Nothing Special   »   [go: up one dir, main page]

JPH05283205A - Chip-type thermistor and manufacture thereof - Google Patents

Chip-type thermistor and manufacture thereof

Info

Publication number
JPH05283205A
JPH05283205A JP4106061A JP10606192A JPH05283205A JP H05283205 A JPH05283205 A JP H05283205A JP 4106061 A JP4106061 A JP 4106061A JP 10606192 A JP10606192 A JP 10606192A JP H05283205 A JPH05283205 A JP H05283205A
Authority
JP
Japan
Prior art keywords
thermistor
chip
mol
crystal phase
thermistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4106061A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakajima
弘明 中島
Keisuke Nishimura
圭介 西村
Koji Oi
幸二 大井
Masami Koshimura
正己 越村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4106061A priority Critical patent/JPH05283205A/en
Publication of JPH05283205A publication Critical patent/JPH05283205A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To prevent a decrease in mechanical strength of a thermistor element and to increase a substrate mountability. CONSTITUTION:This device is constituted of a chip-type thermistor element 1, chief of which is one or more than two kinds of transition metal oxides, Mn oxides, and terminal electrodes 2 formed on both ends of the thermistor element 1. When a surface layer of the thermistor element 1 is mainly formed of a cubic spinel crystal phase and an internal layer is mainly formed of a tetragonal spinel crystal phase, the surface layer of the thermistor element is 10-50mum in thickness. The chip-type thermistor is obtained by baking the terminal electrodes 2 on the thermistor element 1 and then heat treating the thermistor element 1 in the air at 150-350 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面実装性のあるチッ
プ型サーミスタ及びその製造方法に関する。更に詳しく
は、サーミスタ素体がバルク素子からなるチップ型サー
ミスタ及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip type thermistor having surface mountability and a method of manufacturing the same. More specifically, the present invention relates to a chip type thermistor in which a thermistor element body is a bulk element and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図1に示すように、この種のチップ型サ
ーミスタはチップ状に形成されたサーミスタ素体1の両
端に端子電極2,2が形成される。このチップ型サーミ
スタはプリント基板等の表面に直接実装される。このよ
うなチップ型サーミスタを製造するには、例えば金型等
を用いてサーミスタ素材を円柱状のブロックに加圧成形
する。このブロックを焼成し、焼成により得られたサー
ミスタ焼結体をダイヤモンドブレード等によってウエハ
状にスライスし、更にこのウエハを切断して所定の寸法
のチップ状サーミスタ素体1とする。そしてこのチップ
状サーミスタ素体1に端子電極2を焼付け等の方法で形
成してチップ型サーミスタを得る。サーミスタ素体は一
般に遷移金属層酸化物を主成分としているため、焼成時
の温度や周囲の酸素分圧に応じてサーミスタ素材が安定
な結晶構造をとり、これによって弾性率、熱膨張係数な
どの物理的な特性が変化することが知られている。
2. Description of the Related Art As shown in FIG. 1, a chip type thermistor of this type has terminal electrodes 2 and 2 formed at both ends of a thermistor element body 1 formed in a chip shape. This chip type thermistor is directly mounted on the surface of a printed circuit board or the like. In order to manufacture such a chip-type thermistor, a thermistor material is pressure-molded into a cylindrical block using, for example, a die. This block is fired, the thermistor sintered body obtained by firing is sliced into a wafer with a diamond blade or the like, and the wafer is further cut to obtain a chip-shaped thermistor element body 1 having a predetermined size. Then, the terminal electrode 2 is formed on the chip-shaped thermistor body 1 by a method such as baking to obtain a chip-type thermistor. Since the thermistor body generally contains a transition metal layer oxide as a main component, the thermistor material has a stable crystal structure depending on the temperature at the time of firing and the partial pressure of oxygen in the surroundings, whereby the elastic modulus, the thermal expansion coefficient, etc. It is known that physical properties change.

