JPH05281133A - Method for evaluating environmental embrittlement of metal material - Google Patents
Method for evaluating environmental embrittlement of metal materialInfo
- Publication number
- JPH05281133A JPH05281133A JP8079392A JP8079392A JPH05281133A JP H05281133 A JPH05281133 A JP H05281133A JP 8079392 A JP8079392 A JP 8079392A JP 8079392 A JP8079392 A JP 8079392A JP H05281133 A JPH05281133 A JP H05281133A
- Authority
- JP
- Japan
- Prior art keywords
- metal material
- environment
- deep
- embrittlement
- crack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明方法は金属材料の各種気体
あるいは各種液体の環境中における脆化の程度を評価す
る方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the degree of embrittlement of a metallic material in the environment of various gases or liquids.
【0002】[0002]
【従来の技術】一般に金属材料は各種環境下において腐
食などの要因によって脆くなり、特に応力が付加された
状態、あるいは傷などの欠陥が発生した部位においては
加速度的に脆さが倍加する。金属材料のある特定な環境
下における脆化の程度を評価する手段として一般的には
環境中に曝露あるいは浸漬した状態にて低歪速度で引張
り試験(金属便覧:改訂4版:日本金属学会編:p13
38)を実施し、その大気あるいは純水中との断面収縮
率あるいは伸び値等の比較値をもって脆化を評価してい
る。2. Description of the Related Art Generally, a metal material becomes brittle in various environments due to factors such as corrosion, and particularly in a stressed state or a site where a defect such as a scratch is generated, the brittleness is accelerated. As a means to evaluate the degree of embrittlement of a metallic material in a specific environment, generally, a tensile test at a low strain rate in a state of being exposed or immersed in the environment (Metal Handbook: Revised 4th Edition: The Japan Institute of Metals) : P13
38) was carried out, and the embrittlement was evaluated by the comparison value of the cross-sectional shrinkage rate or elongation value with the atmosphere or pure water.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
方法は環境条件がたとえば硫化水素の場合、硫化水素に
よって引張り試験機の曝露される部位(たとえば試験材
を保持する治具およびその周辺)は腐食あるいは脆化を
受けないような状態に試験機を構成する必要があるとと
もに、この有害ガスが周囲の環境中に絶対に放出されて
はならず、このような試験を実施するうえで安全性およ
び簡便性に問題点を有する。しかも各種環境中における
脆化の程度を評価試験するうえで環境に侵されないマッ
チした治具をその都度使用することが必要であり、とく
に簡便性に問題点を有する。本発明の目的は上記問題点
を解決し安全かつ簡便性を有する金属材料の環境脆化評
価方法を提供することにある。However, in the conventional method, when the environmental condition is hydrogen sulfide, the exposed portion of the tensile tester (for example, the jig holding the test material and its periphery) is corroded by hydrogen sulfide. Alternatively, the tester must be configured so that it will not be embrittled, and this harmful gas must never be released into the surrounding environment to ensure safety and safety in carrying out such tests. There is a problem in simplicity. In addition, it is necessary to use a matching jig that is not affected by the environment each time in the evaluation test of the degree of embrittlement in various environments, and there is a problem in simplicity. An object of the present invention is to provide a method for evaluating environmental embrittlement of a metal material that solves the above problems and is safe and simple.
【0004】[0004]
【課題を解決するための手段】本発明は円あるいは多角
形よりなる板状の金属材料を深絞り加工後、気体あるい
は液体の環境中に所定の温度にて保持した後、前記金属
材料の割れの程度を測定評価することを特徴とする。さ
らに本発明は円あるいは多角形よりなる板状の金属材料
を深絞り加工する際に深絞り加工における加工量の程度
をあらかじめ数段階に設定して深絞り加工後、気体ある
いは液体の環境中に所定の温度にて保持した後、前記金
属材料の割れの程度を測定評価することを特徴とする。DISCLOSURE OF THE INVENTION According to the present invention, a plate-shaped metal material having a circular or polygonal shape is deep-drawn, held at a predetermined temperature in a gas or liquid environment, and then the metal material is cracked. It is characterized by measuring and evaluating the degree of. Further, according to the present invention, when deep-drawing a plate-shaped metal material having a circle or a polygon, the extent of the deep-drawing processing is set in advance in several stages, and after deep-drawing, the environment is changed to a gas or liquid. After being kept at a predetermined temperature, the degree of cracking of the metal material is measured and evaluated.
