JPH0528882B2 - - Google Patents
Info
- Publication number
- JPH0528882B2 JPH0528882B2 JP61149575A JP14957586A JPH0528882B2 JP H0528882 B2 JPH0528882 B2 JP H0528882B2 JP 61149575 A JP61149575 A JP 61149575A JP 14957586 A JP14957586 A JP 14957586A JP H0528882 B2 JPH0528882 B2 JP H0528882B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- coating layer
- resistance value
- thick film
- insulating coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 48
- 239000011247 coating layer Substances 0.000 claims description 43
- 239000010410 layer Substances 0.000 claims description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 32
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 239000005388 borosilicate glass Substances 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 229910000464 lead oxide Inorganic materials 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 239000000463 material Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 229910000314 transition metal oxide Inorganic materials 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- -1 iron ions Chemical class 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
- Details Of Resistors (AREA)
- Non-Adjustable Resistors (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
この発明は、厚膜抵抗素子に係わり、とくにそ
の抵抗体層を覆う絶縁被覆層の材質の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a thick film resistive element, and particularly to improving the material of an insulating coating layer covering a resistor layer thereof.
(従来の技術)
厚膜抵抗素子は、例えばカラー受像管などの電
子銃構体に組込んで各電極に電圧を分圧して供給
する用途などに使用されている。その一例は、特
開昭55−14627号公報に示されている。管内に内
蔵される分圧抵抗素子は、アルミナセラミツクス
製の絶縁基板上に、酸化ルテニウム(RuO2)−ガ
ラス系からなる抵抗層をジグザグパターン状に印
刷塗布し、これを焼成したうえこの抵抗層を覆う
ように硼硅酸鉛ガラスからなる絶縁被覆層を形成
する。そしてこれを550〜650℃でおよそ20〜30分
焼成する。また、この絶縁被覆層の材料に酸化ア
ルミニウムを含有させてカラー受像管の製造工程
のとくに高電圧ノツキングによる抵抗値の変化を
抑制するものである。(Prior Art) Thick film resistive elements are used, for example, in applications such as being incorporated into an electron gun assembly such as a color picture tube and supplying a divided voltage to each electrode. An example of this is shown in Japanese Patent Application Laid-Open No. 14627/1983. The partial voltage resistance element built into the tube is made by printing and coating a resistance layer made of ruthenium oxide (RuO 2 )-glass in a zigzag pattern on an insulating substrate made of alumina ceramics, baking this, and then applying this resistance layer. An insulating coating layer made of lead borosilicate glass is formed to cover the. This is then baked at 550-650°C for approximately 20-30 minutes. In addition, aluminum oxide is contained in the material of this insulating coating layer to suppress changes in resistance value, particularly due to high voltage knocking, in the manufacturing process of color picture tubes.
ところで、この種厚膜抵抗素子に要求される条
件としては、高温雰囲気や動作中に発生するジユ
ール熱で高温となつても抵抗値変化が少ないこと
である。 Incidentally, a condition required of this type of thick film resistive element is that the resistance value does not change much even when the temperature becomes high due to high temperature atmosphere or Joule heat generated during operation.
(発明が解決しようとする問題点)
ところが、従来から知られるこの種厚膜抵抗素
子は、これを電子管に組込んで動作させると、第
5図に点線曲線Pで示すように動作初期からおよ
そ200乃至300時間内で抵抗値が大きく変化する現
象をもつことが確認される。またこの抵抗値の変
化は、高電圧がかかる部分でとくに顕著であつ
て、それにより分圧比が不所望に変化してしま
う。このように部分的に抵抗値が変化すると、各
管内電極への供給電圧配分が変化し電子レンズ作
用が劣化してしまい、例えばカラー受像管などで
は画質低下となつてしまう。(Problems to be Solved by the Invention) However, when this type of conventionally known thick-film resistor element is incorporated into an electron tube and operated, approximately It is confirmed that there is a phenomenon in which the resistance value changes significantly within 200 to 300 hours. Further, this change in resistance value is particularly noticeable in areas to which high voltage is applied, resulting in an undesirable change in the voltage division ratio. When the resistance value partially changes in this way, the distribution of voltage supplied to each tube electrode changes and the electron lens action deteriorates, resulting in a deterioration in image quality in, for example, a color picture tube.
