Nothing Special   »   [go: up one dir, main page]

JPH0528263B2 - - Google Patents

Info

Publication number
JPH0528263B2
JPH0528263B2 JP60257672A JP25767285A JPH0528263B2 JP H0528263 B2 JPH0528263 B2 JP H0528263B2 JP 60257672 A JP60257672 A JP 60257672A JP 25767285 A JP25767285 A JP 25767285A JP H0528263 B2 JPH0528263 B2 JP H0528263B2
Authority
JP
Japan
Prior art keywords
composition
polyethylene
lldpe
polyisobutylene
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60257672A
Other languages
Japanese (ja)
Other versions
JPS62119245A (en
Inventor
Kunio Iwanami
Tadashi Sezume
Masaaki Isoi
Noboru Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP25767285A priority Critical patent/JPS62119245A/en
Publication of JPS62119245A publication Critical patent/JPS62119245A/en
Publication of JPH0528263B2 publication Critical patent/JPH0528263B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、ポリエチレン組成物に関する。 従来の技術 従来、金属の耐食性、外観、食品衛生上の改善
等のために金属管の内外面、金属板、電線ケーブ
ル、鋼線等にポリエチレンを被覆したり、あるい
は各種合成樹脂のもつ欠点を改善するためにポリ
エチレンとの貼り合せによる複合物が知られてい
る。この場合のポリエチレンとしては、金属及び
各種合成樹脂との接着性を改良するために、ポリ
エチレンに不飽和カルボン酸もしくはその誘導体
で変性して接着性を付与した変性ポリエチレンと
合成ゴムとの組成物が知られている。 例えば、不飽和カルボン酸もしくはその誘導体
をグラフトした特定のメルトインデツクス比の実
質的に中低圧法エチレン重合体の変性エチレン重
合体と炭化水素系合成ゴムとからなる組成物(特
開昭56−120750号公報)、エポキシ樹脂系接着剤
を塗布して加熱処理した金属体に、特定のエチレ
ン・α−オレフインランダム共重合体を添加した
不飽和カルボン酸またはその無水物で変性したポ
リエチレンを加熱接着する方法(特開昭58−
168628号公報)、金属箔と変性ポリエチレン及び
ポリイソブチレンとからなるシートを介して貼合
せた積層板(特開昭56−93541号公報)等が提案
されている。一方、金属及び熱可塑性樹脂とポリ
エチレンとの接着性およびその耐久性を改良する
ものとして、特定の選状低密度ポリエチレンを不
飽和カルボン酸もしくはその誘導体で変性したポ
リエチレンと合成ゴムとの組成物(特開昭57−
165413号公報)及び特定の線状低密度ポリエチレ
ンと合成ゴムとの混合物に不飽和カルボン酸もし
くはその誘導体を反応させて変性した組成物(特
開昭57−165469号公報)も提案されている。 発明が解決しようとする問題点 上記の提案の組成物および方法における金属及
び熱可塑性樹脂等の被着体とポリエチレンとの接
着強度は改良されているものの、被着体の低い予
熱温度における接着性については十分ではなかつ
た。すなわち、変性ポリエチレンまたはその組成
物は、その樹脂の融点以上で被着体にぬれないと
十分な被着性が発現しない。そのため、通常は被
着体を樹脂の溶融温度近くに予熱しておき、その
表面に溶融樹脂を被覆する。しかしながら、金属
体を複数回にわたつて被覆する場合、例えば鋼管
の内面及び外面を被覆する場合は、先に内面を被
覆した鋼管を樹脂の融点近くに予熱すると、既に
被覆した面が軟化して傷付や剥離したりするため
に、鋼管の予熱温度をより低下させても接着が可
能な樹脂が必要であつた。また、被着体の予熱温
度を低くできない場合には、被覆後の冷却温度を
遅くすることにより被覆するため、ライン速度
(生産速度)が低下するという問題があつた。 この被着体の予熱温度を従来より低下させた場
合においても十分な接着性を有するものとして、
本発明者らは先に、特定のメルトインデツクスを
有する線状低密度ポリエチレンの変性物とポリイ
ソブチレンからなる変性ポリエチレン組成物(特
願昭60−99621号)を提案した。 しかしながら、この組成物は、その予熱温度を
低下させた場合においても十分に接触性を有する
ものの、接着させた冷却後の機械的強度、例えば
鋼管被覆に用いた場合に、管端のネジ切りあるい
は配管時のパイプレンチ締めにより受けるトルク
に対する実用上の強度に改良の余地が残されてい
た。 本発明は、上記のような問題点を解消し、従来
のものに比べて被着体の予熱温度をより低下させ
た場合においても優れた接着性を有し、かつ実用
上の機械的強度を有するポリエチレン組成物を提
供することを目的とする。 問題点を解決するための手段 本発明者らは、上記の問題点を解消するために
鋭意検討を行つた結果、特定範囲のメルトインデ
ツクス(以下MIという)の線状低密度ポリエチ
レン変性物、低MI及び高MI2種の線状低密度ポ
リエチレン及びポリイソプチレン及び/又はその
変性物とからなる組成物が本発明の目的を達成す
ることを見出し、本発明を完成した。 すなわち、本発明は、(A)MI7〜50g/10分の線
状低密度ポリエチレンに、不飽和カルボン酸もし
くはその誘導体を反応させてなる変性ポリエチレ
ン10〜85重量%、(B)MI0.1〜5g/10分の線状低
密度ポリエチレン5〜80重量%、(C)MI12〜50
g/10分の線状低密度ポリエチレン5〜80重量%
及び(D)ポリイソブチレン及び/又は該ポリイソブ
チレンに、不飽和カルボン酸もしくはその誘導体
を反応させてなる変性ポリイソブチレン5〜50重
量%とからなるポリエチレン組成物を要旨とす
る。 本発明において用いる(A)MI7〜50g/10分の線
状低密度ポリエチレン(以下(A)LLDPEという)
は、クロム系またはチーグラー系の触媒の存在下
に、低圧の気相法、溶液法または液相法でエチレ
ンとα−オレフイン、例えばブテン−1、ペンテ
ン−1、ヘキセン−1、4−メチルペンテン−
1、ヘプテン−1、オクテン−1等から選択され
るものと共重合させて製造したもので、MIが7
〜50g/10分、望ましくは8〜20g/10分のもの
である。ここでα−オレフインは一般には3〜20
重量%の割合で含まれる。これら(A)LLDPEのう
ちでは、低圧気相法で重合した密度が0.905〜
0.950g/cm3、重量平均分子量w/数平均分子
量nが3〜12のものが望ましい。上記(A)
LLDPEのMIが7g/10分未満では被着体の低い
予熱温度における接着性が不十分であり、一方50
g/10分を越える場合は樹脂の強度が不十分とな
る。また、線状低密度ポリエチレン以外のポリエ
チレンでは、被着体との接着性及びその耐久性が
十分でない。 本発明において用いる(B)MI0.1〜5g/10分の
線状低密度ポリエチレン(以下(B)LLDPEという)
は、上記の(A)LLDPEと同様に製造されるもので、
特にMIが0.1〜5g/10分、のものである。低
MIの(B)LLDPEの配合は、接着性及びその耐久性
を損うことなく機械的強度を向上させることがで
きる。 本発明において用いる(C)MI12〜50g/10分の
線状低密度ポリエチレン(以下(C)LLDPEという)
は、上記(A)LLDPEと同様に製造されるもので、
特にMIが12〜50g/10分のものである。高MIの
(C)LLDPEの配合は、被着体の低い予熱温度にお
ける接着性を向上させることができる。 本発明で用いるポリイソブチレンは、市販のも
のが使用できるが、ムーニー粘度(ML1+4、100
℃、JIS K−6300 以下同じ)が10〜150で、結
晶化度(X線回折法)が30%以下のものが好まし
い。また、ポリイソブチレン以外の合成ゴムでは
被着体との接着性が十分でない。 本発明に用いられる不飽和カルボン酸として
は、例えばアクリル酸、メタクリル酸、マレイン
酸、フマル酸、イタコン酸、シトラコン酸、エン
ドービーシクロ〔2,2,1〕−1,4,5,6,
7,7−ヘキサクロロ−5−ヘプテン−2,3−
ジカルボン酸、エンドービーシクロ−〔2,2,
1〕−5−ヘプテン−2,3−ジカルボン酸、シ
ス−4−シクロヘキセン−1,2−ジカルボン酸
等があげられる。又、不飽和カルボン酸の誘導体
としては、酸無水物、エステルがあげられ、例え
ば無水マレイン酸、無水シトラコン酸、エンドー
ビーシクロ−〔2,2,1〕−1,4,5,6,
7,7−ヘキサクロロ−5−ヘプテン−2,3−
無水ジカルボン酸、エンドービーシクロ−〔2,
2,1〕−5−ヘプテン−2,3−無水ジカルボ
ン酸、シス−4−シクロヘキセン−1,2−無水
ジカルボン酸、アクリル酸メチル、メタクリル酸
メチル、アクリル酸エチル、メタクリル酸エチ
ル、アクリル酸ブチル、メタクリル酸ブチル、マ