【0003】[0003]

【発明が解決しようとする課題】上述の方法でチップ型
サーミスタ素体を製造した場合、サーミスタ素材の組成
によってはウエハに切断した後のチップ型サーミスタ素
体の結晶構造と、端子電極を形成した後のサーミスタ素
体の結晶構造とが異なることがある。例えば、端子電極
の焼付けに起因して素体の表面層に焼付け前の結晶相と
異なる結晶相が生じた場合、素体表面に残留の引張応力
を生じさせる。この引張応力はチップ状サーミスタ素体
の抗折強度等の機械的強度を低下させ、チップ型サーミ
スタをプリント基板等に実装したときにサーミスタ素子
が割れたり、クラックが入るなどの問題を生じていた。
特にこの現象を生じる材料としてはMnを主たる成分と
する正方晶型スピネル結晶を有する化合物が挙げられ
る。Mnに他の成分、例えばCo,Ni,Fe,Cu,
Cr,Al,Zn等の成分を増やすに従って、これらの
成分がある組成領域を超えると立方晶スピネル結晶を有
する化合物となる。このような領域では、素体内部が正
方晶スピネル結晶となり、表面層は立方晶スピネル結晶
になり易く、その結果機械的強度等が低下する。
When the chip type thermistor element is manufactured by the above method, the crystal structure of the chip type thermistor element after cutting into wafers and the terminal electrode are formed depending on the composition of the thermistor material. The crystal structure of the later thermistor body may be different. For example, when a crystal phase different from the crystal phase before baking occurs in the surface layer of the element body due to the baking of the terminal electrode, residual tensile stress is generated on the surface of the element body. This tensile stress reduces mechanical strength such as bending strength of the chip thermistor body, and when the chip type thermistor is mounted on a printed circuit board or the like, the thermistor element is cracked or cracked. ..
In particular, as a material that causes this phenomenon, a compound having a tetragonal spinel crystal containing Mn as a main component can be mentioned. In addition to Mn, other components such as Co, Ni, Fe, Cu,
As the components such as Cr, Al, and Zn are increased, if these components exceed a certain composition range, the compound has a cubic spinel crystal. In such a region, the inside of the element body becomes a tetragonal spinel crystal, and the surface layer easily becomes a cubic spinel crystal, resulting in a decrease in mechanical strength and the like.

【0004】本発明の目的は、サーミスタ素体の機械的
強度の低下を防止し、基板実装性に優れたチップ型サー
ミスタ及びその製造方法を提供することにある。
An object of the present invention is to provide a chip type thermistor which is excellent in substrate mountability and which prevents deterioration of mechanical strength of the thermistor element body, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のチップ型サーミスタは、図1に示すように
1種又は2種以上の遷移金属酸化物を主成分として含み
前記遷移金属酸化物はMnの酸化物を主成分とするチッ
プ状サーミスタ素体1と、このサーミスタ素体1の両端
に形成される端子電極2とにより構成される。このサー
ミスタ素体1の表面層が主として立方晶スピネル型結晶
相からなり、サーミスタ素体1の内部層が主として正方
晶スピネル型結晶相からなるときに、サーミスタ素体1
の表面層の厚さが10〜50μmであることを特徴とす
る。また本発明のチップ型サーミスタの製造方法は、端
子電極2を焼付けた後に空気中150〜350℃の温度
範囲で熱処理する方法である。
In order to achieve the above object, a chip type thermistor of the present invention comprises, as shown in FIG. 1, one or more transition metal oxides as a main component. The oxide is composed of a chip-shaped thermistor element body 1 whose main component is an oxide of Mn, and terminal electrodes 2 formed at both ends of the thermistor element body 1. When the surface layer of the thermistor body 1 is mainly composed of a cubic spinel type crystal phase and the inner layer of the thermistor body 1 is mainly composed of a tetragonal spinel type crystal phase, the thermistor body 1
The thickness of the surface layer is 10 to 50 μm. Further, the method for manufacturing the chip type thermistor of the present invention is a method in which the terminal electrode 2 is baked and then heat-treated in the temperature range of 150 to 350 ° C. in air.