この発明は以上のような事情に鑑み、抵抗値が
長時間の動作でもほとんど変化しない厚膜抵抗素
子を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a thick film resistive element whose resistance value hardly changes even during long-term operation.
(発明の概要)
この発明は、抵抗体層を覆う硼硅酸鉛ガラスを
主体とする絶縁被覆層が、酸化鉄と、ニツケル、
クロム、コバルト、亜鉛、銅、ジルコニウム、カ
ドミウムの中から選択された少なくとも1つの遷
移金属酸化物とを含んでなる厚膜抵抗素子であ
る。(Summary of the Invention) This invention provides an insulating coating layer mainly made of lead borosilicate glass that covers the resistor layer.
The thick film resistance element includes at least one transition metal oxide selected from chromium, cobalt, zinc, copper, zirconium, and cadmium.
(作用)
このような厚膜抵抗素子によれば、比較的高
温、あるいは高電圧が印加される条件で長時間動
作されても、抵抗体層の抵抗値の変化をきわめて
小さい範囲にとどめることができる。(Function) According to such a thick film resistor element, even if it is operated for a long time under relatively high temperature or high voltage conditions, the change in the resistance value of the resistor layer can be kept within an extremely small range. can.
後述するように、従来の構成の場合は抵抗体層
からそれを覆う絶縁被覆層は、これら抵抗体層及
び絶縁被覆層の共通構成成分である酸化鉛が溶出
し、これが原因となつて抵抗値を大きく変化させ
ているものと考えられる。それに対してこの発明
によれば、厚膜抵抗素子の絶縁被覆層が酸化鉄を
必須とし、これにニツケル、クロム、コバルト、
亜鉛、銅、ジルコニウム、カドミウムの中から選
択された少なくとも1つの遷移金属酸化物を含有
することにより、抵抗体層から絶縁被覆層への酸
化鉛の溶出が抑えられる。それによつて、高温あ
るいは高電界中で長時間動作させても抵抗値の変
化がきわめて少ない厚膜抵抗素子を得ることがで
きる。その理由は、絶縁被覆層が、いずれも塩基
性酸化物である酸化鉄およびその他の遷移金属酸
化物を含むことにより、絶縁被覆層の酸性度が低
く抑えられており、抵抗体層中の酸化鉛(PbO)
が絶縁被覆層に溶出して行く反応が少ない。こう
して、抵抗体層の抵抗値の変化が抑制される。 As will be described later, in the case of the conventional configuration, lead oxide, which is a common constituent of the resistor layer and the insulation coating layer, is eluted from the resistor layer and the insulation coating layer that covers it, and this causes the resistance value to decrease. It is thought that this is changing significantly. In contrast, according to the present invention, the insulating coating layer of the thick film resistance element essentially contains iron oxide, and nickel, chromium, cobalt, etc.
By containing at least one transition metal oxide selected from zinc, copper, zirconium, and cadmium, the elution of lead oxide from the resistor layer to the insulating coating layer is suppressed. Thereby, it is possible to obtain a thick film resistive element whose resistance value hardly changes even if it is operated for a long time at high temperature or in a high electric field. The reason for this is that the insulation coating layer contains iron oxide and other transition metal oxides, both of which are basic oxides, so the acidity of the insulation coating layer is kept low, and the oxidation in the resistor layer is suppressed. Lead (PbO)
There is little reaction of eluting into the insulating coating layer. In this way, changes in the resistance value of the resistor layer are suppressed.
(発明の実施例) 以下図面を参照してその実施例を説明する。(Example of the invention) Examples thereof will be described below with reference to the drawings.
第1図はその中央縦断面図、第2図は外表部を
構成する絶縁被覆層上から透視した平面図であ
る。 FIG. 1 is a central vertical sectional view thereof, and FIG. 2 is a plan view seen through from above the insulating coating layer constituting the outer surface.
好ましい製造手順にしたがつて説明すると、ま
ず酸化アルミニウムが約96重量パーセントのセラ
ミツクス製の細長い絶縁基板27を用意する。な
おこの絶縁基板の材料としては、酸化アルミニウ
ムを主成分に、他に酸化硅素、酸化マグネシウ
ム、あるいは酸化カルシウム等を含有したセラミ
ツクス基板でもよく、あるいはまたガラス基板等
であつてもよい。この絶縁基板27の所要箇所に
低抵抗の島状電極層28,28…および貫通ピン
を含むステンレス製の端子22,23,24,2
5,26を設ける。 In accordance with a preferred manufacturing procedure, first, an elongated insulating substrate 27 made of ceramic containing approximately 96 weight percent aluminum oxide is prepared. The material of this insulating substrate may be a ceramic substrate containing aluminum oxide as a main component and silicon oxide, magnesium oxide, calcium oxide, etc., or a glass substrate. Low-resistance island-shaped electrode layers 28, 28... and stainless steel terminals 22, 23, 24, 2 including through pins are provided at required locations on this insulating substrate 27.
