Nothing Special   »   [go: up one dir, main page]

JPH05291097A - Silicon substrate and manufacture thereof - Google Patents

Silicon substrate and manufacture thereof

Info

Publication number
JPH05291097A
JPH05291097A JP9070992A JP9070992A JPH05291097A JP H05291097 A JPH05291097 A JP H05291097A JP 9070992 A JP9070992 A JP 9070992A JP 9070992 A JP9070992 A JP 9070992A JP H05291097 A JPH05291097 A JP H05291097A
Authority
JP
Japan
Prior art keywords
silicon substrate
oxygen
temperature
heat treatment
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9070992A
Other languages
Japanese (ja)
Inventor
Yasuo Tsumori
津森泰生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9070992A priority Critical patent/JPH05291097A/en
Publication of JPH05291097A publication Critical patent/JPH05291097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To keep a DZ layer high in crystallinity and gettering capacity and a substrate high in mechanical strength. CONSTITUTION:A silicon substrate is provided with regions composed of a first region whose density distribution of inner defects is less than 1X10<5>cm<-3>, a second region whose density distribution of inner defects is more than 1X10<7>cm<-3>, and a third region whose density distribution of inner defects is less than 1X10<7>cm<-3>, where the regions are made to range in this sequence in a thicknesswise direction from the surface to the center of the substrate. The substrate is formed through such a method that oxygen is diffused inwardly into the substrate, and then solution oxygen in a surface layer is diffused outwardly, whereby a surface region where solution oxygen is less than 5X10<7>cm<-3> and a center region where solution oxygen is more than 5X10<7>cm<-3> are formed in the substrate. Thereafter, the silicon substrate is heated at temperatures of 400 to 1050 deg.C and thermally treated for more than 30 minutes, whereby the substrate possessed of regions of the above density distribution of inner defects can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はゲッタリング効果を有す
るシリコン基板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon substrate having a gettering effect and a method for manufacturing the same.

【0002】[0002]

【従来の技術】シリコン半導体装置の電気特性を劣化さ
せる要因には、半導体装置の製造工程で誘起されるプロ
セス誘起欠陥や有害不純物がある。これらの欠陥や不純
物が半導体装置の動作領域に誘起または侵入することに
より、該半導体装置のpn接合のリーク電流の増大や少
数キャリアライフタイムの低下をもたらすことが知られ
ている。
2. Description of the Related Art Factors that deteriorate the electrical characteristics of silicon semiconductor devices include process-induced defects and harmful impurities that are induced in the semiconductor device manufacturing process. It is known that these defects and impurities induce or invade the operating region of the semiconductor device, thereby increasing the leak current of the pn junction of the semiconductor device and decreasing the minority carrier lifetime.

【0003】プロセス誘起欠陥の発生の防止や有害不純
物の無害化を行う方法にイントリンシックゲッタリング
法(以下IG法と称す)がある。IG法とは、半導体装
置の動作に関わるシリコン基板表面近傍にはデヌーデッ
トゾーンと呼ばれる無欠陥領域(以下DZ層と称する)
を形成し、且つ基板の内部には故意に結晶欠陥(以下内
部欠陥と称する)を発生させることにより、有害不純物
を内部欠陥にゲッタリングし無害化させる方法である。
現在最もよく知られているIG法は以下で述べる如くシ
リコン基板に三段階の熱処理を行う方法である。
There is an intrinsic gettering method (hereinafter referred to as IG method) as a method for preventing the generation of process-induced defects and detoxifying harmful impurities. The IG method is a defect-free region called a denuded zone (hereinafter referred to as a DZ layer) near the surface of a silicon substrate that is involved in the operation of a semiconductor device.
Is formed and a crystal defect (hereinafter referred to as an internal defect) is intentionally generated inside the substrate to getter harmful impurities into the internal defect to render it harmless.
The most well-known IG method at present is a method of performing a three-step heat treatment on a silicon substrate as described below.

【0004】一段目は、シリコン基板を1100℃以上
の温度で5時間から10時間程度保持することにより、
表面近傍の固溶酸素を外方拡散させ、同時に、表面近傍
に存在するシリコン結晶育成時に形成された内部欠陥の
発生核を収縮または消滅させることを目的としている。
二段目は該シリコン基板を600℃から800℃の温度
に20時間から60時間保持することにより、基盤内部
にのみ内部欠陥の発生核を形成することを目的としてい
る。三段目は該シリコン基板を1000℃から1050
℃の温度で1時間から20時間保持することにより、二
段目で形成した内部欠陥の発生核をゲッタリング能力を
有する内部欠陥に成長せしめることを目的としている。
The first step is to hold the silicon substrate at a temperature of 1100 ° C. or higher for about 5 to 10 hours,
The purpose is to outwardly diffuse the solid solution oxygen in the vicinity of the surface, and at the same time, to shrink or eliminate the nuclei of the internal defects formed during the growth of the silicon crystal existing in the vicinity of the surface.
The second stage is intended to form nuclei for the generation of internal defects only inside the substrate by keeping the silicon substrate at a temperature of 600 ° C. to 800 ° C. for 20 hours to 60 hours. In the third step, the silicon substrate is heated from 1000 ° C to 1050 ° C.
The purpose is to hold the temperature of C for 1 to 20 hours to grow the nuclei of internal defects formed in the second stage into internal defects having gettering ability.

