Nothing Special   »   [go: up one dir, main page]

JPH05279817A - Production of heat exchanger made of aluminum alloy - Google Patents

Production of heat exchanger made of aluminum alloy

Info

Publication number
JPH05279817A
JPH05279817A JP9178492A JP9178492A JPH05279817A JP H05279817 A JPH05279817 A JP H05279817A JP 9178492 A JP9178492 A JP 9178492A JP 9178492 A JP9178492 A JP 9178492A JP H05279817 A JPH05279817 A JP H05279817A
Authority
JP
Japan
Prior art keywords
heat exchanger
brazing
aluminum alloy
alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9178492A
Other languages
Japanese (ja)
Inventor
Takenobu Dokou
武宜 土公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP9178492A priority Critical patent/JPH05279817A/en
Publication of JPH05279817A publication Critical patent/JPH05279817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To produce a heat exchanger made of aluminum alloy capable of improving the heat efficiency and strength of a heat exchanger prepared by a brazing process. CONSTITUTION:At the time of producing a heat exchanger made of aluminum alloy by a brazing process, the heat exchanger made of aluminum alloy is produced by performing, in the course of cooling after the completion of brazing heating, holding at 400-500 deg.C for 10min-30hr and applying cooling through the temp. region between 200 and <400 deg.C at >=30 deg.C/min cooling rate and further applying ageing treatment at 120-220 deg.C for 30min-48hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金製熱
交換器の製造方法に関するものであり、さらに詳しく
は、ろう付け工法により製造された熱交換器の熱効率お
よび強度を向上させるアルミニウム合金製熱交換器の製
造方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum alloy heat exchanger, and more specifically, an aluminum alloy heat exchanger for improving the heat efficiency and strength of a heat exchanger manufactured by a brazing method. A method for manufacturing an exchanger is provided.

【0002】[0002]

【従来の技術およびその課題】ラジエーター等の熱交換
器は例えば図1に示すように複数本の偏平チューブ(1)
の間にコルゲート状に加工した薄肉フィン(2) を一体に
形成し、該偏平チューブ(1) の両端はヘッダー(3) とタ
ンク(4) とで構成される空間にそれぞれ開口しており、
一方のタンク側の空間から偏平チューブ(1) 内を通して
高温冷媒を他方のタンク(4) 側の空間に送り、チューブ
(1) およびフィン(2) の部分で熱交換して低温になった
冷媒を再び循環させるものである。このような熱交換器
のチューブ材およびヘッダー材は例えばJIS3003
合金を芯材とし、該芯材の内側、すなわち冷媒に常時触
れている側には犠牲効果を有する内張材としてJIS7
072合金を、そして、該芯材の外側には、通常JIS
4045等のろう材をクラッドしたブレージングシート
を用いている。また、フィン材はコルゲート加工して用
いられるが、JIS3003やそれに犠牲効果を与える
目的でZn等を含有した合金が用いられている。これら
は、ブレージングにより一体に組み立てられている。
2. Description of the Related Art A heat exchanger such as a radiator has a plurality of flat tubes (1) as shown in FIG.
A thin fin (2) processed into a corrugated shape is integrally formed between the flat tubes (1), and both ends of the flat tube (1) are opened in a space formed by the header (3) and the tank (4).
The high temperature refrigerant is sent from the space on the side of one tank to the space on the side of the other tank (4) through the flat tube (1).
This is to circulate again the refrigerant whose temperature has become low due to heat exchange at (1) and fin (2). The tube material and header material of such a heat exchanger are, for example, JIS3003.
JIS 7 is used as a lining material having a sacrificial effect on the inside of the core material, that is, on the side that is constantly in contact with the refrigerant, using an alloy as the core material.
072 alloy, and the outside of the core is usually JIS
A brazing sheet in which a brazing material such as 4045 is clad is used. Further, although the fin material is used after being corrugated, JIS 3003 or an alloy containing Zn or the like is used for the purpose of giving a sacrificial effect thereto. These are assembled together by brazing.