【0005】[0005]
【作用】一般に金属材料は各種環境下において腐食など
によって脆くなり、特に応力が付加された状態、あるい
は傷などの欠陥が発生した部位においては加速度的に脆
さが倍加する。本発明の方法においては、金属材料を円
板あるいは多角形状の板状加工、さらに深絞り加工によ
って材料に歪を付加することにより、金属材料表面にミ
クロ的なクラックを発生せしめることができる。従って
環境中における脆化物質がクラック先端に接触すること
により、接触界面の表面エネルギーの低下、化学的反応
にともなう水素の発生と侵入あるいは腐食にともなうク
ラックの進展などによって脆化を助長し破壊にいたらし
めることができる。さらに本発明において、深絞り時の
加工量の程度を数段階に設定することによって、金属材
料表面のミクロ的なクラック発生水準を各種設定してお
くことにより、その金属材料がどの程度の材料歪までそ
の環境に耐えうるかに関して金属材料の適応性を安全で
簡便にしかも迅速かつ十分に評価することができる。本
発明法における環境条件である気体、あるいは液体の種
類については適宜選択すれば良い。また、温度に関して
は凝固点から沸点までの温度を適宜選択すればよく通常
は常温にて十分である。浸漬時間についても適宜選択す
ればよく通常3日程度で十分である。In general, metallic materials become brittle due to corrosion or the like in various environments, and particularly in a stressed state or a site where a defect such as a scratch occurs, the brittleness is accelerated. In the method of the present invention, a microcrack can be generated on the surface of the metal material by applying a strain to the metal material by disk-shaped or polygonal plate-shaped processing and deep drawing. Therefore, when an embrittlement substance in the environment comes into contact with the tip of the crack, the surface energy of the contact interface is reduced, hydrogen is generated due to a chemical reaction and the cracks are promoted due to invasion or corrosion, which leads to embrittlement and destruction. You can do it. Further, in the present invention, by setting the degree of processing amount during deep drawing in several stages, various kinds of micro crack generation levels on the surface of the metal material are set, and the material strain of the metal material is determined. It is possible to evaluate the adaptability of a metal material safely, simply, quickly and sufficiently as to whether it can withstand the environment. The kind of gas or liquid which is the environmental condition in the method of the present invention may be appropriately selected. Regarding the temperature, the temperature from the freezing point to the boiling point may be appropriately selected, and normally room temperature is sufficient. The dipping time may be appropriately selected, and usually about 3 days is sufficient.
【0006】[0006]
実施例1 直径96mm、厚さ0.7mmのSUS−304鋼を絞
り比2.8にて深絞り加工した円筒状試験材を図1に示
す。この円筒状試験材をそのまま常温、大気中に放置し
てもなんら割れは発生しない。この円筒状試験材を常
温、硫化水素中に曝露し1日経過したのち目視した結
果、図2に示すような大きな割れが発生した。一方、同
一形状の試験材を常温、流動パラフィン中に1日浸漬さ
せ目視した結果は図3に示すようになんら割れが発生し
なかった。さらに、同試験材を常温、界面活性剤を1%
添加した流動パラフィン中に1日浸漬した結果は図4に
示すように大きな割れが発生した。このように本発明法
によれば深絞り加工材をある環境下に曝露あるいは浸漬
するのみで脆化の程度を簡便に測定評価できる。なお、
比較のため同一材料を深絞り加工せずにたんに円板状に
加工した状態で本発明実施例1と同じ各種の温度、各種
の脆化環境下に数日放置した場合、割れは全く発生せ
ず、脆化評価はできなかった。Example 1 FIG. 1 shows a cylindrical test material obtained by deep-drawing SUS-304 steel having a diameter of 96 mm and a thickness of 0.7 mm at a drawing ratio of 2.8. Even if this cylindrical test material is left as it is at room temperature and in the atmosphere, no cracks occur. This cylindrical test material was exposed to hydrogen sulfide at room temperature for one day and then visually observed, and as a result, large cracks as shown in FIG. 2 were generated. On the other hand, the test material of the same shape was immersed in liquid paraffin for one day at room temperature, and the result of visual observation showed that no crack was generated as shown in FIG. Furthermore, the test material is at room temperature and the surfactant is 1%.
