JPH05289122A - Optical switch - Google Patents
Optical switchInfo
- Publication number
- JPH05289122A JPH05289122A JP4095599A JP9559992A JPH05289122A JP H05289122 A JPH05289122 A JP H05289122A JP 4095599 A JP4095599 A JP 4095599A JP 9559992 A JP9559992 A JP 9559992A JP H05289122 A JPH05289122 A JP H05289122A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- electrodes
- waveguide layer
- waveguide
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば光集積回路に用
いられ、二次元導波路によりスイッチングを可能にした
光スイッチに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switch used in, for example, an optical integrated circuit and capable of switching by a two-dimensional waveguide.
【0002】[0002]
【従来の技術】近年、情報通信の分野において、光通信
が目覚ましく発展している。それに伴い各種光素子の製
品化の要求が高まっている。2. Description of the Related Art In recent years, optical communication has made remarkable progress in the field of information communication. Along with this, demands for commercialization of various optical elements are increasing.
【0003】[0003]
【発明が解決しようとする課題】従来、各種光素子の内
で光スイッチとして、埋め込み式Y分岐型導波路など多
種類のものが提案されているが、これらはいずれも、分
岐数と同数の導波路を形成しなければならない。そこ
で、本発明は、導波路を多数形成しなくてすむ光スイッ
チを提供することを目的とする。Conventionally, various types of optical switches, such as an embedded Y-branch waveguide, have been proposed as optical switches among various optical elements, but all of them have the same number as the number of branches. The waveguide must be formed. Therefore, an object of the present invention is to provide an optical switch that does not need to form a large number of waveguides.
【0004】[0004]
【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、光束を導くことが可能
であって、表面に複数の液晶充填溝を同一方向に形成し
た導波層と、この導波層の各液晶充填溝に充填され、電
圧の印加により屈折率が変わる液晶と、前記導波層を挟
むようにそれぞれ配設され、該表面に前記導波層の溝の
配列方向とは異なる方向に配設された複数の電極を有す
る第1および第2のクラッド層と、この第1および第2
のクラッド層の少なくとも1組の対をなす電極間に電圧
を印加し、該電極対間の前記液晶の屈折率を所定の値に
するための電源とを具備したものである。In order to achieve the above object, the invention according to claim 1 is capable of guiding a light beam, and a waveguide having a plurality of liquid crystal filling grooves formed in the same direction on the surface thereof. Layer and liquid crystal filling grooves of the waveguide layer, the liquid crystal of which refractive index changes by the application of a voltage, and the liquid crystal filling groove are respectively disposed so as to sandwich the waveguide layer, and the groove of the waveguide layer is formed on the surface. First and second clad layers having a plurality of electrodes arranged in a direction different from the arrangement direction, and the first and second clad layers.
And a power supply for applying a voltage between at least one pair of electrodes of the clad layer to make the refractive index of the liquid crystal between the pair of electrodes a predetermined value.
【0005】[0005]
【作用】請求項1に対応する発明によれば、液晶充填溝
に液晶が充填された導波層に電圧を印加することにより
屈折率が変化するという原理を利用しているので、二次
元導波路により光線の到達する位置を制御でき、かつ導
波路を多数形成しなくてもすむ。According to the invention corresponding to claim 1, since the principle that the refractive index is changed by applying a voltage to the waveguide layer in which the liquid crystal filling groove is filled with the liquid crystal is utilized, the two-dimensional guiding The position where the light beam reaches can be controlled by the waveguide, and a large number of waveguides need not be formed.
【0006】[0006]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明の光スイッチの概要を説明す
るための斜視図であり、導波層1と、この導波層1の上
下面に当接して配設される下部クラッド層2および上部
クラッド3と、導波層1の上に形成した第1のグレーテ
ィング4および第2のグレーティング5からなってい
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view for explaining an outline of an optical switch of the present invention, which includes a waveguide layer 1, and a lower clad layer 2 and an upper clad 3 which are disposed in contact with the upper and lower surfaces of the waveguide layer 1. And a first grating 4 and a second grating 5 formed on the waveguide layer 1.