【0005】IG法で処理されたシリコン基板には、図
2に示す如く、DZ層と内部欠陥層が形成される。内部
欠陥層の欠陥密度と有害不純物のゲッタリング能力の間
には、図3に示す如き相関があり、内部欠陥が1×10
7 cm-3以上の密度になるとゲッタリング能力を発揮す
ることが知られている。一方、IG法には、図4に示す
如く、内部欠陥層の欠陥密度の増大とともにシリコン基
板の機械的強度が低下するために反り量が増大するとい
う問題点がある。反り量の増大は半導体装置の製造歩留
まりを低下させることが知られている。図3と図4とを
比較すると明らかなように、ゲッタリング能力と反り量
は相反する関係を持つ。
As shown in FIG. 2, a DZ layer and an internal defect layer are formed on a silicon substrate processed by the IG method. There is a correlation as shown in FIG. 3 between the defect density of the internal defect layer and the gettering ability of harmful impurities.
It is known that the gettering ability is exhibited at a density of 7 cm -3 or more. On the other hand, the IG method has a problem that the amount of warp increases because the mechanical strength of the silicon substrate decreases as the defect density of the internal defect layer increases, as shown in FIG. It is known that an increase in the amount of warp reduces the manufacturing yield of semiconductor devices. As is clear from a comparison between FIG. 3 and FIG. 4, the gettering ability and the warp amount have a contradictory relationship.

【0006】IG法での問題点を解決する方法に特開昭
61−16532号公報記載の粒状化した析出物を素子
動作領域に近い表面層近くに形成する方法や特開昭61
−51930号公報記載の酸素原子およびシリコン原子
をイオン注入し熱処理を施して酸素原子を析出させる方
法がある。両者の方法とも、図5に示す如く、素子動作
領域に近い表面層近くに結晶欠陥が高密度に存在するた
め強いゲッタリング能力を有し、且つ基板内部の析出物
密度は低いため基盤の反り量の増大はない。しかし、前
者の方法は多結晶シリコンを固相エビ成長させたもので
あること、後者の方法はDZ層直下に酸素原子およびシ
リコン原子をイオン注入することから、DZ層の結晶性
についてはIG法で得られるDZ層の結晶性よりも劣る
欠点を有する。DZ層の結晶性の低下は半導体装置の製
造歩留まりの低下を招く。
As a method for solving the problems of the IG method, a method for forming a granular precipitate described in JP-A-61-16532 near the surface layer close to the device operating region, and JP-A-61-61.
There is a method described in JP-A-51930, in which oxygen atoms and silicon atoms are ion-implanted and heat-treated to precipitate oxygen atoms. As shown in FIG. 5, both methods have strong gettering ability due to the high density of crystal defects near the surface layer close to the device operating region, and the warp of the substrate due to the low density of precipitates inside the substrate. There is no increase in quantity. However, the former method is a method in which polycrystalline silicon is grown by solid phase shrimp growth, and the latter method is to implant oxygen atoms and silicon atoms directly under the DZ layer. Therefore, the crystallinity of the DZ layer is determined by the IG method. The crystallinity of the DZ layer obtained in 1. is inferior. A decrease in crystallinity of the DZ layer causes a decrease in manufacturing yield of semiconductor devices.

【0007】[0007]

【発明が解決しようとする課題】前途の如く、本発明
は、従来技術では不可能であった、DZ層の高い結晶
性、高密度な内部欠陥の発生による高いゲッタリング能
力と基板の機械的強度を確保したシリコン基板およびそ
の製造方法を提供するものである。
As described above, the present invention has a high crystallinity of the DZ layer, a high gettering ability due to the generation of high-density internal defects, and a mechanical property of the substrate, which have not been possible in the prior art. The present invention provides a silicon substrate ensuring strength and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、シリコン基板
の内部欠陥の分布を厚さ方向に表面から中心にかけて順
に1×105 cm-3以下の密度の領域、1×107 cm
-3以上望ましくは1×108 cm-3以上の密度の領域、
1×107 cm-3未満の密度の領域とする。具体的に
は、基板表面の結晶性を損なわずに請求項1記載の内部
欠陥分布を得るため、酸素ガスまたは酸素ガスと非酸化
性ガスとの混合ガス雰囲気中で下記の(1)式で示され
る該シリコン基板中に含まれる固溶酸素が未飽和になる
温度T以上融点以下に加熱して10分間以上望ましくは
1時間以上の熱処理を行いシリコン基板中にガス中の酸
素を内方拡散させる。
DISCLOSURE OF THE INVENTION According to the present invention, the distribution of internal defects in a silicon substrate is a region having a density of 1 × 10 5 cm −3 or less in order from the surface to the center in the thickness direction, 1 × 10 7 cm.
-3 or more, preferably 1 × 10 8 cm -3 or more in the density region,
The area has a density of less than 1 × 10 7 cm −3 . Specifically, in order to obtain the internal defect distribution according to claim 1 without impairing the crystallinity of the substrate surface, the following formula (1) is used in an oxygen gas or a mixed gas atmosphere of an oxygen gas and a non-oxidizing gas. The solid solution oxygen contained in the silicon substrate shown is heated to a temperature equal to or higher than the temperature T at which it becomes unsaturated and lower than or equal to the melting point, and heat-treated for 10 minutes or more, preferably 1 hour or more to diffuse oxygen in gas into the silicon substrate inward. Let