レイン酸エステル(モノエステル、ジエステル)
等があげられる。 (A)LLDPE又はポリイソブチレンに不飽和カル
ボン酸又はその誘導体を反応させる方法は公知の
各種の方法を採用できる。例えば、(A)LLDPE又
はポリイソブチレンと不飽和カルボン酸又はその
誘導体を溶媒の存在下または不存在下で有機過酸
化物の反応開始剤、例えば、ジターシヤリーブチ
ルパーオキサイド、ジクミルパーオキサイド、ベ
ンゾイルパーオキサイド、2,5−ジメチル−
2,5−ジ−(ターシヤリーブチルペルオキシ)−
ヘキシン−3、2,5−ジメチル−2,5−ジ−
(ターシヤリーブチルペルオキシ)−ヘキサン等を
添加し、ヘンシエルミキサー、リボンブレンダー
等の混合機で予め混合し、この混合をバンバリー
ミキサー、単軸又は多軸の押出機でポリエチレン
又はポリイソブチレンの融点以上280℃以下の温
度で溶融混練する。又は、(A)LLDPE又はポリイ
ソブチレンを溶剤中に溶解し、その溶液中に不飽
和カルボン酸又はその誘導体と反応開始剤を添加
して反応させてもよい。 ここで(A)LLDPE又はポリイソブチレンに付加
する不飽和カルボン酸又はその誘導体の量は0.01
〜3重量%が好ましい。従つて、不飽和カルボン
酸又はその誘導体及び有機過酸化物の反応開始剤
の添加量は、未変性LLDPE又はポリイソブチレ
ンの100重量部に対して不飽和カルボン酸又はそ
の誘導体0.05〜5重量部、反応開始剤0.001〜0.5
重量部が好ましい。なお、得られる変性ポリエチ
レン又は変性ポリイソブチレン中の不飽和カルボ
ン酸又はその誘導体の含有量が0.01重量%未満で
は本発明効果の強靭な接着力が得られず、一方3
重量%を越える場合は接着力の増大はみられず、
ゲル状物の発生や着色等が増加し経済的にも不利
である。 次に、本発明のポリエチレン組成物は、(A)
LLDPEの変性ポリエチレン10〜85重量%、望ま
しくは20〜50重量%、(B)LLDPE5〜80重量%、望
ましくは5〜30重量%、(C)LLDPE5〜80重量%、
望ましくは10〜50重量%、及びポリイソブチレン
及び/又は変性ポリイソブチレン5〜50重量%、
望ましくは15〜40重量%とからなる。変性ポリエ
チレン、(C)LLDPE、及び変性ポリイソブチレン
及び/又は変性ポリイソブチレン含有量が上記範
囲を外れる場合は、予熱温度の低い被着体に対す
る接着性が不十分である。又、(B)LLDPEの含有
量が5重量%未満では機械的強度が不十分で、一
方50重量%を越えると接着性が不十分となり好ま
しくない。 本発明の組成物の製造は、変性LLDPE(B)
LLDPE、(C)LLDPEとポリイソブチレン及び/又
は変性ポリイソブチレンとを前記の配合割合で混
合することによつて得られる。上記の各成分を均
等に分散させて好物性をもつた組成物にするに
は、例ば予めヘンシエルミキサー、リボンブレン
ダー、等で予備混合し、この混合物をバンバリー
ミキサー、ロール、押出機等で組成物の融点以上
から280℃以下の温度で溶融混練する方法が望ま
しい。なお、ポリイソブチレンがベール状の場合
は、バンバリーミキサー、ロール等で加熱溶融混
練する方法が望ましい。 また、本発明の組成物は、(A)LLPDEとポリイ
ソブチレンとの前記配合割合の混合物に、不飽和
カルボン酸もしくはその誘導体を反応させたもの
に(B)LLDPE及び(C)LLDPEを配合したものであつ
てもよい。さらには、この変性混合物に、未変性
ポリイソブチレンを前記の配合割合となるように
混合してもよい。 本発明の組成物は、種々の添加剤、例えば、熱
安定剤、紫外線吸収剤、核剤、帯電防止剤、着色
剤等や種々の充填剤、例えば無機充填剤、可塑剤
等を配合することができる。これら添加剤等は、
組成物の調製時に、又は調製後に混合してもよ
い。 次に、本発明のポリエチレン組成物は、金属ま
たは熱可塑性樹脂と好適な積層物を形成すること
ができる。 本発明の変性ポリエチレン組成物を用いた積層
物における金属としては、鉄、アルミニウム、
銅、亜鉛、ニツケル、錫、ステンレス、真ちゆ
う、ブリキ、トタン等で板状、箔、筒状、管状、
線あるいはその他の形状をしたものがあげられ
る。又、熱可塑性樹脂としては、ナイロン6、ナ
イロン66、ナイロン11、ナイロン12、ナイロン6
−10等のポリアミド、ポリエチレン、ポリプロピ
レン、ポリブテン等のオレフインの単独重合体又
はこれらの共重合体等のポリオレフイン、ポリビ
ニルアルコールを部分的にアセタール化した樹脂
(ビニロン)、エチレン−酢酸ビニル共重合体を部
分的に加水分解した樹脂(エバール)、ポリエチ
レンテレフタレートやポリブチレンテレフタレー
ト等のポリエステル、ポリ塩化ビニル等があげら
れるが、特にナイロン、ビニロンが好ましい。 本発明のポリエチレン組成物を用いる積層物
は、本発明の変性ポリエチレン組成物と前記の金
属又は熱可塑性樹脂から選択されるものとを積層
することによつて得られる。 積層物を得る方法は特に限定されるものではな
く、例えばそれぞれをフイルム、シート状として
おき熱圧着する方法、ダイ外部でラミネートする
方法、ダイ内部でラミネート(共押出)する方
法、チユーブ状またはシート状に押出コーテイン
グする方法あるいは粉体塗装する方法等公知の方
法を利用することができる。なお、金属との積層
においては、通常溶剤脱脂、酸洗、シヨツトブラ
スト、リン酸亜鉛処理、リン酸カルシウム等の前
処理が行われ、さらにプライマー処理としてエポ
キシ系樹脂のプライマーを介することにより、よ
り強靭な接着力を有する積層物を得ることができ
る。エポキシ系樹脂のプライマーとしては、一液
性又は二液性の変性エポキシ系樹脂プライマーが
耐熱性あるいは安定性の点から好ましい。 本発明のポリエチレン組成物を用いる積層物の
構造は、本発明の変性ポリエチレン組成物と前記
の金属又は熱可塑性樹脂から選択されるものと積
層する2層構造を基本とするが、必要に応じて
種々の組合せを行うことができる。例えば、変性
ポリエチレン組成物(以下該組成物という)/金
属、該組成物/熱可塑性樹脂、該組成物/金属/
該組成物、金属/該組成物/金属、金属/該組成
物/熱可塑性樹脂、熱可塑性樹脂/該組成物/熱
可塑性樹脂等の組合せで、さらに、これらを組合
せることや他の物質、例えば繊維、紙、木板等を
組合せることもできる。 本発明の該組成物は、上記のように金属又は熱
可塑性樹脂と好適な複合物(被覆、積層等)を形
成するが、特に金属管の被覆に有用であるので、
以下に樹脂被覆金属管の製造例について説明す
る。 基材の金属管は、シヨツトブラスト、グリツド
ブラスト又は酸洗い等の表面処理を行い清浄にす
る。さらにこの上にプライマー処理としてエポキ
シ系接着剤等を塗布することがより強靭な接着力
を有する樹脂層を得るために望ましい。前処理を
施した金属管は、高周波誘導加熱等により所望の
温度、例えば100℃以上、好ましくは110〜150℃
に加熱し、この金属管外面に該組成物を融点以
上、好ましくは200〜230℃の温度でチユーブ状に
押出し又はシート状に巻き付けて被覆する。被覆
の厚さは目的により異なるが通常は0.3mm程度で
ある。さらに、その上に外装材、例えばポリオレ
フイン、好ましくは高密度ポリエチレンを融点以
上、好ましくは200〜230℃の温度でチユーブ状に
押出し又はシート状に巻き付け被覆後、直ちに水
冷する。外装材の厚さは通常2mm程度である。な
お、外装材の被覆は用途に応じて適宜省略しても
よい。 また、上記の金属管被覆を金属管の内外両面に
ついて行う場合は、前処理を施した金属管を100
〜150℃に加熱し、その内面に該組成物及びポリ
オレフイン、好ましくはポリエチレンの順に粉体
塗装を施して樹脂層を形成させる。次いで、この
内面被覆金属管を、100℃〜内面被覆樹脂の融点
未満の温度に加熱し、この金属管外面に上記と同
様に該組成物及びポリオレフインを被覆する。 発明の効果 本発明の該組成物は、既に提案されている変性
ポリエチレン組成物に比べ、金属及び熱可塑性樹
脂等の被着体の予熱温度をより低下させた場合か
ら高い温度に到るまで優れた接着力を示す。この
ため樹脂の多層被覆において、既被覆層の軟化や
溶融による不都合がなく、また被覆後の冷却速度
を遅くする必要がないために生産速度を低下させ
ることがない。 又、本発明の組成物は、従来のものに比べて接
着後の機械的強度が向上するため、例えば樹脂被
覆鋼管において耐ネジ切り性、耐パイプレンチト
ルク性等の実用上に十分な強度を有する。 本発明の該組成物は、上記のような優れた特性
により、金属や熱可塑性樹脂との複合化、特に多
層の複合化に好適である。複合化の例としては、
鋼管や鋳鉄管の内外面、鋼板、金属箔、電線ケー
ブル、鋼線等の被覆あるいはタンクのライニン
グ、又は各種熱可塑性樹脂との多層のフイルム、
シート、ボトル、容器等の積層物があげられる。 実施例 次に、実施例をあげて本発明を詳細に説明す
る。なお、実施例における部および%はすべて重
量基準で、試験方法は次の通りである。 (1) MI ASTM D−1238 E(190℃、2160g) (2) 剥離強度 酸洗処理鋼板(SS−41)100×100×0.3mmを
電解脱脂した後、加熱板上で所定温度に予熱
し、この上に本発明の該組成物のシート(厚1
mm)/高密度ポリエチレン(厚さ3mm)のシー
トを220℃に加熱し溶融して融着し、10秒間放
置後に流水中に浸漬して冷却して試験片を作成
した。試験片の樹脂層を巾10mmに切断して一部
剥離してつかみ代とし、インストロン引張試験
機を用い剥離速度50mm/分で90°剥離強度を23