【0003】また、積層型エバポレーターを図2に示す
が、フィン(5) と冷媒通路(7) 、(7′) を形成するブレ
ージングシートからなる通路構成シート(6) 、(6′) を
交互に積層し、ろう付け接合するもので、フィンには通
常0.1mm前後のものが用いられ、通路構成シートには
板厚0.5mm程度のブレージングシートが用いられてい
る。このようなエバポレーターでは、冷媒通路を外部腐
食から防食するため、JIS 3003やそれに犠牲効
果を与える目的でZn等を含有した合金のフィン材が通
常用いられ、冷媒通路にはAl−1%Mn合金にCu、
Zr等を必要に応じて添加した合金を芯材とし、その表
面にJIS 4004やJIS 4343等のろう材を
クラッドしている。
A laminated evaporator is shown in FIG. 2, in which fins (5) and passage-constituting sheets (6) and (6 '), which are brazing sheets forming refrigerant passages (7) and (7'), are alternated. The fins are usually about 0.1 mm, and the passage-constituting sheet is a brazing sheet having a plate thickness of about 0.5 mm. In such an evaporator, in order to prevent the corrosion of the refrigerant passage from external corrosion, a fin material of JIS 3003 or an alloy containing Zn or the like is usually used for the purpose of giving a sacrificial effect to the same. An Al-1% Mn alloy is used in the refrigerant passage. Cu,
An alloy to which Zr or the like is added as needed is used as a core material, and a brazing material such as JIS 4004 or JIS 4343 is clad on the surface thereof.

【0004】また、図3はサーペンタインタイプのコン
デンサーであるが、熱間または温間で管状に押し出し成
形した管材(8) を蛇行状に折り曲げ、管材の間にブレー
ジングシートからなるコルゲートフィン(9) を取付けた
ものである。ここで(10)はコネクターを示す。管材には
JIS3003合金等が用いられ、フィンにはJIS3
003やそれに犠牲効果を与える目的でZn等を含有し
た合金を芯材とし、JIS 4004やJIS 434
3等のろう材を両面にクラッドしている。これらは、い
ずれも600℃付近の温度に加熱してろう付けするブレ
ージングにより組み立てられるが、ブレージング工法と
しては、真空ろう付け法、フラックスブレージング法、
非腐食性のフラックスを用いたノコロックブレージング
法等が行われる。
Further, FIG. 3 shows a serpentine type condenser, in which a corrugated fin (9) made of a brazing sheet is formed by bending a tubular material (8) extruded into a tubular shape hot or warm into a meandering shape. Is attached. Here, (10) indicates a connector. JIS3003 alloy is used for the pipe material, and JIS3 is used for the fin.
003 or an alloy containing Zn or the like for the purpose of giving a sacrificial effect to the core material according to JIS 4004 or JIS 434.
A brazing material such as 3 is clad on both sides. All of these are assembled by brazing by heating to a temperature of around 600 ° C. and brazing. The brazing method includes a vacuum brazing method, a flux brazing method, and a brazing method.
Nocolock brazing method using a non-corrosive flux is performed.

【0005】ところで、近年、熱交換器は軽量・小型化
の方向にあり、そのために材料の薄肉化が望まれてい
る。しかし、従来の材料で薄肉化を行った場合、材料の
肉厚が減少する分熱伝導性が低下し、熱交換器の熱効率
が低下するという問題がある。このため、主にフィン材
としてAl−Zr系合金の材料等が開発されているが、
強度が低いという問題点がある。また、薄肉化により、
強度が不足してしまう。そのため、高強度合金がいくつ
か提案されているが十分な強度が得られていない。これ
は、高強度合金自体の成分が、上記ろう付け性や耐食性
等の観点で制約を受け、また、製品の最終工程として6
00℃付近まで加熱されるブレージングがあるため、加
工硬化等の強度向上のメカニズムが利用できないためで
ある。
By the way, in recent years, heat exchangers have been in the direction of weight reduction and downsizing, and therefore thinning of materials has been desired. However, when the conventional material is thinned, there is a problem that the heat conductivity of the heat exchanger is reduced due to the decrease in the thickness of the material, which lowers the thermal efficiency. For this reason, although Al-Zr alloy materials and the like have been mainly developed as fin materials,
There is a problem of low strength. Also, due to thinning,
The strength is insufficient. Therefore, some high strength alloys have been proposed, but sufficient strength has not been obtained. This is because the components of the high-strength alloy itself are restricted from the viewpoints of brazing property and corrosion resistance, and as a final step of the product, 6
This is because there is brazing that is heated to around 00 ° C., and therefore a mechanism for improving strength such as work hardening cannot be used.