【0009】 T=1.77×104 /1n(9×1022/C)−273・・・・(1) T:シリコン基板中に含まれる固溶酸素が未飽和になる
温度(単位:℃)、 C:シリコン基盤中に含まれる固溶酸素濃度(単位:c
-3) 酸素を内方拡散させた後に少なくとも900℃までの温
度域を1℃/min以上100℃/min以下の冷却速
度で冷却するか、または一旦冷却した後に引き続き該シ
リコン基板を1100℃以上かつ(1)式で示される温
度T未満の温度に加熱し10分間以上の熱処理を行っ
て、表面層の固溶酸素を外方拡散させ、請求項2記載の
固溶酸素の濃度分布を有するシリコン基板を製造する。
その後に、該シリコン基板を400℃以上1050℃以
下の温度に加熱して少なくとも30分間以上望ましくは
1時間以上の熱処理を行い、請求項1記載の内部欠陥の
分布を得る。
T = 1.77 × 10 4 / 1n (9 × 10 22 / C) -273 (1) T: Temperature at which solid solution oxygen contained in a silicon substrate becomes unsaturated (unit: C), C: concentration of dissolved oxygen contained in the silicon substrate (unit: c
m −3 ) After inwardly diffusing oxygen, the temperature range up to at least 900 ° C. is cooled at a cooling rate of 1 ° C./min or more and 100 ° C./min or less, or after the silicon substrate is once cooled, the silicon substrate is continuously cooled to 1100 ° C. The solid solution oxygen in the surface layer is outwardly diffused by heating to a temperature lower than the temperature T represented by the equation (1) and heat treatment for 10 minutes or more to obtain the concentration distribution of the solid solution oxygen according to claim 2. A silicon substrate having is manufactured.
After that, the silicon substrate is heated to a temperature of 400 ° C. or higher and 1050 ° C. or lower and heat-treated for at least 30 minutes or longer, preferably 1 hour or longer, to obtain a distribution of internal defects.

【0010】[0010]

【作用】本発明の作用について図面に基づいて詳細に説
明する。本発明は、図1に示す如く、シリコン基板の内
部欠陥の密度分布を厚さ方向に表面から中心にかけて順
に1×105 cm-3以下の密度の領域(DZ層)、1×
107 cm-3以上の密度の領域(内部欠陥層)、1×1
7 cm-3未満の密度の領域とする。半導体装置をDZ
層に制作することによりプロセス誘起欠陥の発生がな
く、良好な電気特性を得ることが可能となる。内部欠陥
層では半導体装置の製造工程で侵入する有害不純物のゲ
ッタリングを行う。従来技術のIG法と異なりゲッタリ
ング能力を有する内部欠陥層がシリコン基板の中心部全
域に分布していないために、内部欠陥層の欠陥密度の増
大によりシリコン基板の機械的強度が著しく低下するこ
とはない。このため、該シリコン基板に高いゲッタリン
グ能力を付与するために、内部欠陥層の欠陥密度を1×
109 cm-3以上とした場合でも、反り量の顕著な増大
は見られず、従って半導体装置の製造歩留まりの低下も
ない。
The operation of the present invention will be described in detail with reference to the drawings. According to the present invention, as shown in FIG. 1, the density distribution of internal defects of a silicon substrate is 1 × 10 5 cm −3 or less in the thickness direction from the surface to the center (DZ layer), and 1 ×
Area with a density of 10 7 cm −3 or more (internal defect layer), 1 × 1
The area has a density of less than 0 7 cm -3 . DZ semiconductor device
By producing the layer, it is possible to obtain good electric characteristics without generation of process-induced defects. In the internal defect layer, gettering of harmful impurities that enter during the manufacturing process of the semiconductor device is performed. Unlike the conventional IG method, the internal defect layer having the gettering ability is not distributed over the central portion of the silicon substrate, so that the mechanical density of the silicon substrate is significantly reduced due to the increase in the defect density of the internal defect layer. There is no. Therefore, in order to impart a high gettering ability to the silicon substrate, the defect density of the internal defect layer is set to 1 ×.
Even when it is set to 10 9 cm -3 or more, the warp amount is not significantly increased, and therefore the manufacturing yield of semiconductor devices is not reduced.