【0006】熱処理温度が150℃未満であると、サー
ミスタ素体の表面層、即ち立方晶スピネル型結晶相の厚
さが10μm未満になり、この表面層に端子電極を焼付
けたときの引張応力が依然として残留する。一方、熱処
理温度が350℃を超えると、立方晶スピネル型結晶相
の厚さが50μmを超え、内部層の正方晶スピネル型結
晶相の厚さが減少して結晶構造のバランスが崩れ、強度
低下がみられるため好ましくない。本発明の遷移金属酸
化物を構成する遷移金属元素としては、Ti,V,C
r,Mn,Co,Ni,Cu等の周期率表のIIIA〜VII
A族、VIII族及びIB族の元素が挙げられるが、特にM
n,Co,Cuの各酸化物を含むと、機械的強度の改善
がはかられるため、好ましい。この場合の遷移金属酸化
物の組成は、Mnが45モル%以上72.5モル%以
下、Coが0モル%以上15モル%以下、Cuが27.
5モル%以上40モル%以下であることが好ましい。
When the heat treatment temperature is lower than 150 ° C., the surface layer of the thermistor element, that is, the thickness of the cubic spinel type crystal phase becomes less than 10 μm, and the tensile stress when the terminal electrode is baked on this surface layer. It still remains. On the other hand, when the heat treatment temperature exceeds 350 ° C., the thickness of the cubic spinel type crystal phase exceeds 50 μm, the thickness of the tetragonal spinel type crystal phase in the inner layer decreases, the crystal structure balance is lost, and the strength decreases. It is not preferable because it is seen. As the transition metal element constituting the transition metal oxide of the present invention, Ti, V, C
IIIA to VII of the periodic table of r, Mn, Co, Ni, Cu, etc.
The elements of Group A, Group VIII and Group IB are mentioned, but especially M
It is preferable to include each oxide of n, Co, and Cu because the mechanical strength can be improved. In this case, the composition of the transition metal oxide is such that Mn is 45 mol% or more and 72.5 mol% or less, Co is 0 mol% or more and 15 mol% or less, and Cu is 27.
It is preferably 5 mol% or more and 40 mol% or less.

【0007】[0007]

【作用】サーミスタ素体の組成によってはサーミスタ焼
結体の切断によりチップ型サーミスタ素体を得た時点で
は、素体の結晶構造はすべて正方晶スピネル型結晶相を
主結晶相として構成されているが、端子電極を焼付け等
で形成した時に素体表面が酸化され約5μmの立方晶ス
ピネル型結晶相を主結晶相として構成した表面層が生成
する。この時端子電極の焼付けで素体表面に生成した立
方晶スピネル型結晶相は、酸化されていない素体内部の
正方晶スピネル型結晶相よりも熱膨張係数が概して大き
いため、焼付け温度からの冷却過程で素子表面に残留の
引張応力を生じさせる。この引張応力のため、チップ型
サーミスタの抗折強度等の素体の機械的強度を低下させ
る。これらの機械的強度低下は端子電極焼付け時の約5
μmのサーミスタ素体の酸化による表面層生成が原因で
ある。端子電極形成後のサーミスタを150〜350℃
の温度でアニール処理することにより、この表面層の厚
みを10〜50μmに増加させると、上記残留の引張応
力がなくなり、機械的強度が向上する。
[Function] Depending on the composition of the thermistor body, when the chip type thermistor body is obtained by cutting the thermistor sintered body, the crystal structure of the body is composed mainly of the tetragonal spinel type crystal phase. However, when the terminal electrode is formed by baking or the like, the surface of the element body is oxidized to form a surface layer having a cubic spinel type crystal phase of about 5 μm as a main crystal phase. At this time, the cubic spinel-type crystal phase generated on the surface of the element body by baking the terminal electrode has a thermal expansion coefficient generally larger than that of the tetragonal spinel-type crystal phase inside the unoxidized element body. In the process, residual tensile stress is generated on the device surface. This tensile stress reduces the mechanical strength of the element body such as the bending strength of the chip type thermistor. These mechanical strength reductions are about 5 when the terminal electrode is baked.
The cause is the formation of a surface layer by the oxidation of the thermistor body of μm. After the terminal electrode is formed, thermistor is 150-350 ℃
When the thickness of the surface layer is increased to 10 to 50 μm by annealing at the temperature of 1, the residual tensile stress is eliminated and the mechanical strength is improved.