【0007】図1において、導波層1の端面から何等か
の光源からの光線Lが入射すると、グレーティング4に
より光線Lが回折され、この回折光は光線Aとなる。ま
た、グレーティング4が無い場合、光線Lはグレーティ
ング5により回折され、この回折光は光線Bとなる。こ
のように、導波層1の上に形成されているグレーティン
グの位置をある時はグレーティング4の位置、またある
時はグレーティング5の位置というように可変できれ
ば、回折光A,Bの位置を制御することができる。In FIG. 1, when a light ray L from any light source enters from the end face of the waveguide layer 1, the light ray L is diffracted by the grating 4 and this diffracted light becomes a light ray A. When the grating 4 is not provided, the light ray L is diffracted by the grating 5 and the diffracted light becomes the light ray B. In this way, if the position of the grating formed on the waveguide layer 1 can be changed to the position of the grating 4 at one time and the position of the grating 5 at another time, the positions of the diffracted lights A and B can be controlled. can do.
【0008】図2は本発明の一実施例の一部を示す概略
図であり、グレーティングは図3のように構成されてい
る。図3は図2のアーア線に沿って切断したグレーティ
ングの分解斜視図である。グレーティングは、導波層1
に溝11〜14を切ることにより形成されている。下部
クラッド層2は、例えばSiO2 ガラス板の一方の面
(外側)に、複数個(ここでは4個)の帯状の電極21
〜24が互いに間隔を存して形成されている。上部クラ
ッド層3は、下部クラッド層2と同様に、例えばSiO
2 ガラス板の一方の面(外側)に、複数個(ここでは4
個)の帯状の電極31〜34が互いに間隔を存して形成
されている。下部クラッド層2の電極21〜24と上部
クラッド層3の電極31〜34は、互いに上下で1対1
に対応するように形成されている。FIG. 2 is a schematic view showing a part of an embodiment of the present invention, and the grating is constructed as shown in FIG. FIG. 3 is an exploded perspective view of the grating taken along the line A-A in FIG. The grating is the waveguide layer 1
It is formed by cutting the grooves 11 to 14. The lower clad layer 2 includes, for example, a plurality of (four in this case) strip-shaped electrodes 21 on one surface (outer side) of a SiO 2 glass plate.
-24 are formed spaced apart from each other. Similar to the lower clad layer 2, the upper clad layer 3 is made of, for example, SiO.
2 Plural (4 in this case) on one side (outside) of the glass plate
Strip electrodes 31 to 34 are formed at intervals. The electrodes 21 to 24 of the lower clad layer 2 and the electrodes 31 to 34 of the upper clad layer 3 are one-to-one above and below each other.
Is formed to correspond to.
【0009】導波層1は、板ガラス(例えばコーニング
社製7059ガラス)の一方の板面に、複数の断面矩形
状の液晶充填溝11〜14(実際にはグレーティングと
して働かすためには溝数はもっと多い)が互いに間隔を
存して形成されている。この各液晶充填溝11〜14
は、下部クラッド層2および上部クラッド層3で形成さ
れている電極21〜24および31〜34の方向とは、
直角であって、液晶充填溝11〜14の相互間隔は、等
間隔に形成されている。The waveguide layer 1 has a plurality of liquid crystal filling grooves 11 to 14 each having a rectangular cross section on one plate surface of a plate glass (for example, 7059 glass manufactured by Corning Co., Ltd. (actually, the number of grooves is set so as to function as a grating). More) are spaced apart from one another. These liquid crystal filling grooves 11 to 14
Is the direction of the electrodes 21-24 and 31-34 formed of the lower clad layer 2 and the upper clad layer 3,
It is a right angle, and the liquid crystal filling grooves 11 to 14 are formed at equal intervals.
【0010】そして、導波層1の液晶充填溝11〜14
に、液晶(例えばメルク社PCH1132ネマチック液
晶)が充填されている。この場合のネマチック液晶の屈
折率は、1.48〜1.6となっており、しかもネマチ
ック液晶はラビング法など液晶分子を図1に示す伝播光
Lの方向に配列させる平行配列処理を予め施しておく。Then, the liquid crystal filling grooves 11 to 14 of the waveguide layer 1 are formed.
Is filled with a liquid crystal (for example, PCH1132 nematic liquid crystal from Merck). In this case, the refractive index of the nematic liquid crystal is 1.48 to 1.6, and the nematic liquid crystal is preliminarily subjected to parallel alignment processing such as rubbing method for aligning liquid crystal molecules in the direction of the propagation light L shown in FIG. Keep it.
【0011】さらに、図3に示すように電極21および
31間、電極22および32間、電極23および33
間、電極24および34間には、それぞれスイッチ7,
8,9,10を介して共通電源6が接続されている。Further, as shown in FIG. 3, between the electrodes 21 and 31, between the electrodes 22 and 32, and between the electrodes 23 and 33.