【0011】本発明では、請求項1に記載の内部欠陥の
密度分布を持つシリコン基板を製造するため3段階の熱
処理を行うが、本発明の特徴は第1熱処理において該シ
リコン基板中へ酸素を内方拡散させることにある。第1
熱処理では、シリコン基板を酸素ガスまたは酸素ガスと
非酸化性ガス(例えばヘリウム、アルゴン、窒素等)と
の混合ガス雰囲気中で、基板中に含まれる固溶酸素濃度
が未飽和となる温度以上に加熱し、雰囲気中の酸素が該
シリコン基板中に内方拡散させ、固溶酸素の濃度分布を
図6(a) に示す如き分布とする。シリコン中の固溶酸素
濃度の温度依存性は、J.C.Mikkelsen,J
r.の論文「THE DIFFUSIVITY AND
SOLUBILITY OF OXGEN INSI
LICON」(Oxygen,Carbon,Hydr
ogen and Nitrogen in sili
con,1986年,Material Resear
ch Society発行,第19頁)によると(2)
式で示される。
In the present invention, a three-step heat treatment is performed to manufacture the silicon substrate having the density distribution of internal defects according to claim 1. The feature of the present invention is that oxygen is introduced into the silicon substrate in the first heat treatment. It is to diffuse inward. First
In the heat treatment, the silicon substrate is heated in an oxygen gas or a mixed gas atmosphere of an oxygen gas and a non-oxidizing gas (for example, helium, argon, nitrogen, etc.) to a temperature above the temperature at which the concentration of solid solution oxygen contained in the substrate becomes unsaturated. By heating, oxygen in the atmosphere is diffused inward into the silicon substrate, and the concentration distribution of solid solution oxygen is set to the distribution shown in FIG. 6 (a). The temperature dependence of the concentration of dissolved oxygen in silicon is described in J. C. Mikkelsen, J
r. "The DIFFUSIVITY AND
SOLUBILITY OF OXGEN INSI
LICON "(Oxygen, Carbon, Hydr
ogen and Nitrogen in sili
con, 1986, Material Research
ch Society, page 19) (2)
It is shown by the formula.

【0012】 Cox=9×1022exp(−1.52eV/kta )・・・・・(2) Cox:固溶酸素濃度(単位cm-3) 、k:ボルツマン定
数、 Ta :絶対温度(単位:K) (2)式に従うと、シリコン基板中に含まれる固溶酸素
が未飽和になる温度Tと該シリコン基板中の固溶酸素濃
度Cとの間には(1)式に示す関係が成り立つ。 T=1.77×104 /1n(9×1022/C)−273・・・・(1) T:シリコン基板中に含まれる固溶酸素が未飽和になる
温度(単位:℃)、 C:シリコン基板中に含まれる固溶酸素濃度(単位:c
-3) 第1熱処理は、該シリコン基板に含まれる結晶育成過程
で形成された内部欠陥の発生核の分解の作用も併せ持
つ。前途の分解作用は酸素の内方拡散の影響のないシリ
コン基板の中心部ほど顕著であり、引き続く熱処理によ
りシリコン基板中心部に発生する内部欠陥の密度は低減
される。その後、該シリコン基板の表面にDZ層を形成
するために、第1熱処理後の冷却速度を制御するかまた
はシリコン基板を一旦冷却した後、第2熱処理として、
再び1100℃以上の温度で10分間以上の熱処理を行
う。第2熱処理まで行うことにより、該シリコン基板中
の固溶酸素濃度の分布は図6(b) に示す如き分布とな
り、請求項2に記載のシリコン基板が製造される。第3
熱処理では、DZ層直下の固溶酸素濃度の高い領域に内
部欠陥層を形成するために、400℃以上1050℃以
下の温度で30分間以上の熱処理を行い、内部欠陥層に
1×107 cm-3以上の密度の内部欠陥を形成する。一
方、シリコン基板中心部では第1熱処理で内部欠陥の発
生核が分解されているため、第3熱処理で発生する内部
欠陥の密度は1×107 cm-3以上とはならず、従って
内部欠陥の密度分布は図1に示す如き分布となる。
[0012] C ox = 9 × 10 22 exp (-1.52eV / kt a) ····· (2) C ox: dissolved oxygen concentration (in cm -3), k: Boltzmann constant, T a: Absolute temperature (unit: K) According to the equation (2), there is an equation (1) between the temperature T at which the solid solution oxygen contained in the silicon substrate becomes unsaturated and the solid solution oxygen concentration C in the silicon substrate. The relationship shown in is established. T = 1.77 × 10 4 / 1n (9 × 10 22 / C) -273 (1) T: temperature at which solid solution oxygen contained in a silicon substrate becomes unsaturated (unit: ° C), C: Solid solution oxygen concentration contained in the silicon substrate (unit: c
m -3 ) The first heat treatment also has a function of decomposing the generation nucleus of the internal defect formed in the crystal growth process contained in the silicon substrate. The decomposition action described above is more remarkable in the central portion of the silicon substrate which is not affected by the inward diffusion of oxygen, and the density of the internal defects generated in the central portion of the silicon substrate is reduced by the subsequent heat treatment. Then, in order to form a DZ layer on the surface of the silicon substrate, the cooling rate after the first heat treatment is controlled or the silicon substrate is once cooled, and then the second heat treatment is performed.
Again, heat treatment is performed at a temperature of 1100 ° C. or higher for 10 minutes or longer. By performing up to the second heat treatment, the distribution of the concentration of solid solution oxygen in the silicon substrate becomes as shown in FIG. 6 (b), and the silicon substrate according to claim 2 is manufactured. Third
In the heat treatment, in order to form an internal defect layer in a region having a high concentration of dissolved oxygen immediately below the DZ layer, heat treatment is performed at a temperature of 400 ° C. or higher and 1050 ° C. or lower for 30 minutes or longer, and the internal defect layer is 1 × 10 7 cm 2. -Internal defects with a density of -3 or more are formed. On the other hand, in the central portion of the silicon substrate, the density of the internal defects generated by the third heat treatment does not exceed 1 × 10 7 cm −3 because the nuclei of the internal defects generated by the first heat treatment are decomposed, and therefore the internal defects are not generated. 1 has a density distribution as shown in FIG.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0014】本発明例と比較例の実施に用いたシリコン
基板は全て、面方位(100)、固溶酸素濃度が9.5
×1017cm-3、抵抗率が10Ωcmの直径5インチの
p型CZシリコン基板である。実施例に用いたシリコン
基板は該シリコン基板中の固溶酸素が1271℃以上の
温度で未飽和になるものである。実施例に用いた全ての
シリコン基板には、あらかじめ熱処理前に1重量%の希
弗酸水溶液に浸漬して表面に存在する自然酸化膜を除去
し、次に超純水ですすぎ洗浄をした後に、スピン乾燥を
行った。
All the silicon substrates used for carrying out the examples of the present invention and the comparative examples had a plane orientation (100) and a solid solution oxygen concentration of 9.5.
× 10 17 cm -3, resistivity of p-type CZ silicon substrate of 5 inches in diameter of 10 .OMEGA.cm. The silicon substrate used in the examples is one in which the solid solution oxygen in the silicon substrate becomes unsaturated at a temperature of 1271 ° C. or higher. All the silicon substrates used in the examples were previously immersed in a 1 wt% dilute hydrofluoric acid aqueous solution to remove the natural oxide film on the surface before heat treatment, and then rinsed with ultrapure water and washed. Then, spin drying was performed.