℃及び50℃で測定した。 (3) 引張弾性率 JIS K 7113 (クロスヘツド速度0.5cm/
分) (4) セン断接着強度 JIS K 6850 (5) ネジ切り試験 日本水道協会規格JWW AK 132−1982(水
道用ポリエチレン粉体ライニング鋼管)に記載
のSGP−PCのパイプマシンを使用してのネジ
の切り方法で、雰囲気温度を変えて測定し、ネ
ジ切り可能な最高温度を測定した。 (6) パイプレンチ締め付けトルク試験 日本水道鋼管協会規格WS−033−84(水道用
ポリエチレン粉体ライニング鋼管・外面一層ポ
リエチレン被覆)に記載の万力、パイプレンチ
を使用し、万力で固定した被覆鋼管をパイプレ
ンチで締め、トルクをかけ、樹脂層が変形する
時のトルクを測定した。雰囲気温度は50℃とし
た。 実施例1〜9、比較例1〜4 MIの異なる各LLDPE(コモノマー:ブテン−
1)100部に無水マレイン酸0.6部及び2,5−ジ
メチル−2,5−ジ−(ターシヤリーブチルペル
オキシ)−ヘキシン−3 0.025部を配合し、ヘン
シエルミキサーで混合し、この混合物を65mmφ−
軸押出機に供給し設定温度230℃スクリユー回転
数60rpmで溶融混練して、無水マレイン酸変性
LLDPEを得た。この変性LLDPEとポリイソブチ
レン〔エツソ化学社製、ビスタネツクスMML−
80(商品名)〕、MI0.1〜5g/10分未変性LLDPE
(B)およびMI 12〜50g/10分の未変性LLDPE(C)
を表−1に示す割合で配合し、230℃に加熱溶融
混練して組成物を得た。 得られた各組成物の物性、および各組成物を用
いて各予熱温度の鋼板との積層物を作成して剥離
強度、セン断接着強度を測定し、その結果を表−
1に示した。 比較のために、MI 5g/10分以下のLLDPE
変性物を用いた場合、ポリイソブチレンに代りエ
チレンブテンゴム〔三井石油化学社製、A−4085
(商品名)、EBR〕を用いた場合、及び未変性
LLDPE(B)を加えない場合についても実施例と同
様にして組成物の調製及び積層物を作成して各物
性を測定し、その結果を表−1に併記した。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to polyethylene compositions. Conventional technology In the past, polyethylene was coated on the inner and outer surfaces of metal pipes, metal plates, electric cables, steel wires, etc. to improve the corrosion resistance, appearance, and food hygiene of metals, or to overcome the drawbacks of various synthetic resins. In order to improve this, composites made by laminating polyethylene are known. In this case, the polyethylene is a composition of modified polyethylene, which is obtained by modifying polyethylene with an unsaturated carboxylic acid or a derivative thereof to give adhesive properties, and synthetic rubber in order to improve its adhesion to metals and various synthetic resins. Are known. For example, a composition consisting of a hydrocarbon synthetic rubber and a modified ethylene polymer that is substantially a medium-low pressure ethylene polymer having a specific melt index ratio grafted with an unsaturated carboxylic acid or a derivative thereof No. 120750), polyethylene modified with an unsaturated carboxylic acid or its anhydride added with a specific ethylene/α-olefin random copolymer is heat-bonded to a metal body coated with an epoxy resin adhesive and heat-treated. How to
168628), a laminate in which metal foil is laminated with sheets of modified polyethylene and polyisobutylene interposed therebetween (Japanese Unexamined Patent Publication No. 56-93541), and the like have been proposed. On the other hand, in order to improve the adhesion between metals and thermoplastic resins and polyethylene and their durability, compositions of polyethylene and synthetic rubber obtained by modifying specific selected low-density polyethylene with unsaturated carboxylic acids or derivatives thereof ( Unexamined Japanese Patent Publication 1987-
165413) and a composition in which a mixture of specific linear low-density polyethylene and synthetic rubber is modified by reacting an unsaturated carboxylic acid or a derivative thereof (Japanese Patent Application Laid-open No. 165469/1982) has also been proposed. Problems to be Solved by the Invention Although the composition and method proposed above improve the adhesive strength between polyethylene and adherends such as metals and thermoplastic resins, the adhesive strength at low preheating temperatures of the adherend is There wasn't enough about that. That is, the modified polyethylene or its composition will not exhibit sufficient adhesion unless it wets the adherend at a temperature higher than the melting point of the resin. Therefore, the adherend is usually preheated to a temperature close to the melting temperature of the resin, and its surface is coated with the molten resin. However, when coating a metal object multiple times, for example when coating the inner and outer surfaces of a steel pipe, preheating the steel pipe whose inner surface has been coated first to near the melting point of the resin will soften the already coated surface. Because of the risk of damage and peeling, a resin was needed that could be bonded even if the preheating temperature of the steel pipe was lowered. Further, if the preheating temperature of the adherend cannot be lowered, the cooling temperature after coating is lowered to coat the adherend, resulting in a problem that the line speed (production speed) decreases. As having sufficient adhesion even when the preheating temperature of the adherend is lower than before,