Between the electrodes 24 and 34, the switch 7,
The common power source 6 is connected via 8, 9, and 10.
【0012】このような構成のものにおいて、電極対の
いずれかに適当な電圧を印加すると、この電極間の液晶
は、入射するTMモード光に対して屈折率が1.6にな
る。例えば、スイッチ7を閉じて、電極21および31
間に電圧を印加して液晶に入射するTMモード光に対し
て屈折率が1.6になるように調整し、かつ残りの電極
22および32間、電極23および33間、電極24お
よび34間に入射するTMモード光に対して屈折率が導
波層1と等しくなるように調整しておく。このように調
整しておくことにより、あたかもグレーティングが入射
光に対して電極21および31間にだけあるように動作
する。In such a structure, when an appropriate voltage is applied to one of the electrode pairs, the liquid crystal between the electrodes has a refractive index of 1.6 with respect to the incident TM mode light. For example, switch 7 is closed and electrodes 21 and 31
Voltage is applied between the electrodes to adjust the refractive index to TM mode light incident on the liquid crystal to be 1.6, and between the remaining electrodes 22 and 32, between electrodes 23 and 33, between electrodes 24 and 34. It is adjusted so that the refractive index of the TM mode light incident on is equal to that of the waveguide layer 1. With such adjustment, the grating operates as if it were between the electrodes 21 and 31 with respect to the incident light.
【0013】また、同様にして、スイッチ10を閉じて
電極24および34間に電圧を印加し、入射するTMモ
ード光に対して屈折率が1.6になるように調整し、か
つ残りの電極21および電極31間、教電極22および
32間、電極23および33間に入射するTMモード光
に対して屈折率が導波層1と等しくなるように調整して
おく。このように調整しておくことにより、あたかもグ
レーティングが入射光に対して電極24および34間に
だけあるように動作する。以上述べたことから、電極対
間に印加する位置を、スイッチ7〜10により自由に変
更することにより、見掛け上のグレーティングの位置を
制御することができる。Similarly, the switch 10 is closed, a voltage is applied between the electrodes 24 and 34, the refractive index is adjusted to 1.6 with respect to the incident TM mode light, and the remaining electrodes are adjusted. The refractive index is adjusted to be equal to that of the waveguide layer 1 with respect to the TM mode light incident between the electrode 21 and the electrode 31, between the teaching electrodes 22 and 32 and between the electrodes 23 and 33. With such adjustment, the grating operates as if it were between the electrodes 24 and 34 with respect to the incident light. From the above description, the position of the apparent grating can be controlled by freely changing the position applied between the pair of electrodes with the switches 7 to 10.
【0014】図2において、電極34の位置にグレーテ
ィングがあるように、電極対24,34間にその間の結
晶の屈折率が1.6になるように電圧が印加され、残り
の電極間にはその間の液晶の屈折率が導波路層のそれと
等しくなるように電圧が印加されているときは、入射光
Lは電極対24,34間に存在するグレーティングによ
って回折され、回折光AとしてSの位置に進む。また、
電極31の位置にグレーティングがあるように、電極対
21,31間にその間の液晶の屈折率が1.6になるよ
うに電圧が印加され、残りの電極間にはその間の液晶の
屈折率が導波路層のそれと等しくなるように電圧が印加
されているときは、入射光Lは電極対21,31間に存
在するグレーティングによって回折され、回折光Bとし
てS1の位置に進む。さらに、電極対22,32間、2
3,33間についても同様に考えることができ、電圧の
印加の仕方で4つのグレーティングを制御でき、これに
より1×4の光スイッチが構成できる。今、説明したの
は、電極が数対(具体的には4対)あるときの説明であ
るが、実際には、可能な数だけ電極を増やし、それに見
合った数のグレーティングを制御することができること
になる。In FIG. 2, a voltage is applied between the pair of electrodes 24 and 34 so that the crystal has a refractive index of 1.6 between the pair of electrodes 24 and 34 so that the grating is located at the position of the electrode 34, and between the remaining electrodes. When a voltage is applied so that the refractive index of the liquid crystal during that time becomes equal to that of the waveguide layer, the incident light L is diffracted by the grating existing between the electrode pairs 24 and 34, and the position of S as diffracted light A is obtained. Proceed to. Also,
A voltage is applied between the electrode pairs 21 and 31 so that the refractive index of the liquid crystal between them becomes 1.6, and the refractive index of the liquid crystal therebetween is between the electrode pairs 21 and 31 so that the refractive index of the liquid crystal is 1.6. When a voltage is applied so as to be equal to that of the waveguide layer, the incident light L is diffracted by the grating existing between the electrode pairs 21 and 31, and advances to the position S1 as diffracted light B. Further, between the electrode pair 22 and 32, 2
The same can be considered for between 3 and 33, and four gratings can be controlled by the method of applying a voltage, whereby a 1 × 4 optical switch can be configured. Although the description has been given when there are several pairs of electrodes (specifically, four pairs), in reality, it is possible to increase the number of electrodes as much as possible and control the number of gratings commensurate with that. You can do it.