【0015】本発明例1〜10、比較例11〜17は、
第1熱処理、第2熱処理を順次行った後に固溶酸素の濃
度分布を測定した。
Inventive Examples 1 to 10 and Comparative Examples 11 to 17 are
After the first heat treatment and the second heat treatment were sequentially performed, the concentration distribution of solid solution oxygen was measured.

【0016】比較例11は第1熱処理の熱処理温度を固
溶酸素が過飽和なままの1250℃とし、他の条件は本
発明例1,2と同じにした。
In Comparative Example 11, the heat treatment temperature of the first heat treatment was 1250 ° C. while the solid solution oxygen was still supersaturated, and the other conditions were the same as in Invention Examples 1 and 2.

【0017】比較例12は第1熱処理の熱処理時間を5
分間とし、他の条件は本発明例1,3と同じにした。
In Comparative Example 12, the heat treatment time of the first heat treatment was 5
Minutes and other conditions were the same as those of Examples 1 and 3 of the invention.

【0018】比較例13は第1熱処理の熱処理雰囲気を
Arとし、他の条件は本発明例1,4,5と同じにし
た。
In Comparative Example 13, the heat treatment atmosphere of the first heat treatment was Ar, and the other conditions were the same as in Invention Examples 1, 4, and 5.

【0019】比較例14,15は、第1熱処理の冷却速
度をそれぞれ0.5℃/分、150℃/分とし、他の条
件は、本発明例1,6,7と同じにした。
In Comparative Examples 14 and 15, the cooling rates of the first heat treatment were 0.5 ° C./min and 150 ° C./min, respectively, and the other conditions were the same as those of Examples 1, 6 and 7 of the present invention.

【0020】比較例16は、第2熱処理の熱処理温度を
1050℃とし、その他の条件は本発明例8と同じにし
た。
In Comparative Example 16, the heat treatment temperature of the second heat treatment was 1050 ° C., and the other conditions were the same as in Invention Example 8.

【0021】比較例17は、第2熱処理の熱処理時間を
5分間とし、その他の条件は本発明例8,10と同じに
した。
In Comparative Example 17, the heat treatment time of the second heat treatment was 5 minutes, and the other conditions were the same as those of Examples 8 and 10 of the present invention.

【0022】固溶酸素の濃度分布は、第2熱処理までの
処理を行ったシリコン基板を二次イオン質量分析法によ
り測定した。測定の結果、固溶酸素の濃度分布が請求項
2の条件を満たすものを合格とした。
The concentration distribution of solute oxygen was measured by secondary ion mass spectrometry on the silicon substrate that had been subjected to the second heat treatment. As a result of the measurement, the solid solution oxygen concentration distribution that satisfies the condition of claim 2 was regarded as acceptable.