The present inventors previously proposed a modified polyethylene composition (Japanese Patent Application No. 1982-99621) consisting of a modified linear low density polyethylene having a specific melt index and polyisobutylene. However, although this composition has sufficient contactability even when the preheating temperature is lowered, it has poor mechanical strength after cooling, such as threading of pipe ends or There remained room for improvement in the practical strength against the torque applied by tightening with a pipe wrench during piping. The present invention solves the above-mentioned problems, has excellent adhesion even when the preheating temperature of the adherend is lowered compared to conventional products, and has high practical mechanical strength. The object of the present invention is to provide a polyethylene composition having the following properties. Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors found that a modified linear low-density polyethylene with a specific range of melt index (hereinafter referred to as MI), The present invention was completed based on the discovery that a composition consisting of two types of linear low-density polyethylene, one with low MI and one with high MI, and polyisoptylene and/or a modified product thereof can achieve the object of the present invention. That is, the present invention provides (A) 10-85% by weight of modified polyethylene obtained by reacting linear low-density polyethylene with an MI of 7-50 g/10 min with an unsaturated carboxylic acid or a derivative thereof, (B) an MI of 0.1-85% by weight. 5g/10min linear low density polyethylene 5-80% by weight, (C) MI12-50
g/10 min linear low density polyethylene 5-80% by weight
and (D) a polyethylene composition comprising 5 to 50% by weight of polyisobutylene and/or a modified polyisobutylene obtained by reacting the polyisobutylene with an unsaturated carboxylic acid or a derivative thereof. Linear low-density polyethylene (hereinafter referred to as (A) LLDPE) used in the present invention (A) MI7 to 50 g/10 minutes
is a method of converting ethylene and α-olefins, such as butene-1, pentene-1, hexene-1, and 4-methylpentene, in the presence of a chromium-based or Ziegler-based catalyst by a low-pressure gas-phase, solution or liquid-phase method. −
1, manufactured by copolymerizing with heptene-1, octene-1, etc., and has an MI of 7.
-50 g/10 minutes, preferably 8-20 g/10 minutes. Here, α-olefin is generally 3 to 20
Contained in % by weight. Among these (A) LLDPEs, the density of polymerized by low pressure gas phase method is 0.905~
It is desirable that the weight average molecular weight w/number average molecular weight n be 0.950 g/cm 3 and 3 to 12. Above (A)
When the MI of LLDPE is less than 7 g/10 min, adhesion is insufficient at low preheating temperature of the adherend;
If it exceeds g/10 minutes, the strength of the resin will be insufficient. Furthermore, polyethylenes other than linear low-density polyethylene do not have sufficient adhesion to the adherend and their durability. Linear low-density polyethylene (hereinafter referred to as (B) LLDPE) used in the present invention (B)MI0.1-5g/10min
is manufactured in the same way as (A)LLDPE above,
In particular, the MI is 0.1 to 5 g/10 minutes. low
(B)LLDPE formulation of MI can improve mechanical strength without compromising adhesion and its durability. Linear low-density polyethylene (hereinafter referred to as (C)LLDPE) used in the present invention (C)MI12-50g/10min
is manufactured in the same way as (A) LLDPE above,
Especially those with MI of 12 to 50 g/10 min. High MI
(C) The blending of LLDPE can improve the adhesion at low preheating temperatures of the adherend. Commercially available polyisobutylene can be used as the polyisobutylene used in the present invention, but Mooney viscosity (ML 1+4 , 100