【0008】[0008]

【実施例】次に本発明を実施例により説明する。本発明
はこれらの実施例により制限されない。 <実施例1>まず、市販の炭酸マンガン、炭酸コバル
ト、酸化銅を出発原料として、その金属原子比がMn:
Co:Cu=5:1:4となるように秤量し、ボールミ
ルで16時間混合した後、脱水乾燥した。次にこの混合
物を900℃で2時間仮焼し、再びボールミルで混合し
て脱水乾燥した。その仮焼後の原料に対して、ポリビニ
ルアルコール1重量%を加え、金型を用いて加圧成形し
て50mmφ×10mmの円柱状ブロックを作製した。
このブロックを1000℃で5時間焼成して焼結体を得
た。この焼結体をダイヤモンドブレードを用いて切断
し、長さ1.9mm、幅1.2mm、厚さ0.65mm
のサーミスタ素体を得た。この状態のサーミスタ素体を
試料Aとした。
EXAMPLES Next, the present invention will be described with reference to examples. The invention is not limited by these examples. Example 1 First, commercially available manganese carbonate, cobalt carbonate, and copper oxide were used as starting materials, and their metal atomic ratio was Mn:
It was weighed so that Co: Cu = 5: 1: 4, mixed with a ball mill for 16 hours, and then dehydrated and dried. Next, this mixture was calcined at 900 ° C. for 2 hours, mixed again in a ball mill and dehydrated and dried. 1% by weight of polyvinyl alcohol was added to the raw material after the calcination, and pressure molding was performed using a mold to produce a columnar block of 50 mmφ × 10 mm.
This block was fired at 1000 ° C. for 5 hours to obtain a sintered body. This sintered body was cut using a diamond blade, and the length was 1.9 mm, the width was 1.2 mm, and the thickness was 0.65 mm.
I got the thermistor body. The thermistor body in this state was used as sample A.

【0009】このサーミスタ素体に銀ペーストを塗布乾
燥させた後、空気中で800℃で10分間焼成して端子
電極を焼付けた。これにより得られたチップ型サーミス
タを試料Bとした。端子電極2の焼付けを行った後、空
気中で150℃,200℃,250℃,300℃,35
0℃,400℃の6段階の各温度で、24時間、それぞ
れアニール処理(熱処理)を行った。これらの熱処理し
たものを温度の順に試料C,D,E,F,G,Hとし
た。
After the silver paste was applied to the thermistor element and dried, the terminal electrode was baked by baking in air at 800 ° C. for 10 minutes. The chip type thermistor thus obtained was designated as Sample B. After baking the terminal electrode 2, in the air, 150 ° C, 200 ° C, 250 ° C, 300 ° C, 35 ° C.
Annealing treatment (heat treatment) was performed for 24 hours at each of 6 stages of temperature of 0 ° C. and 400 ° C. These heat-treated products were used as samples C, D, E, F, G and H in order of temperature.

【0010】得られた試料A〜Hのサーミスタ素体につ
いて、その表面と内部の各結晶構造を調べ、表面層の厚
さを測定した。具体的には、最初に素体表面の結晶構造
をX線回折により調べ、次いで素体表面を研磨して再び
X線回折により調べ、結晶構造が変化しはじめたときの
試料の厚さを表面層の厚さとしてマイクロメータで測定
した。その結果を表1に示す。 (以下、本頁余白)
With respect to the thermistor bodies of the obtained samples A to H, the respective crystal structures on the surface and inside were examined, and the thickness of the surface layer was measured. Specifically, first the crystal structure of the surface of the element body is examined by X-ray diffraction, then the surface of the element body is polished and examined again by X-ray diffraction, and the thickness of the sample when the crystal structure starts to change is measured. The layer thickness was measured with a micrometer. The results are shown in Table 1. (Hereafter, margins on this page)

