) | Silicon carbide-based, porous structural material being heat-resistant and super lightweight | |
CN1173556A (en) | Apparatus for pulling silicon single crystal | |
WO1999019273A1 (en) | Fibrous composite material and process for producing the same | |
US20060269683A1 (en) | Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor | |
JP5773331B2 (en) | Manufacturing method of ceramic joined body | |
EP1284251B1 (en) | Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor | |
JP3327637B2 (en) | Functionally graded composite material of copper and carbon and method for producing the same | |
JPH05306180A (en) | Production of carbon fiber reinforced carbon-inorganic compound composite material | |
JP4539014B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JPS6311589A (en) | Heat resistant tool and manufacture | |
US5034356A (en) | Ceramic matrix composite | |
JPH06183838A (en) | Silicon carbide composite material having fiber reinforcement covered with metal carbide | |
JP3562989B2 (en) | Composite having thermal sprayed layer and method for producing the same | |
JP2607409B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon composites. | |
JP3219314B2 (en) | Method for producing boron carbide-based carbon material | |
JP2000288916A (en) | Jig for polishing treatment | |
JPH0848509A (en) | Production of carbonaceous porous body | |
JPH10209061A (en) | Constitution member for semiconductor diffusion furnace | |
JP3574583B2 (en) | Heat radiating material and method of manufacturing the same | |
JP3548597B2 (en) | Oxidation-resistant treatment method of carbon fiber reinforced carbon composite |