5, 26 are provided.
次にこの絶縁基板27の一面上に、酸化ルテニ
ウム(RuO2)粉末と、酸化鉛(PbO)および酸
化硅素(SiO2)を主成分とするガラス質材料粉
末との無機混合物を溶融、混練して得られる抵抗
材料をジグザグパターン状に印刷塗布する。これ
は各電極端子に電気的に接合され、抵抗体層29
となる。なおこの抵抗体層29は、酸化ルテニウ
ム、酸化鉛、および酸化硅素を主成分とするもの
であるが、これに加え酸化チタン、酸化アルミニ
ウム、酸化ビスマスを含有させてもよい。なお、
低抵抗の島状電極層部28,28…は、抵抗体層
29と同様に酸化ルテニウム、酸化鉛、酸化硅素
を主成分とするが、酸化ルテニウム/ガラス成分
比を抵抗体層29よりも大きくして低抵抗値を得
る。 Next, on one surface of this insulating substrate 27, an inorganic mixture of ruthenium oxide (RuO 2 ) powder and glassy material powder whose main components are lead oxide (PbO) and silicon oxide (SiO 2 ) is melted and kneaded. The resulting resistive material is printed and coated in a zigzag pattern. This is electrically connected to each electrode terminal, and the resistor layer 29
becomes. The resistor layer 29 mainly contains ruthenium oxide, lead oxide, and silicon oxide, but may also contain titanium oxide, aluminum oxide, and bismuth oxide. In addition,
The low-resistance island-shaped electrode layer portions 28, 28, . to obtain a low resistance value.
そして次に、このように抵抗体層等を塗布した
絶縁基板を、大気中において、約550〜1000℃の
範囲の温度、例えば950℃で焼成する。そして抵
抗体層の抵抗値をレーザートリミングにより調整
する。 Next, the insulating substrate coated with the resistor layer and the like is fired in the atmosphere at a temperature in the range of about 550 to 1000°C, for example 950°C. Then, the resistance value of the resistor layer is adjusted by laser trimming.
次に、抵抗体層29を覆うように、硼硅酸鉛ガ
ラス材料すなわち10重量パーセントの酸化硼素
(BeO3)、27重量パーセントの酸化硅素(SiO2)、
55重量パーセントの酸化鉛(PbO)、5重量パー
セントの酸化アルミニウム(A2O3)、さらに
これに3重量パーセント(Fe2O3として添加され
ているものとして算出)の酸化鉄を含有する絶縁
被覆層30の材料を、ペースト状にして厚膜印刷
により塗布する。なお各端子上には塗布せず露出
したままとする。 Next, to cover the resistor layer 29, lead borosilicate glass materials, namely 10 weight percent boron oxide (BeO 3 ), 27 weight percent silicon oxide (SiO 2 ),
Insulation containing 55% by weight lead oxide (PbO), 5% by weight aluminum oxide (A 2 O 3 ), and 3% by weight iron oxide (calculated as added as Fe 2 O 3 ) The material for the covering layer 30 is made into a paste and applied by thick film printing. Note that each terminal is not coated and left exposed.
次にこれを大気中において、約550〜1000℃の
範囲の温度、例えば600℃で焼成する。次いでさ
らにこれを、窒素(N2)に約10体積%の水素
(H2)を添加した雰囲気中で、先の焼成温度より
も低い400〜550℃の範囲の温度、例えば450℃で
約30時間の熱処理をする。 This is then fired in air at a temperature in the range of about 550-1000°C, for example 600°C. This is then further heated at a temperature in the range of 400-550°C lower than the previous firing temperature, e.g. Heat treatment for an hour.
なおこの絶縁被覆層30の熱処理は、塗布後に
水素雰囲気中において550〜1000℃の温度で処理
してもよい。このような熱処理によつてガラス質
の絶縁被覆層30を得る。 Note that the insulating coating layer 30 may be heat-treated at a temperature of 550 to 1000° C. in a hydrogen atmosphere after coating. Through such heat treatment, a glassy insulating coating layer 30 is obtained.