【0015】また、電圧を印加する電極の対数を調整す
れば、グレーティング長も可変にすることができる。例
えば、電極21および31間ならびに電極22および3
2間に同時に屈折率が1.6になるように電圧を印加
し、残り電極間には導波層1に入射するS偏光に対して
導波層の屈折率と等しくなるように電圧を印加しておく
ならば、グレーティング長は、見掛上前述の実施例の2
倍になる。以上述べた第1の実施例によれば、二次元導
波路により光線の到達する位置を制御でき、かつ導波路
を多数形成しなくてもすむ。The grating length can be made variable by adjusting the number of electrodes to which a voltage is applied. For example, between electrodes 21 and 31 and electrodes 22 and 3
A voltage is simultaneously applied between the two electrodes so that the refractive index becomes 1.6, and a voltage is applied between the remaining electrodes so that the S-polarized light incident on the waveguide layer 1 becomes equal to the refractive index of the waveguide layer. If so, the grating length is apparently 2 of that in the above-described embodiment.
Double. According to the first embodiment described above, the position where the light beam reaches can be controlled by the two-dimensional waveguide, and it is not necessary to form many waveguides.
【0016】図4は、本発明の第2の実施例を説明する
ための斜視図であり、入射光L1に対して出射光A,
B,Cが得られ、また入射光L2に対して出射光A,
B,Cが得られるようにしたものである。これは電極対
を4対にした時に得られる。このようにすることによ
り、2×3の光スイッチが得られる。これから明らかな
ように、電極対の数の選び方によってn×mの光スイッ
チも構成することができる。FIG. 4 is a perspective view for explaining the second embodiment of the present invention, in which the incident light L1 and the outgoing light A,
B, C are obtained, and the outgoing light A,
B and C are obtained. This is obtained when there are four pairs of electrodes. By doing so, a 2 × 3 optical switch can be obtained. As is apparent from this, an n × m optical switch can also be configured by selecting the number of electrode pairs.
【0017】前述した実施例では、液晶充填溝11〜1
4内に充填する液晶としてネマチック液晶を使用した
が、これに限らず他の液晶であっても同様な機能が得ら
れればなんでもよい。In the above-described embodiment, the liquid crystal filling grooves 11 to 1 are used.
Although nematic liquid crystal is used as the liquid crystal to be filled in 4, the liquid crystal is not limited to this, and any other liquid crystal may be used as long as the same function can be obtained.
【0018】[0018]
【発明の効果】本発明によれば、液晶充填溝に液晶が充
填された導波層に電圧を印加することにより屈折率が変
化するという原理を利用しているので、二次元導波路に
より光線の到達する位置を制御でき、かつ導波路を多数
形成しなくてもすむ光スイッチを提供することができ
る。According to the present invention, since the principle that the refractive index is changed by applying a voltage to the waveguide layer in which the liquid crystal filling groove is filled with the liquid crystal is utilized, the light beam is guided by the two-dimensional waveguide. It is possible to provide an optical switch in which the position reached by the optical path can be controlled and in which a large number of waveguides need not be formed.
【図1】本発明による光スイッチの原理を説明するため
の斜視図。FIG. 1 is a perspective view for explaining the principle of an optical switch according to the present invention.
【図2】本発明による光スイッチの第1の実施例を説明
するための斜視図。FIG. 2 is a perspective view for explaining the first embodiment of the optical switch according to the present invention.
【図3】図2のグレーティングの構成を示す分解斜視
図。FIG. 3 is an exploded perspective view showing the configuration of the grating shown in FIG.
【図4】本発明による光スイッチの第2の実施例を説明
するための斜視図。FIG. 4 is a perspective view for explaining a second embodiment of the optical switch according to the present invention.