℃, JIS K-6300) is 10 to 150, and crystallinity (X-ray diffraction method) is preferably 30% or less. Furthermore, synthetic rubbers other than polyisobutylene do not have sufficient adhesion to adherends. Examples of unsaturated carboxylic acids used in the present invention include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, endobicyclo[2,2,1]-1,4,5,6,
7,7-hexachloro-5-heptene-2,3-
dicarboxylic acid, endobicyclo-[2,2,
1]-5-heptene-2,3-dicarboxylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, and the like. Further, examples of derivatives of unsaturated carboxylic acids include acid anhydrides and esters, such as maleic anhydride, citraconic anhydride, endobicyclo-[2,2,1]-1,4,5,6,
7,7-hexachloro-5-heptene-2,3-
dicarboxylic anhydride, endobicyclo-[2,
2,1]-5-heptene-2,3-dicarboxylic anhydride, cis-4-cyclohexene-1,2-dicarboxylic anhydride, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate , butyl methacrylate, maleate ester (monoester, diester)
etc. can be mentioned. (A) Various known methods can be used to react LLDPE or polyisobutylene with an unsaturated carboxylic acid or a derivative thereof. For example, (A) LLDPE or polyisobutylene and an unsaturated carboxylic acid or its derivative in the presence or absence of a solvent and an organic peroxide reaction initiator, such as ditertiary butyl peroxide, dicumyl peroxide, Benzoyl peroxide, 2,5-dimethyl-
2,5-di-(tert-butylperoxy)-
hexyne-3,2,5-dimethyl-2,5-di-
(tert-butylperoxy)-hexane, etc. is added and mixed in advance with a mixer such as a Henschel mixer or a ribbon blender, and the mixture is passed through a Banbury mixer, single-screw or multi-screw extruder to a temperature higher than the melting point of polyethylene or polyisobutylene. Melt and knead at a temperature below 280℃. Alternatively, (A) LLDPE or polyisobutylene may be dissolved in a solvent, and an unsaturated carboxylic acid or its derivative and a reaction initiator may be added to the solution to cause the reaction. (A) The amount of unsaturated carboxylic acid or its derivative added to LLDPE or polyisobutylene is 0.01
~3% by weight is preferred. Therefore, the amount of the unsaturated carboxylic acid or its derivative and the organic peroxide reaction initiator added is 0.05 to 5 parts by weight of the unsaturated carboxylic acid or its derivative per 100 parts by weight of unmodified LLDPE or polyisobutylene. Reaction initiator 0.001~0.5
Parts by weight are preferred. Note that if the content of unsaturated carboxylic acid or its derivative in the modified polyethylene or modified polyisobutylene obtained is less than 0.01% by weight, the strong adhesive strength of the present invention cannot be obtained;
No increase in adhesion was observed when the amount exceeded % by weight;
This increases the occurrence of gel-like substances and discoloration, which is economically disadvantageous. Next, the polyethylene composition of the present invention has (A)
Modified polyethylene of LLDPE 10 to 85% by weight, preferably 20 to 50% by weight, (B) LLDPE 5 to 80% by weight, preferably 5 to 30% by weight, (C) LLDPE 5 to 80% by weight,
Desirably 10 to 50% by weight, and 5 to 50% by weight of polyisobutylene and/or modified polyisobutylene,
It desirably consists of 15 to 40% by weight. If the content of modified polyethylene, (C) LLDPE, modified polyisobutylene and/or modified polyisobutylene is outside the above range, adhesion to adherends with low preheating temperatures will be insufficient. Furthermore, if the content of (B) LLDPE is less than 5% by weight, the mechanical strength will be insufficient, while if it exceeds 50% by weight, the adhesiveness will be insufficient, which is not preferable. The production of the composition of the present invention consists of modified LLDPE(B)