As a result of immersing in the added liquid paraffin for one day, large cracks were generated as shown in FIG. As described above, according to the method of the present invention, the degree of embrittlement can be easily measured and evaluated simply by exposing or immersing the deep-drawn material to a certain environment. In addition,
For comparison, when the same material was simply processed into a disk shape without deep drawing and left to stand for several days at the same various temperatures and various brittle environments as in Example 1 of the present invention, cracking occurred at all. Without it, the brittleness could not be evaluated.
【0007】実施例2 直径98mm、厚さ0.7mmのNi量を変化させたS
US−304鋼を絞り比1.6、2.1、2.5、2.
8の4種類にて深絞り加工した円筒状試験材を常温、界
面活性材を1%添加した流動パラフィン中に浸漬させた
ときの割れ感受性(○は全く割れが発生しない、△は一
部に割れ発生、×は全面に割れ発生を示し、脆化の程度
は×△の順で軽度である)を表1に示す。Example 2 S having a diameter of 98 mm and a thickness of 0.7 mm and varying the amount of Ni
Drawing ratio of US-304 steel is 1.6, 2.1, 2.5, 2.
Cracking sensitivity when a cylindrical test material deep-drawn with 4 types of No. 8 was immersed in liquid paraffin containing 1% of a surfactant at room temperature (○ indicates no cracking, △ indicates some Table 1 shows the occurrence of cracks, x indicates the occurrence of cracks on the entire surface, and the degree of embrittlement is mild in the order of x.
【0008】[0008]
【表1】 [Table 1]
【0009】18Cr−7Ni系は絞り比2.1で、1
8Cr−8Ni系は絞り比2.5で割れが発生するのに
対し18Cr−10Ni系は絞り比2.8でさえ割れが
発生しなかった。加工度が軽度な絞り比1.6において
はすべてのSUS304鋼は割れないが加工度(絞り
比)を増加すると低Ni系では割れを生じ、高Ni系に
することによって割れなくなる。このように本発明法に
よれば深絞りの程度を数段階に設定した加工材を環境に
浸漬するのみで簡便に脆化の程度を測定評価できる。The 18Cr-7Ni system has a drawing ratio of 2.1 and is 1
The 8Cr-8Ni system cracked at a drawing ratio of 2.5, whereas the 18Cr-10Ni system did not crack even at a drawing ratio of 2.8. All of the SUS304 steels do not crack at the drawing ratio of 1.6 where the working ratio is light, but when the working ratio (drawing ratio) is increased, cracking occurs in the low Ni system and does not break by making the high Ni system. Thus, according to the method of the present invention, the degree of embrittlement can be easily measured and evaluated simply by immersing the processed material in which the degree of deep drawing is set in several stages.
【0010】実施例3 SUS−304鋼(18Cr−8Ni)を直径96m
m、厚さ0.7mmの円板あるいは96mm×96m
m、厚さ0.7mmの板を絞り比2.8にて深絞り加工
した円筒状あるいは角筒状試験材を各種環境中に常温に
て3日曝露あるいは浸漬した時の割れ感受性(○は全く
割れが発生しない、△は一部に割れ発生、×は全面に割
れ発生を示し、脆化の程度は×△の順で軽度である)を
表2に示す。環境例は実際に曝露あるいは浸漬した環境
を、形状は円筒状深絞りカップ試験材が円と、角筒状深
絞りカップ試験材を角と表示した。以上のように環境の
種類によって脆化の程度は大きく異なる。このように本
発明法によれば深絞り加工材をある環境下に曝露あるい
は浸漬するのみで環境の種類にともなう脆化の程度を簡
便に測定評価できる。Example 3 SUS-304 steel (18Cr-8Ni) having a diameter of 96 m
m, 0.7 mm thick disc or 96 mm x 96 m
Deterioration of a cylindrical or square tube-shaped test material deep-drawn at a drawing ratio of 2.8 from a plate having a thickness of 0.7 mm and a thickness of 0.7 mm when exposed or immersed in various environments at room temperature for 3 days (○ indicates Table 2 shows that no cracking occurs at all, Δ indicates partial cracking, X indicates cracking on the entire surface, and the degree of embrittlement is mild in the order of × Δ. In the example of the environment, the environment in which the material is actually exposed or immersed is shown, and the shape is indicated as a circle for the cylindrical deep-drawing cup test material and as a corner for the square tubular deep-drawing cup test material. As described above, the degree of embrittlement varies greatly depending on the type of environment. Thus, according to the method of the present invention, the degree of embrittlement associated with the type of environment can be easily measured and evaluated simply by exposing or immersing the deep-drawn material in an environment.