以上の製造工程を経て、全抵抗値が500MΩの
厚膜抵抗素子を得た。 Through the above manufacturing process, a thick film resistive element with a total resistance value of 500 MΩ was obtained.
なお、抵抗体層および絶縁基板面を覆う絶縁被
覆層30の材料としては、硼硅酸鉛ガラスを主体
とし、これに酸化鉄、およびニツケル、クロム、
コバルト、亜鉛、銅、ジルコニウム、カドミウム
の中から選択された少なくとも1つの遷移金属酸
化物を含有させる。このうちとくに酸化鉄を必須
とすることが望ましい。そして酸化鉄を0.5〜10
重量パーセント(Fe2O3)として添加されている
ものとして算出)、より好ましくは2〜5重量%
を含有させる。 The material of the insulating coating layer 30 that covers the resistor layer and the insulating substrate surface is mainly lead borosilicate glass, with iron oxide, nickel, chromium,
Contains at least one transition metal oxide selected from cobalt, zinc, copper, zirconium, and cadmium. Among these, it is particularly desirable to make iron oxide essential. and iron oxide from 0.5 to 10
weight percent (calculated as added as Fe 2 O 3 ), more preferably 2-5% by weight
Contain.
このようにして得られた厚膜抵抗素子21を、
カラー受像管の電子銃構体に沿わせて配設し、電
子レンズ用電極と端子とを電気的に接続する。こ
の発明の厚膜抵抗素子によれば、抵抗体層の抵抗
値が長時間動作でもほとんど変化しないことが確
められた。すなわち、素子が比較的高温状態を経
たり、抵抗体層自身に発生するジユール熱で高温
となり、また高電圧が印加される条件で長時間動
作されても、抵抗体層の抵抗値の変化を極めて小
さな範囲にとどめることができた。 The thick film resistance element 21 obtained in this way is
It is arranged along the electron gun structure of the color picture tube and electrically connects the electron lens electrode and the terminal. According to the thick film resistive element of the present invention, it has been confirmed that the resistance value of the resistor layer hardly changes even during long-term operation. In other words, the resistance value of the resistor layer will not change even if the element goes through a relatively high temperature state, becomes high temperature due to Joule heat generated in the resistor layer itself, or is operated for a long time under conditions where a high voltage is applied. I was able to keep it within a very small range.
このようにこの発明により高温、高電界で長時
間動作されても抵抗体層の抵抗値変化を極めて小
さな範囲にとどめることができる理由について以
下説明する。 The reason why the present invention allows the change in resistance value of the resistor layer to be kept within an extremely small range even when operated at high temperature and high electric field for a long time will be explained below.
本発明者らは、この抵抗値変動の要因に関し、
ガラス中に含まれる各種酸化物の性質との関係を
考案した。その結果、従来の単なる硼硅酸鉛ガラ
スを主体とする絶縁被覆層をもつ厚膜抵抗素子で
は、抵抗体層中の酸化鉛(PbO)が絶縁被覆層に
溶出して行く反応が起こり、抵抗値を変えている
ものと推論できる。すなわち、従来の硼硅酸鉛ガ
ラスからなる絶縁被覆層は、塩基性の酸化鉛
(PbO)を含むものの、強酸性である酸化硅素
(SiO2)および酸化硼素(B2O3)により酸性度が
非常に高い。この絶縁被覆層が単に抵抗体層上に
載つている状態では両層間の反応は進まない。し
かし、抵抗体素子の使用中にジユール熱で両層が
温度上昇すると、絶縁被覆層の酸性度を中和する
方向で抵抗体層の酸化鉛(PbO)が絶縁被覆層に
溶出する反応が起こる。それによつて、抵抗体層
の抵抗値が変化するものと考えられる。 The present inventors have investigated the causes of this resistance value fluctuation,
We devised the relationship between the properties of various oxides contained in glass. As a result, in conventional thick-film resistor elements with an insulating coating layer made mainly of lead borosilicate glass, a reaction occurs in which lead oxide (PbO) in the resistor layer is leached into the insulating coating layer, resulting in a resistance to resistance. It can be inferred that the value is changing. In other words, although the conventional insulating coating layer made of lead borosilicate glass contains basic lead oxide (PbO), it has a high acidity due to the strongly acidic silicon oxide (SiO 2 ) and boron oxide (B 2 O 3 ). is very high. If this insulating coating layer is simply placed on the resistor layer, the reaction between the two layers will not proceed. However, when the temperature of both layers rises due to Joule heat while the resistor element is in use, a reaction occurs in which lead oxide (PbO) in the resistor layer is leached into the insulation coating layer in a direction that neutralizes the acidity of the insulation coating layer. . It is thought that this changes the resistance value of the resistor layer.