It is obtained by mixing LLDPE, (C)LLDPE, and polyisobutylene and/or modified polyisobutylene at the above-mentioned mixing ratio. In order to uniformly disperse each of the above components and make a composition with phytophilic properties, for example, pre-mix using a Henschel mixer, ribbon blender, etc., and then mix this mixture using a Banbury mixer, roll, extruder, etc. A method of melt-kneading at a temperature above the melting point of the composition and below 280°C is desirable. In addition, when polyisobutylene is in the form of a veil, it is desirable to heat and melt-knead it using a Banbury mixer, rolls, or the like. Further, the composition of the present invention is a mixture of (A) LLPDE and polyisobutylene in the above-mentioned mixing ratio, which is reacted with an unsaturated carboxylic acid or a derivative thereof, and (B) LLDPE and (C) LLDPE. It may be something. Furthermore, unmodified polyisobutylene may be mixed into this modified mixture at the above-mentioned mixing ratio. The composition of the present invention may contain various additives, such as heat stabilizers, ultraviolet absorbers, nucleating agents, antistatic agents, colorants, etc., and various fillers, such as inorganic fillers, plasticizers, etc. I can do it. These additives, etc.
They may be mixed during or after preparation of the composition. The polyethylene compositions of the present invention can then form suitable laminates with metals or thermoplastics. Metals in the laminate using the modified polyethylene composition of the present invention include iron, aluminum,
Copper, zinc, nickel, tin, stainless steel, brass, tin, galvanized iron, etc. in plate, foil, cylindrical, tubular,
Examples include lines or other shapes. In addition, as thermoplastic resins, nylon 6, nylon 66, nylon 11, nylon 12, nylon 6
Polyamides such as -10, polyolefins such as homopolymers of olefins such as polyethylene, polypropylene, and polybutene or copolymers thereof, resins that are partially acetalized polyvinyl alcohol (vinylon), and ethylene-vinyl acetate copolymers. Examples include partially hydrolyzed resin (EVAL), polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyvinyl chloride, with nylon and vinylon being particularly preferred. A laminate using the polyethylene composition of the present invention can be obtained by laminating the modified polyethylene composition of the present invention and one selected from the aforementioned metals or thermoplastic resins. The method of obtaining the laminate is not particularly limited, and examples include a method of forming each into a film or sheet and then thermocompression bonding, a method of laminating outside the die, a method of laminating (coextrusion) inside the die, a tube shape or a sheet. Known methods such as extrusion coating or powder coating can be used. In addition, when laminating with metal, pretreatments such as solvent degreasing, pickling, shot blasting, zinc phosphate treatment, calcium phosphate, etc. are usually performed, and an epoxy resin primer is used as a primer treatment to make the material stronger. A laminate with excellent adhesive strength can be obtained. As the epoxy resin primer, a one-component or two-component modified epoxy resin primer is preferred from the viewpoint of heat resistance or stability. The structure of the laminate using the polyethylene composition of the present invention is basically a two-layer structure in which the modified polyethylene composition of the present invention is laminated with one selected from the above-mentioned metals or thermoplastic resins. Various combinations can be made. For example, modified polyethylene composition (hereinafter referred to as the composition)/metal, the composition/thermoplastic resin, the composition/metal/
A combination of the composition, metal/composition/metal, metal/composition/thermoplastic resin, thermoplastic resin/composition/thermoplastic resin, etc., further combining these or other substances, For example, fibers, paper, wood boards, etc. can be combined. The composition of the present invention forms a suitable composite (coating, lamination, etc.) with metal or thermoplastic resin as described above, and is particularly useful for coating metal pipes.
An example of manufacturing a resin-coated metal tube will be described below. The base metal tube is cleaned by surface treatment such as shot blasting, grid blasting, or pickling. Furthermore, it is desirable to apply an epoxy adhesive or the like on this as a primer treatment in order to obtain a resin layer with stronger adhesive strength. The pretreated metal tube is heated to a desired temperature, such as 100°C or higher, preferably 110 to 150°C, by high-frequency induction heating or the like.