【0023】表1に本発明例ならびに比較例の判定結果
を示した。本発明例ではいずれもシリコン基板の固溶酸
素は、請求項2に記載した濃度分布となっている。比較
例11〜17は、第1熱処理または第2熱処理の熱処理
条件が請求項3または請求項4に記載した範囲から外れ
ており、このため固溶酸素の濃度分布が請求項2の範囲
から外れている。
Table 1 shows the judgment results of the examples of the present invention and the comparative examples. In all the examples of the present invention, the solid solution oxygen of the silicon substrate has the concentration distribution described in claim 2. In Comparative Examples 11 to 17, the heat treatment conditions of the first heat treatment or the second heat treatment are out of the range described in claim 3 or 4, and therefore the concentration distribution of solid solution oxygen is out of the range in claim 2. ing.

【0024】本発明例18〜22、比較例23〜27
は、請求項2に記載のシリコン基板に、第3熱処理を行
い内部欠陥の密度分布を測定した。
Inventive Examples 18 to 22 and Comparative Examples 23 to 27
Was subjected to a third heat treatment on the silicon substrate according to claim 2 to measure the density distribution of internal defects.

【0025】比較例23,24は第3熱処理の熱処理温
度をそれぞれ350℃、1100℃とし、その他の条件
は本発明例18〜20と同じにした。
In Comparative Examples 23 and 24, the heat treatment temperature of the third heat treatment was 350 ° C. and 1100 ° C., respectively, and the other conditions were the same as those of Examples 18 to 20 of the invention.

【0026】比較例25,26,27は第3熱処理の熱
処理時間を20分間とし、その他の条件は比較例25は
本発明例18,21と、比較例26は本発明例19と、
比較例27は本発明例20,22と同じにした。
In Comparative Examples 25, 26 and 27, the heat treatment time of the third heat treatment was set to 20 minutes, and other conditions were that Comparative Example 25 was Invention Examples 18 and 21, Comparative Example 26 was Invention Example 19 and
Comparative Example 27 was the same as Examples 20 and 22 of the present invention.

【0027】内部欠陥の密度分布の測定は、第3熱処理
を行った該シリコン基板の断面部をSeccoエッチン
グ法でエッチングすることにより内部欠陥を可視化して
行った。測定の結果、シリコン基板の内部欠陥の密度分
布が、請求項1の条件を満たすものを合格と判定した。
The density distribution of the internal defects was measured by visualizing the internal defects by etching the cross-section of the silicon substrate subjected to the third heat treatment by the Secco etching method. As a result of the measurement, it was judged that the density distribution of the internal defects of the silicon substrate satisfies the condition of claim 1 as a pass.

【0028】表2に本発明例ならびに比較例の判定結果
を示した。本発明例ではいずれも内部欠陥は請求項1に
記載した密度分布となっており、プロセス誘起欠陥がな
く有害不純物のゲッタリング能力に優れ、かつ機械的強
度の低下のないシリコン基板が製造されている。
Table 2 shows the judgment results of the examples of the present invention and the comparative examples. In each of the examples of the present invention, the internal defects have the density distribution described in claim 1, and a silicon substrate having no process-induced defects, an excellent gettering ability of harmful impurities, and no reduction in mechanical strength is manufactured. There is.

【0029】比較例23〜27は、第3熱処理の熱処理
条件が請求項5に記載した範囲から外れており、このた
め内部欠陥の密度分布が請求項1の範囲から外れてい
る。
In Comparative Examples 23 to 27, the heat treatment condition of the third heat treatment is out of the range described in claim 5, and therefore the density distribution of internal defects is out of the range in claim 1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上詳述した如く、本発明により、プロ
セス誘起欠陥がなく、有害不純物のゲッタリング能力に
優れ、かつ機械的強度の著しい低下のないCZシリコン
基板の製造が可能である。このため、高い歩留まりで半
導体装置の製造が可能となり、産業上極めて大きな効果
がある。
As described above in detail, according to the present invention, it is possible to manufacture a CZ silicon substrate which has no process-induced defects, has an excellent gettering ability for harmful impurities, and has no significant reduction in mechanical strength. Therefore, semiconductor devices can be manufactured with a high yield, which is extremely effective in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1に示した内部欠陥の密度分布
を示す図。
FIG. 1 is a diagram showing a density distribution of internal defects shown in claim 1 of the present invention.

【図2】従来技術のIG熱処理によるDZ層と内部欠陥
層の分布を示す図。
FIG. 2 is a diagram showing a distribution of a DZ layer and an internal defect layer by a conventional IG heat treatment.

【図3】有害不純物のゲッタリング能力と内部欠陥の密
度との相関を示す図。
FIG. 3 is a diagram showing a correlation between gettering ability of harmful impurities and density of internal defects.

【図4】シリコン基板の反り量(機械的強度)と内部欠
陥の密度との相関を示す図。
FIG. 4 is a diagram showing a correlation between a warp amount (mechanical strength) of a silicon substrate and a density of internal defects.

【図5】従来技術のIG法での問題点を解決する内部欠
陥層の分布を示す図。
FIG. 5 is a diagram showing the distribution of internal defect layers that solves the problems in the conventional IG method.