【0011】[0011]

【表1】 [Table 1]

【0012】また得られた試料A〜Hのサーミスタ素体
について、抗折強度試験を行った。即ち、各試料の長さ
方向の両端を間隔1.2mmで配置させた二つの台にそ
れぞれ載せ、二つの台の中間の位置に押し下げ速度20
mm/分で力を加え、サーミスタ素体が破壊した時に加
えられた荷重を測定した。その結果を表2に示す。表2
の破壊荷重の値は各試料の20個の平均値を示す。
A bending strength test was conducted on the obtained thermistor bodies of Samples A to H. That is, both ends of each sample in the length direction are placed on two tables arranged with a gap of 1.2 mm, and the sample is pushed down to an intermediate position between the two tables at a speed of 20.
A force was applied at mm / min, and the load applied when the thermistor element body was broken was measured. The results are shown in Table 2. Table 2
The value of the breaking load of is the average value of 20 pieces of each sample.

【0013】[0013]

【表2】 [Table 2]

【0014】端子電極焼付け前の試料Aと比較して、端
子電極焼付け後の試料Bは著しい破壊荷重(強度)の低
下が認められる。これに対し熱処理した試料C〜Hのう
ち、試料Hは試料Bより強度低下が甚だしかったが、試
料C〜Gでは強度の改善効果が認められた。表1から試
料C〜Gは熱処理温度が150℃〜350℃であって、
表面層が立方晶スピネル型結晶相を主結晶相として構成
され、表面層の厚さが約10〜40μmであった。
Compared with the sample A before baking the terminal electrode, the sample B after baking the terminal electrode shows a remarkable decrease in breaking load (strength). On the other hand, among the heat-treated Samples C to H, the strength of the sample H was much lower than that of the sample B, but the strength improvement effect was recognized in the samples C to G. From Table 1, Samples C to G have a heat treatment temperature of 150 ° C to 350 ° C,
The surface layer was constituted with the cubic spinel type crystal phase as the main crystal phase, and the thickness of the surface layer was about 10 to 40 μm.

【0015】<実施例2>出発原料の金属原子比をM
n:Co:Cu=6:1:3となるように秤量した以外
は、実施例1と同じ方法で試料を作製し、同様の試験を
実施した。得られた試料の素体表面と内部の各結晶構造
及び表面層の厚さを表3に、破壊荷重の測定結果を表4
にそれぞれ示す。 (以下、本頁余白)
<Example 2> The metal atom ratio of the starting material is M
A sample was prepared in the same manner as in Example 1 except that the weight was adjusted to n: Co: Cu = 6: 1: 3, and the same test was performed. Table 3 shows the crystal structures and surface layer thicknesses of the surface and inside of the obtained sample body, and Table 4 shows the results of measurement of the fracture load.
Are shown respectively. (Hereafter, margins on this page)

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】実施例2においても、実施例1と同様に試
料C〜Gにおいて強度の改善効果が認められた。表3か
ら試料C〜Gは熱処理温度が150℃〜350℃であっ
て、表面層が立方晶スピネル型結晶相を主結晶相として
構成され、表面層の厚さが約10〜50μmであった。
Also in Example 2, similarly to Example 1, in Samples C to G, the effect of improving the strength was recognized. From Table 3, in Samples C to G, the heat treatment temperature was 150 ° C. to 350 ° C., the surface layer was constituted with the cubic spinel type crystal phase as the main crystal phase, and the thickness of the surface layer was about 10 to 50 μm. ..