1…導波層、2…下部クラッド層、3…上部クラッド
層、4,5…グレーティング、11〜14…液晶充填
溝、21〜24,31〜34…電極、6…電源、7〜1
0…スイッチ。DESCRIPTION OF SYMBOLS 1 ... Waveguide layer, 2 ... Lower cladding layer, 3 ... Upper cladding layer, 4,5 ... Grating, 11-14 ... Liquid crystal filling groove, 21-24, 31-34 ... Electrode, 6 ... Power supply, 7-1
0 ... switch.
Claims (1)
複数の液晶充填溝を同一方向に形成した導波層と、 この導波層の各液晶充填溝に充填され、電圧の印加によ
り屈折率が変わる液晶と、 前記導波層を挟むようにそれぞれ配設され、該表面に前
記導波層の溝の配列方向とは異なる方向に配設された複
数の電極を有する第1および第2のクラッド層と、 この第1および第2のクラッド層の少なくとも1組の対
をなす電極間に電圧を印加し、該電極対間の前記液晶の
屈折率を所定の値にするための電源と、 を具備した光スイッチ。1. A waveguide layer capable of guiding a light beam, having a plurality of liquid crystal filling grooves formed on the surface in the same direction, and a liquid crystal filling groove of each of the waveguide layers filled with a voltage. A liquid crystal having a different refractive index, and a first and a first electrode having a plurality of electrodes which are respectively disposed so as to sandwich the waveguide layer and which are disposed on the surface in a direction different from the direction in which the grooves of the waveguide layer are arranged. A power supply for applying a voltage between the second clad layer and at least one pair of electrodes of the first and second clad layers to make the refractive index of the liquid crystal between the pair of electrodes a predetermined value. And an optical switch equipped with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4095599A JPH05289122A (en) | 1992-04-15 | 1992-04-15 | Optical switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4095599A JPH05289122A (en) | 1992-04-15 | 1992-04-15 | Optical switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05289122A true JPH05289122A (en) | 1993-11-05 |
Family
ID=14142026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4095599A Withdrawn JPH05289122A (en) | 1992-04-15 | 1992-04-15 | Optical switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05289122A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002031558A1 (en) * | 2000-10-09 | 2002-04-18 | Thackara John I | Planar waveguide switch and optical cross-connect |
-
1992
- 1992-04-15 JP JP4095599A patent/JPH05289122A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002031558A1 (en) * | 2000-10-09 | 2002-04-18 | Thackara John I | Planar waveguide switch and optical cross-connect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4828362A (en) | Optical switch | |
JP2856880B2 (en) | Polarization-independent optical switch / modulator and method of manufacturing the same | |
EP1275026B1 (en) | Method and apparatus for switching optical signals with a photon band gap device | |
JP2004078195A (en) | Method for changing route of light signal propagating in waveguide, optical switching apparatus, method for switching light signal from first waveguide to second waveguide, system for delivering light signal from waveguide, and three-dimensional multilayered optical switch | |
US4172630A (en) | Multimode electrooptic waveguide switch | |
EP1338915A2 (en) | Waveguide type liquid-crystal optical switch | |
US7027670B2 (en) | Cascaded deflectors for multi-channel optical switches, and optical switching modules and methods having cascaded deflectors | |
EP1293823B1 (en) | Optical switch comprising two non-coplanar arrays of optical waveguides | |
JPH0447804B2 (en) | ||
JPH05289122A (en) | Optical switch | |
JPH11295769A (en) | Optical signal transmission system | |
US4185884A (en) | Four port optical internal reflectance switchable coupler | |
US20030021540A1 (en) | Directional optical coupler | |
JPS62153837A (en) | Optical path switch | |
JP4607595B2 (en) | Method and apparatus for switching optical signals with a photon bandgap device | |
JPH049823A (en) | Optical crossbar switch | |
JPH0553157A (en) | Optical control device | |
JPH0697286B2 (en) | Optical circuit and manufacturing method thereof | |
JPH05273603A (en) | Optical switching device | |
JPS6151775B2 (en) | ||
JPH01246529A (en) | Waveguide type optical switch | |
JP2848209B2 (en) | Waveguide type N × N optical switch | |
JPS6318171B2 (en) | ||
JPH0713685B2 (en) | Crossed-waveguide optical switch | |
JP2976608B2 (en) | Waveguide type optical switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990706 |