【0011】[0011]
【表2】 [Table 2]
【0012】比較例 SUS−304鋼板を深絞り加工を加えないような円板
加工まま材を各種環境中に1日および7日浸漬させた結
果を表3に示す。その結果はいずれの環境中においても
割れの発生は認められず、材料の脆化評価はできなかっ
た。なお、本実施例においては深絞り前の試験材の直径
を96mmでおこなったが本発明においては直径は目的
に応じて適宜選択すればよく通常10mm〜20mmあ
ればよい。また、本実施例においては深絞り時の試験材
の絞り比を1.6〜2.8の範囲を選択したが本発明に
おいては目的に応じて適宜選択すればよく通常1.01
〜10.0の範囲であればよい。COMPARATIVE EXAMPLE Table 3 shows the results of immersing the SUS-304 steel plate in various environments for 1 day and 7 days as it was without the deep drawing. As a result, the occurrence of cracks was not observed in any environment, and the embrittlement of the material could not be evaluated. In this embodiment, the diameter of the test material before deep drawing was 96 mm. However, in the present invention, the diameter may be appropriately selected according to the purpose, and usually 10 mm to 20 mm. Further, in the present example, the drawing ratio of the test material at the time of deep drawing was selected in the range of 1.6 to 2.8, but in the present invention, it may be appropriately selected according to the purpose and is usually 1.01.
It may be in the range of up to 10.0.
【0013】[0013]
【表3】 [Table 3]
【0014】[0014]
【発明の効果】本発明法は従来法のような特別な治具を
必要とせず、深絞り加工した円筒状材料を液体あるいは
気体の特定な温度、環境に曝露あるいは浸漬することに
よって発生した金属材料の破壊現象をきわめて安全に評
価することができる。本発明法は金属材料の各種環境下
における脆化を簡便に評価でき、環境の種類によってど
のような材料を選択すべきかなどの指標となりえ、広く
産業分野においてその有用性は価値あるものである。The method of the present invention does not require a special jig unlike the conventional method, and the metal produced by exposing or immersing the deep-drawn cylindrical material to a specific temperature or environment of liquid or gas. It is possible to evaluate the phenomenon of material destruction very safely. The method of the present invention can easily evaluate the embrittlement of a metal material under various environments, can be an index such as what kind of material should be selected according to the type of environment, and its usefulness is widely used in the industrial field. ..
【図1】本実施例において絞り比2.8にて深絞り加工
した円筒状試験材を示す図、FIG. 1 is a diagram showing a cylindrical test material deep-drawn at a drawing ratio of 2.8 in this example,
【図2】本発明の方法により硫化水素中に1日放置した
状態を示す図、FIG. 2 is a diagram showing a state of being left in hydrogen sulfide for 1 day by the method of the present invention,
【図3】本発明の方法により流動パラフィン中に1日放
置した状態を示す図、FIG. 3 is a view showing a state of being left in liquid paraffin for 1 day by the method of the present invention,
【図4】本発明の方法により界面活性剤を1%添加した
流動パラフィン中に1日放置した状態を示す図である。FIG. 4 is a diagram showing a state of being left in liquid paraffin containing 1% of a surfactant for 1 day according to the method of the present invention.