【0006】[0006]

【課題を解決するための手段】本発明はこのような状況
に鑑み、熱効率に優れ、かつ高強度のアルミニウム合金
製熱交換器を製造する方法を開発したもので、ろう付け
工法にてアルミニウム合金製熱交換器を製造するに当た
り、ろう付け加熱終了後の冷却中に、400〜500℃
の温度に10分以上30時間以内保持し、その後200
℃以上、400℃未満の間の温度域の冷却を30℃/分
以上の冷却速度で行い、さらに、120〜220℃の温
度で30分以上48時間以内の時効処理を行うことを特
徴とするアルミニウム合金製熱交換器の製造方法であ
る。
In view of such a situation, the present invention has developed a method of manufacturing a heat exchanger made of an aluminum alloy having excellent thermal efficiency and high strength. The aluminum alloy is manufactured by a brazing method. When manufacturing a heat exchanger, 400 to 500 ° C during cooling after the brazing heating is completed.
Hold at the temperature of 10 minutes to 30 hours and then 200
It is characterized in that cooling in a temperature range between 0 ° C and less than 400 ° C is performed at a cooling rate of 30 ° C / min or more, and further, aging treatment is performed at a temperature of 120 to 220 ° C for 30 minutes to 48 hours. It is a manufacturing method of an aluminum alloy heat exchanger.

【0007】[0007]

【作用】まず、本発明のろう付け工法であるが、JIS
4004やJIS 4343、JIS 4045等の
ろう材を用いる従来からの、真空ろう付け法、フラック
スブレージング法、非腐食性のフラックスを用いたノコ
ロックブレージング法等であればよく特に限定するもの
ではない。これは、本発明はろう付け加熱が完了した熱
交換器を熱処理することで特性を向上させる方法である
ため、それ以前のろう付け自体については関係しないた
めである。したがって、ろう付け前の組み立て、洗浄、
場合によってフラックス塗布等は従来通り行えばよい。
すなわち、ろう付け加熱を行い、その冷却するまでは従
来の方法で行えばよく、ろう付け性の向上、フィンの潰
れ防止等の目的で定められているろう付け条件は特に変
更する必要はない。したがって、本発明により、ろう付
け性等のろう付けに付随する問題は悪化することはない
のである。
First, according to the brazing method of the present invention, JIS
Any conventional vacuum brazing method using a brazing material such as 4004, JIS 4343, or JIS 4045, a flux brazing method, or a nocolock brazing method using a non-corrosive flux is not particularly limited. This is because the present invention is a method of improving properties by heat-treating a heat exchanger that has completed brazing heating, and is not related to brazing itself before that. Therefore, pre-brazing assembly, cleaning,
Depending on the case, the flux application or the like may be performed as usual.
That is, it is sufficient to carry out the conventional method until the brazing heating and the cooling, and it is not necessary to change the brazing conditions specified for the purpose of improving the brazing property and preventing the fins from collapsing. Therefore, the present invention does not aggravate problems associated with brazing, such as brazing properties.