【図6】本発明におけるシリコン基板中の固溶酸素の分
布を示す図。(a)は第1熱処理で酸素を内方拡散させ
たときの固溶酸素の濃度分布を示す図。(b)は第1熱
処理の冷却速度を制御するかまたは第2熱処理を行った
後の、固溶酸素の濃度分布を示す図。
FIG. 6 is a diagram showing a distribution of solute oxygen in a silicon substrate according to the present invention. FIG. 6A is a diagram showing a concentration distribution of solid solution oxygen when oxygen is diffused inward in the first heat treatment. FIG. 6B is a diagram showing the concentration distribution of solid solution oxygen after controlling the cooling rate of the first heat treatment or performing the second heat treatment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板の厚さ方向に表面から中心
にかけて1×105cm-3以下の欠陥密度の領域、1×
107 cm-3以上の欠陥密度の領域 および1×107
cm-3未満の欠陥密度の領域を順次有することを特徴と
するシリコン基板。
1. A region having a defect density of 1 × 10 5 cm −3 or less from the surface to the center in the thickness direction of a silicon substrate, 1 ×
A region having a defect density of 10 7 cm −3 or more and 1 × 10 7
A silicon substrate having sequentially regions of defect density of less than cm -3 .
【請求項2】 シリコン基板の厚さ方向に表面から中心
にかけて表面側の領域は5×1017cm-3以下の固溶酸
素領域、中間の領域はウエハ中心領域の固溶酸素濃度よ
り高い固溶酸素領域であることを特徴とするシリコン基
板。
2. A solid solution oxygen region of 5 × 10 17 cm −3 or less in the surface side region from the surface to the center in the thickness direction of the silicon substrate, and an intermediate region is a solid solution oxygen concentration higher than the solid solution oxygen concentration in the wafer center region. A silicon substrate characterized by being a dissolved oxygen region.
【請求項3】 シリコン基板を酸素ガスまたは酸素ガス
と非酸化性ガスとの混合ガス雰囲気中で下記(1)式で
示される該シリコン基板中に含まれる固溶酸素が未飽和
になる温度T以上融点未満に加熱して、10分間以上の
熱処理を行って、前記シリコン基板中に前記ガス中の酸
素を内方拡散させた後に、少なくとも900℃までの温
度域を1℃/min以上100℃/min以下の冷却温
度で冷却することを特徴とする請求項2に記載のシリコ
ン基板を製造する方法。 T=1.77×104 /ln(9×1022/C)−273・・・・・(1) T:シリコン基板中に含まれる固溶酸素が未飽和になる
温度(単位:℃)、 C:シリコン基板中に含まれる固溶酸素濃度(単位:c
-3
3. A temperature T at which the solid solution oxygen contained in the silicon substrate represented by the following formula (1) becomes unsaturated in an oxygen gas or a mixed gas atmosphere of an oxygen gas and a non-oxidizing gas in the silicon substrate. After heating above the melting point to perform heat treatment for 10 minutes or more to diffuse oxygen in the gas in the silicon substrate inward, a temperature range of at least 900 ° C. is 1 ° C./min or more and 100 ° C. The method for manufacturing a silicon substrate according to claim 2, wherein the cooling is performed at a cooling temperature of / min or less. T = 1.77 × 10 4 / ln (9 × 10 22 / C) -273 (1) T: Temperature at which solid solution oxygen contained in a silicon substrate becomes unsaturated (unit: ° C) , C: concentration of dissolved oxygen contained in the silicon substrate (unit: c
m -3 )
【請求項4】 請求項3に記載の方法に引き続いて11
00℃以上かつ請求項3に記載の(1)式で示される温
度T未満の温度に加熱して、少なくとも10分間以上の
熱処理を行って表面層の固溶酸素を外方拡散させること
を特徴とする請求項2に記載のシリコン基板を製造する
方法。
4. Subsequent to the method according to claim 3, 11
It is heated to a temperature of 00 ° C. or higher and lower than the temperature T represented by the formula (1) of claim 3, and heat-treated for at least 10 minutes to diffuse outwardly the solid solution oxygen in the surface layer. The method for manufacturing the silicon substrate according to claim 2.
【請求項5】 請求項2に記載したシリコン基板を用い
て該シリコン基板を400℃以上1050℃以下の温度
に加熱して少なくとも30分間以上の熱処理を行うこと
を特徴とする請求項1に記載のシリコン基板を製造する
方法。
5. The silicon substrate according to claim 2, wherein the silicon substrate is heated to a temperature of 400 ° C. or more and 1050 ° C. or less and heat treatment is performed for at least 30 minutes or more. Of manufacturing a silicon substrate of.
JP9070992A 1992-04-10 1992-04-10 Silicon substrate and manufacture thereof Pending JPH05291097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9070992A JPH05291097A (en) 1992-04-10 1992-04-10 Silicon substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9070992A JPH05291097A (en) 1992-04-10 1992-04-10 Silicon substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05291097A true JPH05291097A (en) 1993-11-05