The outer surface of the metal tube is coated with the composition by extruding it into a tube shape or wrapping it into a sheet shape at a temperature above the melting point, preferably from 200 to 230°C. The thickness of the coating varies depending on the purpose, but is usually around 0.3 mm. Further, an exterior material such as polyolefin, preferably high-density polyethylene, is extruded onto the tube at a temperature above the melting point, preferably from 200 to 230 DEG C., or wrapped in a sheet, and immediately cooled with water. The thickness of the exterior material is usually about 2 mm. Note that the covering of the exterior material may be omitted as appropriate depending on the application. In addition, when applying the above-mentioned metal pipe coating to both the inside and outside of the metal pipe, the pretreated metal pipe should be coated with 100%
It is heated to ~150°C, and the inner surface is powder coated with the composition and polyolefin, preferably polyethylene, in this order to form a resin layer. Next, this inner-coated metal tube is heated to a temperature of 100° C. to less than the melting point of the inner-coated resin, and the outer surface of this metal tube is coated with the composition and polyolefin in the same manner as described above. Effects of the Invention The composition of the present invention is superior to modified polyethylene compositions that have already been proposed, from lower preheating temperatures to higher temperatures for adherends such as metals and thermoplastic resins. It shows the adhesion strength. Therefore, in multilayer resin coating, there is no inconvenience caused by softening or melting of the already coated layer, and there is no need to slow down the cooling rate after coating, so there is no reduction in production rate. In addition, the composition of the present invention has improved mechanical strength after adhesion compared to conventional compositions, so it can provide sufficient strength for practical use, such as thread cutting resistance and pipe wrench torque resistance, in resin-coated steel pipes, for example. have Due to the excellent properties described above, the composition of the present invention is suitable for composites with metals and thermoplastic resins, particularly for multilayer composites. As an example of compounding,
Inner and outer surfaces of steel pipes and cast iron pipes, coatings of steel plates, metal foils, electric cables, steel wires, etc., tank linings, multilayer films with various thermoplastic resins,
Examples include laminates such as sheets, bottles, containers, etc. Examples Next, the present invention will be explained in detail by giving examples. In addition, all parts and percentages in the examples are based on weight, and the test method is as follows. (1) MI ASTM D-1238 E (190℃, 2160g) (2) Peel strength After electrolytically degreasing a pickled steel plate (SS-41) 100 x 100 x 0.3 mm, preheat it to the specified temperature on a heating plate. , on which a sheet of the composition of the present invention (thickness 1
A test piece was prepared by heating a sheet of high-density polyethylene (3 mm thick) to 220°C, melting it, and bonding it, leaving it for 10 seconds, and cooling it by immersing it in running water. The resin layer of the test piece was cut to a width of 10 mm, a portion was peeled off as a gripping margin, and the 90° peel strength was measured at 23 mm at a peel rate of 50 mm/min using an Instron tensile tester.
℃ and 50℃. (3) Tensile modulus JIS K 7113 (Crosshead speed 0.5cm/
(4) Shear adhesive strength JIS K 6850 (5) Thread cutting test Test using SGP-PC pipe machine specified in Japan Water Works Association standard JWW AK 132-1982 (polyethylene powder-lined steel pipes for water supply) The maximum temperature at which thread cutting was possible was measured by varying the ambient temperature depending on the thread cutting method. (6) Pipe wrench tightening torque test Using a vise and a pipe wrench as described in the Japan Water Works Steel Pipe Association standard WS-033-84 (polyethylene powder-lined steel pipes for water supply, single-layer polyethylene coating on the outside), the coating was fixed in a vise. The steel pipe was tightened with a pipe wrench, torque was applied, and the torque at which the resin layer deformed was measured. The ambient temperature was 50°C. Examples 1 to 9, Comparative Examples 1 to 4 Each LLDPE with different MI (comonomer: butene-
1) Add 0.6 parts of maleic anhydride and 0.025 parts of 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexyne-3 to 100 parts, mix with a Henschel mixer, and mix this mixture into a 65 mmφ −
It is fed to a screw extruder and melt-kneaded at a set temperature of 230℃ and a screw rotation speed of 60rpm to modify it with maleic anhydride.
Got LLDPE. This modified LLDPE and polyisobutylene [manufactured by Etsuo Chemical Co., Ltd., Vistanex MML-
80 (product name)], MI0.1-5g/10 minutes undenatured LLDPE
(B) and unmodified LLDPE (C) with MI 12-50 g/10 min.
were blended in the proportions shown in Table 1, and heated and melted and kneaded at 230°C to obtain a composition. The physical properties of each composition obtained, and the peel strength and shear adhesive strength of laminates made with each composition with steel plates at each preheating temperature were measured, and the results are shown in the table below.
Shown in 1. For comparison, LLDPE with MI 5g/10min or less
When a modified product is used, ethylene butene rubber [manufactured by Mitsui Petrochemical Co., Ltd., A-4085] is used instead of polyisobutylene.
(Product name), EBR] and undenatured
In the case where LLDPE (B) was not added, a composition was prepared and a laminate was prepared in the same manner as in the example, and each physical property was measured, and the results are also listed in Table 1.

【表】【table】

【表】 実施例10、比較例5 供試金属管として50mmφSGP黒管を酸洗処理に
より脱スケールした後、高周波誘導加熱により表
−2に示す各温度に加熱し、この鋼管に実施例4
で用いたポリエチレン組成物を65mmφの押出機に
て樹脂温度220℃で、厚さ1mm、ライン速度1
m/分でチユーブ状に押出被覆し、ダイスとの距
離3cmの水槽で冷却して樹脂被覆鋼管を得た。得
られた被覆鋼管の剥離強度及び物性を測定しその
結果を表−2で示した。 比較のために、比較例4の組成物を用いた以外
は実施例10と同様にして樹脂被覆鋼管を得た。得
られた被覆鋼管の剥離強度及び物性を表−2に併
記した。
[Table] Example 10, Comparative Example 5 A 50 mmφ SGP black tube was descaled by pickling treatment as a test metal tube, and then heated to each temperature shown in Table 2 by high frequency induction heating, and the steel tube was heated to the temperature shown in Table 2.