Claims (2)
料を深絞り加工後、気体あるいは液体の環境中に所定の
温度にて保持した後、前記金属材料の割れの程度を測定
評価することを特徴とする金属材料の環境脆化評価方
法。1. A method of deep-drawing a circular or polygonal plate-shaped metal material, holding it in a gas or liquid environment at a predetermined temperature, and then measuring and evaluating the degree of cracking of the metal material. A method for evaluating environmental embrittlement of a metal material, characterized by:
料を深絞り加工する際に深絞り加工における加工量の程
度をあらかじめ数段階に設定して深絞り加工後、気体あ
るいは液体の環境中に所定の温度にて保持した後、前記
金属材料の割れの程度を測定評価することを特徴とする
金属材料の環境脆化評価方法。2. When deep-drawing a circular or polygonal plate-shaped metal material, the extent of the deep-drawing is set to several stages in advance, and after deep-drawing, in a gas or liquid environment. A method for evaluating environmental embrittlement of a metal material, which comprises measuring and evaluating the degree of cracking of the metal material after holding at a predetermined temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8079392A JPH05281133A (en) | 1992-04-02 | 1992-04-02 | Method for evaluating environmental embrittlement of metal material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8079392A JPH05281133A (en) | 1992-04-02 | 1992-04-02 | Method for evaluating environmental embrittlement of metal material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05281133A true JPH05281133A (en) | 1993-10-29 |
Family
ID=13728339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8079392A Withdrawn JPH05281133A (en) | 1992-04-02 | 1992-04-02 | Method for evaluating environmental embrittlement of metal material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05281133A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011278235B2 (en) * | 2010-07-15 | 2016-08-04 | Progressare Medinvest B.V. | Composition for the treatment of superficial lesions |
JP2019174124A (en) * | 2018-03-26 | 2019-10-10 | Jfeスチール株式会社 | Delayed fracture property evaluation method of high strength steel plate |
-
1992
- 1992-04-02 JP JP8079392A patent/JPH05281133A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011278235B2 (en) * | 2010-07-15 | 2016-08-04 | Progressare Medinvest B.V. | Composition for the treatment of superficial lesions |
JP2019174124A (en) * | 2018-03-26 | 2019-10-10 | Jfeスチール株式会社 | Delayed fracture property evaluation method of high strength steel plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wilde et al. | On the correspondence between electrochemical and chemical accelerated pitting corrosion tests | |
Bargeron et al. | Precursive blistering in the localized corrosion of aluminum | |
Herbsleb et al. | Corrosion Properties of Austenitic—Ferritic Duplex Steel AF 22 in Chloride and Sulfide Containing Environments | |
Dong et al. | Effect of salt composition and microstructure on stress corrosion cracking of 316L austenitic stainless steel for dry storage canisters | |
Scatigno et al. | The effect of salt loading on chloride-induced stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions | |
Leinonen | Stress corrosion cracking and life prediction evaluation of austenitic stainless steels in calcium chloride solution | |
JPH05281133A (en) | Method for evaluating environmental embrittlement of metal material | |
Chiang et al. | Effect of simulated groundwater chemistry on stress corrosion cracking of alloy 22 | |
Aly et al. | Stress corrosion cracking | |
Dean | Review of recent studies on the mechanism of stress-corrosion cracking in austenitic stainless steels | |
Eggum | Hydrogen in low carbon steel: Diffusion, effect on tensile properties, and an examination of hydrogen’s role in the initiation of stress corrosion cracking in a failed pipeline | |
Domiaty et al. | The susceptibility of 90Cu-10Ni alloy to stress corrosion cracking in seawater polluted by sulfide ions | |
Maier et al. | Straining Metal Electrode Technique as a SCC Test—Type 304 Stainless Steel in NaCl+ H2SO4 Solutions | |
Kajimura et al. | Stress corrosion cracking of zirconium in hot nitric acid | |
Nakasa et al. | The effect of repeating load on the crack growth initiation and crack propagation in delayed failure | |
Mickalonis et al. | The Use of electrochemical noise measurements with nuclear waste tanks | |
Bruemmer et al. | Evaluating the Intergranular SCC Resistance of Sensitized Type 304 Stainless Steel in Low-Temperature Water Environments | |
Goswami et al. | Transition criteria-from a pit to a crack | |
Kulkarni | Role of pre-accumulated plastic strain on grain boundary corrosion of API-X70 Steel | |
Payer et al. | Application of Slow strain-rate technique to stress corrosion cracking of pipeline steel | |
Groeneveld et al. | Mechanical testing methods | |
Combrade | Environmentally Assisted Cracking: Some Critical Aspects | |
Eden et al. | John I. Mickalonis,'Richard J. Jacko, 2 Graham P. Quirk, ³ and | |
RU2170918C1 (en) | Method of estimation of remaining operating time of part | |
RU2149400C1 (en) | Method for quality control of steel products (modifications) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990608 |