それに対してこの発明による抵抗体素子は、そ
の絶縁被覆層がいずれも塩基性酸化物である酸化
鉄、および酸化ニツケル、酸化クロム、酸化コバ
ルト、酸化亜鉛、酸化銅、酸化ジルコニウム、酸
化カドミウムのような遷移金属酸化物を含む構成
であるため、絶縁被覆層の酸性度が低く抑えられ
ている。したがつて、抵抗体素子の使用中に温度
上昇しても、両層の反応即ち抵抗体層から絶縁被
覆層への酸化鉛(PbO)の溶出が抑制され、抵抗
値の変化が抑制される。 In contrast, the resistor element according to the present invention has an insulating coating layer made of basic oxides such as iron oxide, nickel oxide, chromium oxide, cobalt oxide, zinc oxide, copper oxide, zirconium oxide, and cadmium oxide. Since the structure includes a transition metal oxide, the acidity of the insulating coating layer is kept low. Therefore, even if the temperature rises during use of the resistor element, the reaction between both layers, that is, the elution of lead oxide (PbO) from the resistor layer to the insulating coating layer, is suppressed, and changes in resistance value are suppressed. .
なおとくに、絶縁被覆層に含まれる酸化鉄は、
2価および3価(即ちFeOと、Fe2O3)として共
存する。これらはいずれも塩基性酸化物である
が、塩基度は2価の鉄(Fe2+)の方が高いので、
それだけ抵抗体層中の酸化鉛(PbO)が絶縁被覆
層に溶出する反応が少なくなり、抵抗値の変化が
抑制される。そのため、酸化鉄中の鉄の90%以上
が2価の鉄(Fe2+)となつているようにするこ
とがより望ましい。 In particular, the iron oxide contained in the insulation coating layer is
It coexists as divalent and trivalent (ie, FeO and Fe 2 O 3 ). All of these are basic oxides, but divalent iron (Fe 2+ ) has a higher basicity, so
This reduces the reaction in which lead oxide (PbO) in the resistor layer dissolves into the insulating coating layer, thereby suppressing changes in resistance value. Therefore, it is more desirable that 90% or more of the iron in the iron oxide be divalent iron (Fe 2+ ).
このような推論に基き、実証を試みた。種々の
状態で含有される酸化鉄を含む絶縁被覆層をもつ
抵抗素子の、各絶縁被覆層の状態を分析した。す
なわち、受像管に抵抗素子を内蔵させる前の段階
で、各絶縁被覆層の断面の構成元素の分布状態を
電子線励起X線マイクロアナライザ(EPMA)
により分析した。なお使用した装置は、日本電子
(株)製の高速広域マルチアナライザーJCMA−733
で、元素分布をその元素の濃度分布として表示で
きる機能を有する特殊なEPMAである。そして
各抵抗素子を受像管内に組込み、30kvのアノー
ド電圧で約3000時間動作させた。そして動作所期
の抵抗値に対する3000時間後の抵抗値の変化量の
程度に応じてほぼ3つのランクに分類し、抵抗値
の変化量と動作前の絶縁被覆層の状態分析とを対
応させた。その結果、動作前に第3図のAに示す
ような鉄のL線スペクトルが確認されたものは、
抵抗値の変化量が約4%で、とくに200〜300時間
付近で大きく抵抗値が変化する傾向を示したもの
である。なおこの測定は、化学結合の変化による
影響がその波長や形状に敏感に表われる鉄のL線
を、加速電圧10KeVで行なつた。また、同図B
に示すものは、抵抗値の変化が約2%のものであ
る。さらにまた同図にCで示すものは約3000時間
動作させても抵抗値の変化がほとんどなかつたも
のである。そして対比のために第3図には標準試
料として用いたFeO及びFe2O3の鉄のL線スペク
トルを示している。 Based on this reasoning, we attempted to demonstrate the results. The state of each insulating coating layer of a resistance element having an insulating coating layer containing iron oxide in various states was analyzed. In other words, before a resistive element is built into the picture tube, the distribution of constituent elements in the cross section of each insulating coating layer is measured using an electron beam excited X-ray microanalyzer (EPMA).