【0019】[0019]

【発明の効果】以上説明したように、本発明では、端子
電極を形成した後にサーミスタ素体を所定の温度で熱処
理することにより、サーミスタ素体表面に立方晶スピネ
ル型結晶相を主結晶相として構成した表面層を10〜5
0μmの厚さで有し、かつ正方晶スピネル型結晶相を主
結晶相として構成した内部層を有するようになり、強度
低下が改善されたチップ型サーミスタが得られる。この
結果、サーミスタ素体の設計の自由度が高まって、その
設計が容易になり、また強度低下が改善されるため、基
板実装時に破壊が生ずるおそれが少なくなり、その取扱
いが容易で、実装の自動化を簡単に実現することができ
る。
As described above, in the present invention, after the terminal electrode is formed, the thermistor body is heat-treated at a predetermined temperature so that the cubic spinel type crystal phase is formed on the surface of the thermistor body as the main crystal phase. 10-5 composed surface layer
A chip-type thermistor having a thickness of 0 μm and having an inner layer composed of a tetragonal spinel-type crystal phase as a main crystal phase can be obtained. As a result, the degree of freedom in the design of the thermistor body is increased, the design is facilitated, and the reduction in strength is improved, so there is less risk of destruction during board mounting, its handling is easy, and mounting is easy. Automation can be easily realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】チップ型サーミスタの断面図。FIG. 1 is a sectional view of a chip type thermistor.

【符号の説明】[Explanation of symbols]

1 サーミスタ素体 2 端子電極 1 Thermistor body 2 Terminal electrode

フロントページの続き (72)発明者 大井 幸二 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内 (72)発明者 越村 正己 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内Front page continuation (72) Inventor Koji Oi 2270 Yokoze, Yokose-cho, Chichibu-gun, Saitama Sanryo Materials Co., Ltd. Ceramics Research Institute Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1種又は2種以上の遷移金属酸化物を主
成分として含み前記遷移金属酸化物はMnの酸化物を主
成分とするチップ状サーミスタ素体(1)と、前記サーミ
スタ素体(1)の両端に形成される端子電極(2)とを備え、 前記サーミスタ素体(1)の表面層が主として立方晶スピ
ネル型結晶相からなり、かつ前記サーミスタ素体(1)の
内部層が主として正方晶スピネル型結晶相からなるチッ
プ型サーミスタにおいて、 前記サーミスタ素体(1)の表面層の厚さが10〜50μ
mであることを特徴とするチップ型サーミスタ。
1. A chip-like thermistor body (1) containing one or more kinds of transition metal oxides as a main component and the transition metal oxide containing an oxide of Mn as a main component, and the thermistor body. (1) provided with terminal electrodes (2) formed at both ends, the surface layer of the thermistor element body (1) is mainly composed of a cubic spinel type crystal phase, and the inner layer of the thermistor element body (1) In a chip type thermistor mainly composed of a tetragonal spinel type crystal phase, wherein the surface layer of the thermistor body (1) has a thickness of 10 to 50 μm.
m is a chip thermistor.
【請求項2】 遷移金属酸化物がMnの酸化物に加えて
Co及びCuの各酸化物を含み、前記遷移金属の組成は
Mnが45モル%以上72.5モル%以下、Coが0モ
ル%以上15モル%以下、Cuが27.5モル%以上4
0モル%以下である請求項1記載のチップ型サーミス
タ。
2. The transition metal oxide contains oxides of Co and Cu in addition to the oxide of Mn, and the composition of the transition metal is such that Mn is 45 mol% or more and 72.5 mol% or less, and Co is 0 mol. % To 15 mol% and Cu, 27.5 mol% to 4 Cu
The chip type thermistor according to claim 1, wherein the content is 0 mol% or less.
【請求項3】 Mnの酸化物を主成分とする1種又は2
種以上の遷移金属酸化物からチップ状成形体を作製し、
前記成形体を焼成してサーミスタ素体(1)を得た後、前
記サーミスタ素体(1)の両端に端子電極(2)を焼付けるチ
ップ型サーミスタの製造方法において、 前記端子電極(2)を焼付けた後に空気中150〜350
℃の温度範囲で熱処理することを特徴とするチップ型サ
ーミスタの製造方法。
3. One or two containing Mn oxide as a main component.
A chip-shaped molded body is produced from at least one kind of transition metal oxide,
After obtaining the thermistor body (1) by firing the molded body, in a method for manufacturing a chip-type thermistor in which terminal electrodes (2) are baked on both ends of the thermistor body (1), the terminal electrodes (2) 150-350 in air after baking
A method for manufacturing a chip type thermistor, characterized by performing heat treatment in a temperature range of ° C.
JP4106061A 1992-03-31 1992-03-31 Chip-type thermistor and manufacture thereof Withdrawn JPH05283205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4106061A JPH05283205A (en) 1992-03-31 1992-03-31 Chip-type thermistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4106061A JPH05283205A (en) 1992-03-31 1992-03-31 Chip-type thermistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05283205A true JPH05283205A (en) 1993-10-29