Family

ID=14006062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9070992A Pending JPH05291097A (en) 1992-04-10 1992-04-10 Silicon substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05291097A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111724A (en) * 1997-09-30 1999-04-23 Fujitsu Ltd Manufacture of semiconductor device
JPH11220019A (en) * 1998-02-02 1999-08-10 Nippon Steel Corp Soi substrate and manufacture thereof
JPH11322491A (en) * 1998-03-09 1999-11-24 Shin Etsu Handotai Co Ltd Production of silicon single crystal wafer and silicon single crystal wafer
JP2000053489A (en) * 1998-06-02 2000-02-22 Shin Etsu Handotai Co Ltd Production of silicon single crystal wafer for particle monitoring and silicon single crystal wafer for particle monitoring
JP2003124220A (en) * 2001-10-10 2003-04-25 Sumitomo Mitsubishi Silicon Corp Method for manufacturing silicon wafer and silicon wafer
JP2006261632A (en) * 2005-02-18 2006-09-28 Sumco Corp Method of thermally treating silicon wafer
JP2009016864A (en) * 1999-11-13 2009-01-22 Samsung Electronics Co Ltd Method of producing silicon wafer
JP2009177194A (en) * 2009-03-19 2009-08-06 Sumco Corp Method of manufacturing silicon wafer, and silicon wafer
JP2010034195A (en) * 2008-07-28 2010-02-12 Covalent Materials Corp Silicon wafer, and method of manufacturing the same
JP2010040588A (en) * 2008-07-31 2010-02-18 Covalent Materials Corp Silicon wafer
US8476149B2 (en) 2008-07-31 2013-07-02 Global Wafers Japan Co., Ltd. Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
JP2017076772A (en) * 2015-06-12 2017-04-20 キヤノン株式会社 Imaging device and method for manufacturing the same, and camera

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111724A (en) * 1997-09-30 1999-04-23 Fujitsu Ltd Manufacture of semiconductor device
JPH11220019A (en) * 1998-02-02 1999-08-10 Nippon Steel Corp Soi substrate and manufacture thereof
JPH11322491A (en) * 1998-03-09 1999-11-24 Shin Etsu Handotai Co Ltd Production of silicon single crystal wafer and silicon single crystal wafer
JP2000053489A (en) * 1998-06-02 2000-02-22 Shin Etsu Handotai Co Ltd Production of silicon single crystal wafer for particle monitoring and silicon single crystal wafer for particle monitoring
JP2009016864A (en) * 1999-11-13 2009-01-22 Samsung Electronics Co Ltd Method of producing silicon wafer
JP2009021623A (en) * 1999-11-13 2009-01-29 Samsung Electronics Co Ltd Method of manufacturing silicon wafer
JP2003124220A (en) * 2001-10-10 2003-04-25 Sumitomo Mitsubishi Silicon Corp Method for manufacturing silicon wafer and silicon wafer
JP2006261632A (en) * 2005-02-18 2006-09-28 Sumco Corp Method of thermally treating silicon wafer
JP2010034195A (en) * 2008-07-28 2010-02-12 Covalent Materials Corp Silicon wafer, and method of manufacturing the same
JP2010040588A (en) * 2008-07-31 2010-02-18 Covalent Materials Corp Silicon wafer
US8476149B2 (en) 2008-07-31 2013-07-02 Global Wafers Japan Co., Ltd. Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
JP2009177194A (en) * 2009-03-19 2009-08-06 Sumco Corp Method of manufacturing silicon wafer, and silicon wafer
JP2017076772A (en) * 2015-06-12 2017-04-20 キヤノン株式会社 Imaging device and method for manufacturing the same, and camera

Similar Documents

Publication Publication Date Title
US6641888B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer.
US4314595A (en) Method of forming nondefective zone in silicon single crystal wafer by two stage-heat treatment
KR102306730B1 (en) Method of Processing Silicon Wafers to Have Intrinsic Gettering and Gate Oxide Integrity Yield
JPS6255697B2 (en)
US6878451B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer
JP2010004054A (en) Thermally-annealed wafer with improved internal gettering property
JP2004533125A (en) Method of fabricating a silicon-on-insulator structure having intrinsic gettering by ion implantation
JP2003524874A (en) Czochralski silicon wafer with non-oxygen precipitation
JP3381816B2 (en) Semiconductor substrate manufacturing method
JPH05291097A (en) Silicon substrate and manufacture thereof
JP2018510492A (en) Epitaxially coated semiconductor wafer and method of manufacturing epitaxially coated semiconductor wafer
JPH0845947A (en) Thermal treatment method of silicon substrate
JP3870293B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP2742247B2 (en) Manufacturing method and quality control method for silicon single crystal substrate
KR100625822B1 (en) Silicon wafer and process for producing it
WO2010131412A1 (en) Silicon wafer and method for producing the same
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP4270713B2 (en) Manufacturing method of silicon epitaxial wafer
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JPS62123098A (en) Silicon single crystal
JP5211550B2 (en) Manufacturing method of silicon single crystal wafer
JPH11288942A (en) Manufacture of semiconductor device
JPH1143393A (en) Silicon single crystal wafer and its production
JP4345253B2 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP3944958B2 (en) Silicon epitaxial wafer and manufacturing method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010313