The polyethylene composition used for
The resin-coated steel pipe was extruded and coated into a tube at a speed of m/min, and cooled in a water tank with a distance of 3 cm from the die to obtain a resin-coated steel pipe. The peel strength and physical properties of the obtained coated steel pipe were measured and the results are shown in Table 2. For comparison, a resin-coated steel pipe was obtained in the same manner as in Example 10, except that the composition of Comparative Example 4 was used. The peel strength and physical properties of the obtained coated steel pipe are also listed in Table 2.

【表】 実施例11、12 実施例3で用いた(A)LLDPE及びポリイソブチ
レンを表−3に示す割合で混合した後、この混合
物に無水マレイン酸を実施例1と同様の方法で反
応させて変性混合物を得た。得られた変性混合物
に、LLDPE(B)及びLLDPE(C)を表−3に示す割合
で混合して組成物を得た。得られた該組成物を用
いて鋼板との積層物を作成し、各物性を測定して
その結果を表−3に示した。
[Table] Examples 11 and 12 After mixing (A) LLDPE and polyisobutylene used in Example 3 in the proportions shown in Table 3, this mixture was reacted with maleic anhydride in the same manner as in Example 1. A denatured mixture was obtained. LLDPE (B) and LLDPE (C) were mixed into the obtained modified mixture in the proportions shown in Table 3 to obtain a composition. A laminate with a steel plate was prepared using the obtained composition, and each physical property was measured, and the results are shown in Table 3.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (A)メルトインデツクス7〜50g/10分の線状
低密度ポリエチレンに、不飽和カルボン酸もしく
はその誘導体を反応させてなる変性ポリエチレン
10〜85重量%、(B)メルトインデツクス0.1〜5
g/10分の線状低密度ポリエチレン5〜80重量
%、(C)メルトインデツクス12〜50g/10分の線状
低密度ポリエチレン5〜80重量%及び(D)ポリイソ
ブチレン及び/又は該ポリイソブチレンに、不飽
和カルボン酸もしくはその誘導体を反応させてな
る変性ポリイソブチレン5〜50重量%とからなる
ポリエチレン組成物。
1 (A) Modified polyethylene obtained by reacting linear low-density polyethylene with a melt index of 7 to 50 g/10 min with an unsaturated carboxylic acid or a derivative thereof.
10-85% by weight, (B) Melt index 0.1-5
(C) 5-80% by weight of linear low-density polyethylene with a melt index of 12-50 g/10 min, and (D) polyisobutylene and/or the polyethylene. A polyethylene composition comprising 5 to 50% by weight of a modified polyisobutylene obtained by reacting isobutylene with an unsaturated carboxylic acid or a derivative thereof.
JP25767285A 1985-11-19 1985-11-19 Polyethylene composition Granted JPS62119245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25767285A JPS62119245A (en) 1985-11-19 1985-11-19 Polyethylene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25767285A JPS62119245A (en) 1985-11-19 1985-11-19 Polyethylene composition

Publications (2)

Publication Number Publication Date
JPS62119245A JPS62119245A (en) 1987-05-30
JPH0528263B2 true JPH0528263B2 (en) 1993-04-23

Family

ID=17309500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25767285A Granted JPS62119245A (en) 1985-11-19 1985-11-19 Polyethylene composition

Country Status (1)

Country Link
JP (1) JPS62119245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045380U (en) * 1997-07-16 1998-01-27 株式会社丸八真綿 Sheets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181195B (en) * 2018-06-19 2021-01-05 宁波鸿雁包装材料有限公司 Ultrathin film and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120750A (en) * 1980-02-29 1981-09-22 Mitsui Petrochem Ind Ltd Modified ethylene polymer composition
JPS57165413A (en) * 1981-04-07 1982-10-12 Toa Nenryo Kogyo Kk Modified polyethylene and its laminate
JPS59179543A (en) * 1983-03-30 1984-10-12 Mitsubishi Chem Ind Ltd Adhesive polyethylene composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120750A (en) * 1980-02-29 1981-09-22 Mitsui Petrochem Ind Ltd Modified ethylene polymer composition
JPS57165413A (en) * 1981-04-07 1982-10-12 Toa Nenryo Kogyo Kk Modified polyethylene and its laminate
JPS59179543A (en) * 1983-03-30 1984-10-12 Mitsubishi Chem Ind Ltd Adhesive polyethylene composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045380U (en) * 1997-07-16 1998-01-27 株式会社丸八真綿 Sheets

Also Published As

Publication number Publication date
JPS62119245A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
US4198327A (en) Grafted polyolefin composition having improved adhesiveness
US4440911A (en) Modified polyethylene and laminate thereof
JP5226309B2 (en) Adhesive compositions derived from highly functionalized ethylene copolymers
US4460646A (en) Adhesive resin composition and laminate thereof
US6855432B1 (en) Low activation temperature adhesive composition with high peel strength and cohesive failure
JPS6325006B2 (en)
WO2001018141A1 (en) Low activation temperature adhesive composition with high peel strength and cohesive failure
JP6583997B2 (en) Adhesive manufacturing method, adhesive, adhesive laminate, and laminate
JPH0528265B2 (en)
JPS6011056B2 (en) Modified ethylene polymer composition
JPH0528266B2 (en)
JPH0528263B2 (en)
JPS5936586B2 (en) Multilayer laminated structure
JP2761547B2 (en) Adhesive resin composition and coated steel pipe using the same
JPS6119647A (en) Modified polyethylene composition and multilayer laminate prepared by using it
JPH0528264B2 (en)
JPH0530858B2 (en)
JPS629423B2 (en)
JP2019196496A (en) Adhesive resin composition, and adhesive
JPS61258857A (en) Modified polyethylene composition
JPH0649814B2 (en) Modified olefin polymer composition
JP3613992B2 (en) Resin composition for extrusion lamination and laminate using the same
JPH0149402B2 (en)
JPH09125032A (en) Resin-coated steel pipe
JPH01282278A (en) Adhesive composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term