Family

ID=14424105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4106061A Withdrawn JPH05283205A (en) 1992-03-31 1992-03-31 Chip-type thermistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05283205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018455A1 (en) * 1993-12-27 1995-07-06 Komastsu Ltd. Sintered thermistor body and thermistor device using it
EP1058276A2 (en) * 1999-06-03 2000-12-06 Matsushita Electric Industrial Co., Ltd. Thin film thermistor element and method for the fabrication of thin film thermistor element
JP2014195014A (en) * 2013-03-29 2014-10-09 Mitsubishi Materials Corp Metal oxide material for thermistor use, method for manufacturing the same, and thermistor device
WO2017038189A1 (en) * 2015-09-03 2017-03-09 株式会社村田製作所 Method for manufacturing ntc thermistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018455A1 (en) * 1993-12-27 1995-07-06 Komastsu Ltd. Sintered thermistor body and thermistor device using it
GB2300520A (en) * 1993-12-27 1996-11-06 Komatsu Mfg Co Ltd Thermistor
EP1058276A2 (en) * 1999-06-03 2000-12-06 Matsushita Electric Industrial Co., Ltd. Thin film thermistor element and method for the fabrication of thin film thermistor element
EP1058276A3 (en) * 1999-06-03 2004-01-28 Matsushita Electric Industrial Co., Ltd. Thin film thermistor element and method for the fabrication of thin film thermistor element
JP2014195014A (en) * 2013-03-29 2014-10-09 Mitsubishi Materials Corp Metal oxide material for thermistor use, method for manufacturing the same, and thermistor device
WO2017038189A1 (en) * 2015-09-03 2017-03-09 株式会社村田製作所 Method for manufacturing ntc thermistor

Similar Documents

Publication Publication Date Title
EP0534378B1 (en) Non-reducible dielectric ceramic composition
JP3287149B2 (en) Alumina ceramics
US7323073B2 (en) Piezoelectric porcelain composition, laminated piezoelectric device therefrom and process for producing the same
WO2011086850A1 (en) Semiconductor ceramic composition for ntc thermistor and ntc thermistor
JP3686382B2 (en) Piezoelectric ceramic composition and piezoelectric device using the same
JPS6022835B2 (en) Method of manufacturing piezoelectric porcelain
JP3771760B2 (en) Piezoelectric ceramic composition
JPH05283205A (en) Chip-type thermistor and manufacture thereof
JP3771756B2 (en) Piezoelectric ceramic composition
JP2976244B2 (en) Method for manufacturing NTC thermistor element
JP2008094706A (en) Piezoelectric ceramic composition and rezonator
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JPH07235405A (en) Thermistor sintered body
JP3830298B2 (en) Piezoelectric ceramic composition
JP2734686B2 (en) Oxide semiconductor for thermistor
JP3559313B2 (en) Colored alumina sintered body
JP4003920B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic sintered body and electronic component
JP4492234B2 (en) Thermistor composition and thermistor element
JP3771762B2 (en) Piezoelectric ceramic composition
JP4492235B2 (en) Thermistor composition and thermistor element
JP2987762B2 (en) Ferroelectric porcelain composition
JP2658581B2 (en) Oxide semiconductor composition
JPH04180602A (en) Manufacture of chip type thermistor
JP4798898B2 (en) Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element
KR100462871B1 (en) Piezoelectric Ceramic Composition Having Excellent Heat Resistance and Stability in Frequency Change and Piezoelectric Device Using the Same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608