Analyzed by. The equipment used was manufactured by JEOL.
High-speed wide-area multi-analyzer JCMA-733 manufactured by Co., Ltd.
This is a special EPMA that has the function of displaying the element distribution as the concentration distribution of that element. Each resistive element was then assembled into a picture tube and operated at an anode voltage of 30 kV for approximately 3,000 hours. They were then classified into approximately three ranks depending on the degree of change in resistance value after 3000 hours with respect to the intended resistance value, and the change in resistance value corresponded to the state analysis of the insulating coating layer before operation. . As a result, the iron L-line spectrum shown in A in Figure 3 was confirmed before operation.
The amount of change in resistance value was about 4%, and the resistance value showed a tendency to change particularly significantly around 200 to 300 hours. This measurement was carried out at an accelerating voltage of 10 KeV using the L-ray of iron, where the effects of changes in chemical bonds are sensitive to wavelength and shape. Also, the same figure B
In the case shown in Fig. 2, the change in resistance value is about 2%. Furthermore, the one indicated by C in the same figure shows almost no change in resistance value even after being operated for about 3000 hours. For comparison, FIG. 3 shows the iron L-line spectra of FeO and Fe 2 O 3 used as standard samples.
第3図に示す分析の比較から、Aの状態のもの
は、FeO(Fe2+)と、Fe2O3(Fe3+)とが共存して
おり、Bの状態のものは、Fe2+とFe3+の共存が
認められるもののFe3+として存在する量が減つ
ていること、Cの状態のものは、Fe2+だけの単
一状態になつていることがわかる。したがつて、
抵抗値の変化をより一層小さく抑えるためには、
初期から絶縁被覆層の酸化鉄の鉄がFe2+だけの
単一状態になつていることが望ましいことがわか
る。 A comparison of the analyzes shown in Figure 3 shows that in state A, FeO (Fe 2+ ) and Fe 2 O 3 (Fe 3+ ) coexist, and in state B, Fe 2 It can be seen that although the coexistence of + and Fe 3+ is observed, the amount existing as Fe 3+ is decreasing, and that the C state has become a single state of only Fe 2+ . Therefore,
In order to keep the change in resistance value even smaller,
It can be seen that it is desirable for the iron oxide in the insulating coating layer to be in a single state of only Fe 2+ from the beginning.
また本発明者らは、厚膜抵抗素子の全抵抗値を
500MΩとし、絶縁被覆層が酸化鉄を含むか、含
まない以外は同一の抵抗体素子を種々作製し、こ
れらを受像管内に取り付け、両端端子間に受像管
のアノード電圧である300kvの電圧を印加し約
3000時間動作させ、全抵抗値の変化量を調べた。
第4図に、絶縁被覆層の酸化鉄の含有量(Fe2O3
として添加されているものとして算出、重量比)
と、その3000時間動作後の初期抵抗値に対する抵
抗値変化量との関係について示す。この第4図の
結果から明らかな如く、絶縁被覆層中の酸化鉄の
量が0.5乃至10重量パーセントの範囲にある場合、
特に2〜5重量パーセントの範囲にある場合に、
長時間動作での抵抗値の変化を実用上問題になら
ない程度の小さい値に抑えることができる。 The inventors also calculated the total resistance value of the thick film resistance element.
500MΩ, and make various resistor elements that are the same except that the insulating coating layer contains iron oxide or not, install these in the picture tube, and apply a voltage of 300kv, which is the anode voltage of the picture tube, between both terminals. agreement
The device was operated for 3000 hours and the amount of change in total resistance value was examined.
Figure 4 shows the iron oxide content (Fe 2 O 3
Calculated as added as (weight ratio)
The relationship between this and the amount of change in resistance value with respect to the initial resistance value after 3000 hours of operation is shown below. As is clear from the results in FIG. 4, when the amount of iron oxide in the insulating coating layer is in the range of 0.5 to 10 weight percent,
Especially when in the range of 2 to 5 weight percent,
Changes in resistance value during long-term operation can be suppressed to a value so small that it does not pose a practical problem.
また、絶縁被覆層に含まれる酸化鉄を形成する
鉄イオンの90%以上、さらにより望ましくは95%
以上がFe2+であることが望ましい。すなわち、
絶縁被覆層に含まれる酸化鉄を形成する鉄イオン
の約90%がFe2+であるものは、第5図に曲線Q1
で示すように約3000時間の動作で抵抗値の変化は
約2%程度にとどめることができた。また同様に
95%がFe2+であるものは、同図に曲線Q2で示す
ように1%程度に、さらに同様に、100%がFe2+
であるものは、同図に曲線Q3で示すように動作
初期からほとんど抵抗値の変化が無視できる程度
にとどめることができた。 In addition, at least 90%, more preferably 95%, of the iron ions forming iron oxide contained in the insulating coating layer
It is desirable that the above is Fe 2+ . That is,
When approximately 90% of the iron ions forming the iron oxide contained in the insulating coating layer are Fe 2+ , curve Q 1 is shown in Figure 5.
As shown in Figure 3, after approximately 3000 hours of operation, the change in resistance value could be kept to about 2%. Similarly
In the case where 95% is Fe 2+ , as shown by curve Q 2 in the same figure, it is about 1%, and similarly, 100% is Fe 2+
As shown by curve Q3 in the figure, the change in resistance value could be kept to a negligible level from the beginning of operation.
そしてこのように、動作初期から絶縁被覆層に
含まれる酸化鉄を形成する鉄イオンの90%以上が
Fe2+であるように構成するには、前述のように
絶縁被覆層が酸化鉄を0.5乃至100重量パーセント
(Fe2O3の形で添加されているものとして算出)
含む場合には、少なくとも水素を含む雰囲気で熱
処理を施すことにより確実に得ることができる。 In this way, more than 90% of the iron ions that form iron oxide contained in the insulation coating layer are absorbed from the initial stage of operation.
To make it Fe 2+ , the insulating coating layer contains 0.5 to 100 weight percent iron oxide (calculated assuming that it is added in the form of Fe 2 O 3 ) as described above.
If it contains hydrogen, it can be reliably obtained by performing heat treatment in an atmosphere containing at least hydrogen.
以上説明したようにこの発明によれば、厚膜抵
抗素子を構成する抵抗体層から絶縁被覆層への酸
化鉛の溶出が抑制され、比較的高温、あるいは高
電界のもとで長時間動作されても抵抗値の変化を
小さな範囲にとどめることができる。信頼性の高
い厚膜抵抗素子を得ることができる。
As explained above, according to the present invention, the elution of lead oxide from the resistor layer constituting the thick film resistor element to the insulating coating layer is suppressed, and the element can be operated for a long time at relatively high temperatures or under high electric fields. However, the change in resistance value can be kept within a small range. A highly reliable thick film resistance element can be obtained.
第1図はこの発明の実施例を示す要部断面図、
第2図はその平面図、第3図は状態比較図、第4
図および第5図はそれぞれ特性比較図である。
21…厚膜抵抗素子、22〜26…端子、27
…絶縁基板、29…抵抗体層、30…絶縁被覆
層。
FIG. 1 is a sectional view of a main part showing an embodiment of the present invention.
Figure 2 is a plan view, Figure 3 is a state comparison diagram, Figure 4
5 and 5 are characteristic comparison diagrams, respectively. 21 ... Thick film resistance element, 22-26... Terminal, 27
...Insulating substrate, 29...Resistor layer, 30...Insulating coating layer.
Claims (1)
硅素を主成分とする無機混合物からなる抵抗体層
が被着され、この抵抗体層を覆うように硼硅酸鉛
ガラスを主体とする絶縁被覆層が設けられてなる
厚膜抵抗素子において、 上記絶縁被覆層は、酸化鉄と、ニツケル、クロ
ム、コバルト、亜鉛、銅、ジルコニウム、カドミ
ウムの中から選択された少なくとも1つの遷移金
属酸化物とを含んでなることを特徴とする厚膜抵
抗素子。 2 絶縁被覆層は、酸化鉄が被覆層全体の0.5乃
至10重量%の範囲で含有されている特許請求の範
囲第1項記載の厚膜抵抗素子。 3 絶縁被覆層は、酸化鉄中の鉄の90%以上が2
価の鉄(Fe2+)である特許請求の範囲第1項ま
たは第2項記載の厚膜抵抗素子。[Claims] 1. A resistor layer made of an inorganic mixture containing ruthenium oxide, lead oxide, and silicon oxide as main components is deposited on an insulating substrate, and lead borosilicate glass is applied to cover this resistor layer. In a thick film resistance element provided with an insulating coating layer mainly composed of iron oxide and at least one transition selected from nickel, chromium, cobalt, zinc, copper, zirconium, and cadmium, A thick film resistance element comprising a metal oxide. 2. The thick film resistance element according to claim 1, wherein the insulating coating layer contains iron oxide in a range of 0.5 to 10% by weight of the entire coating layer. 3 In the insulation coating layer, more than 90% of the iron in the iron oxide is 2
The thick film resistive element according to claim 1 or 2, which is made of valent iron (Fe 2+ ).
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61149575A JPS636801A (en) | 1986-06-27 | 1986-06-27 | Thick film resistance element |
EP87108981A EP0251137B1 (en) | 1986-06-27 | 1987-06-23 | A resistor and an electron tube incorporating the same |
DE8787108981T DE3774943D1 (en) | 1986-06-27 | 1987-06-23 | A RESISTANCE AND AN ELECTRON PIPE CONTAINING THIS RESISTANCE. |
KR1019870006437A KR900006171B1 (en) | 1986-06-27 | 1987-06-25 | Resistance device and electron tube having the same |
US07/066,200 US4760370A (en) | 1986-06-27 | 1987-06-25 | Resistor and an electron tube incorporating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61149575A JPS636801A (en) | 1986-06-27 | 1986-06-27 | Thick film resistance element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS636801A JPS636801A (en) | 1988-01-12 |
JPH0528882B2 true JPH0528882B2 (en) | 1993-04-27 |
Family
ID=15478189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61149575A Granted JPS636801A (en) | 1986-06-27 | 1986-06-27 | Thick film resistance element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS636801A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52121798A (en) * | 1976-04-07 | 1977-10-13 | Hitachi Ltd | Glass covered thick film resistance |
JPS53100496A (en) * | 1977-02-15 | 1978-09-01 | Sumitomo Metal Mining Co | Method of manufacturing paste for resistance body |
-
1986
- 1986-06-27 JP JP61149575A patent/JPS636801A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52121798A (en) * | 1976-04-07 | 1977-10-13 | Hitachi Ltd | Glass covered thick film resistance |
JPS53100496A (en) * | 1977-02-15 | 1978-09-01 | Sumitomo Metal Mining Co | Method of manufacturing paste for resistance body |
Also Published As
Publication number | Publication date |
---|---|
JPS636801A (en) | 1988-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4015230A (en) | Humidity sensitive ceramic resistor | |
US4215020A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4073970A (en) | Method of making electric heating unit | |
EP0235749B1 (en) | Positive ceramic semiconductor device | |
US4724416A (en) | Voltage non-linear resistor and its manufacture | |
US4087778A (en) | Termination for electrical resistor and method of making the same | |
JP3735151B2 (en) | Multilayer chip varistor and manufacturing method thereof | |
CA1123524A (en) | Method for manufacturing a ceramic electronic component | |
US4760370A (en) | Resistor and an electron tube incorporating the same | |
US4397915A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4322477A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4378409A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
JP3175500B2 (en) | Voltage nonlinear resistor and method of manufacturing the same | |
JP3735756B2 (en) | Chip-shaped electronic component and manufacturing method thereof | |
US4420737A (en) | Potentially non-linear resistor and process for producing the same | |
JPH0528882B2 (en) | ||
RU2086027C1 (en) | Method for manufacturing of thick-film resistors | |
JPH0682540B2 (en) | Thick film resistance element and electron tube incorporating the same | |
US4684543A (en) | Starting mixture for an insulating composition comprising a lead glass, silk-screening ink comprising such a mixture, and the use of said ink for the protection of hybrid microcircuits on ceramic substrates | |
EP0187205B1 (en) | Moisture sensitive ceramic material and process for its production | |
US4137519A (en) | Resistor material, resistor made therefrom and method of making the same | |
JPS636803A (en) | Manufacture of thick film resistance element | |
KR100395189B1 (en) | A degaussing unit comprising one or two thermistors | |
JPH0661013A (en) | Thick film positive temperature coefficient thermistor composition and manufacture thereof as well as thick film positive temperature coefficient thermistor using the composition | |
JP2507951B2 (en) | Barista |