【0008】さて、本発明ではろう付け加熱終了後の冷
却中に400〜500℃の温度に10分以上30時間以
内保持する処理を行う。これは本発明の要点の一つであ
り、発明者が、熱交換器に再加熱を行った時の特性の変
化を鋭意検討して得られたものである。すなわち、ろう
付け加熱は600℃付近の温度で行われるが、その際
に、材料中の合金元素はかなりが固溶してしまう。たと
えば、3003合金の場合、1.0wt%(以下単に%と
略記)程度のMn、0.025%程度のFe、全てのS
iが固溶するまで、昇温、保持中に固溶が進行する。従
来の熱交換器ではこのように合金元素が固溶した材料を
用いていたのである。本発明は、このようにろう付け中
に固溶した元素を再加熱により析出させることで、材料
の熱伝導性を向上させ、熱交換器の熱効率を向上させる
方法を得たのである。すなわち、上記温度域で保持を行
うと材料中に添加元素や不可避的不純物として含有され
ている主にMn、Fe、Siが析出し、材料の熱伝導性
が向上する。その結果として、この処理を行わない場合
と比較して、用いる材料の合金により若干異なるが、熱
交換器の熱効率は3%程度向上するのである。このよう
に、本発明では、熱交換器全体の加熱時に処理している
ため、フィンはもちろん従来熱伝導性を考慮されていな
かった、冷媒通路の熱伝導性も向上するため、熱交換器
としての熱効率は極めて向上する。なお、ここで、50
0℃を超えての、或いは400℃未満での保持を行って
も、熱伝導性向上に寄与が大きいMn、Feの析出の進
行は遅く、保持時間が10分未満では十分な析出量が得
られないので、400〜500℃にて10分以上保持す
るように定める。また、30時間を超えて保持を行って
も、それ以降の析出は少なく、経済性の上で劣るので、
保持は30時間以内とする。また、特に400℃未満で
保持を行った場合、冷媒通路に昇温時に生じた耐食性に
有害な析出相が加熱により再固溶しないため、耐食性が
低下する。
In the present invention, a treatment of maintaining the temperature of 400 to 500 ° C. for 10 minutes or more and 30 hours or less is performed during cooling after the brazing heating is completed. This is one of the main points of the present invention, and was obtained by the inventor after earnestly examining the change in the characteristics when the heat exchanger is reheated. That is, brazing heating is performed at a temperature near 600 ° C., but at that time, a considerable amount of the alloying elements in the material form a solid solution. For example, in the case of the 3003 alloy, Mn of about 1.0 wt% (hereinafter simply referred to as “%”), Fe of about 0.025%, and all of S.
The solid solution progresses during temperature rising and holding until i is solid dissolved. In the conventional heat exchanger, the material in which the alloy element is solid-solved is used. The present invention has obtained a method for improving the thermal conductivity of the material and improving the thermal efficiency of the heat exchanger by re-precipitating the solid solution element during brazing as described above. That is, when the material is held in the above temperature range, Mn, Fe, and Si, which are contained as additional elements and inevitable impurities in the material, are mainly precipitated, and the thermal conductivity of the material is improved. As a result, the thermal efficiency of the heat exchanger is improved by about 3% as compared with the case where this treatment is not carried out, although it is slightly different depending on the alloy of the material used. As described above, according to the present invention, since the heat treatment is performed when the entire heat exchanger is heated, the fins have not been conventionally considered for the thermal conductivity, and the thermal conductivity of the refrigerant passage is also improved. The thermal efficiency of is greatly improved. In addition, here, 50
Even if the temperature is maintained above 0 ° C or below 400 ° C, the precipitation of Mn and Fe, which greatly contributes to the improvement of thermal conductivity, progresses slowly, and a sufficient amount of precipitation is obtained when the holding time is less than 10 minutes. Since it cannot be done, it is decided to hold at 400 to 500 ° C. for 10 minutes or more. Further, even if the holding is carried out for more than 30 hours, the precipitation after that is small and the economical efficiency is poor.
Hold for less than 30 hours. Further, particularly when the temperature is kept below 400 ° C., the precipitation phase harmful to the corrosion resistance generated at the time of temperature rise in the refrigerant passage does not re-dissolve by heating, so that the corrosion resistance decreases.

【0009】本発明の処理を行った場合、Mnは0.1
%、Feは0.001%程度まで固溶量が低下するが、
その際Siを含有した化合物を析出するため、Si固溶
量も低下する。本発明でいう保持とは一定の温度に保つ
必要はなく、400〜500℃の温度範囲であれば、ど
のように変動してもかまわない。
When the treatment of the present invention is performed, Mn is 0.1
%, Fe, the solid solution amount decreases to about 0.001%,
At that time, since a compound containing Si is deposited, the amount of Si solid solution also decreases. The holding in the present invention does not need to be kept at a constant temperature, and may be changed in any manner within a temperature range of 400 to 500 ° C.

【0010】さらに本発明では、上記温度での保持後
に、200℃以上、400℃未満の間の温度域の冷却を
30℃/分以上の冷却速度で行う。これは、単体Siや
Mg系の化合物やCu系の化合物が析出するのを防止す
るためである。これらの化合物が冷却中に析出すると、
後に行う時効硬化による強度向上が期待できない。ここ
で冷却速度が30℃/分未満の場合、冷却中に上記析出
が生じ、強度向上効果がない。なお、従来は、平均的な
冷却速度は10℃/分程度であり、特性を減じる原因と
なっていた。ここで冷却方法は炉中空冷、送風空冷、水
冷、ミスト噴霧等いずれでもよく、特に定めない。
Further, in the present invention, after the holding at the above temperature, cooling in a temperature range between 200 ° C. and less than 400 ° C. is performed at a cooling rate of 30 ° C./min or more. This is to prevent precipitation of simple Si, Mg-based compounds, and Cu-based compounds. When these compounds precipitate during cooling,
The strength cannot be expected to improve due to age hardening which will be performed later. Here, if the cooling rate is less than 30 ° C./minute, the above precipitation occurs during cooling and the strength improving effect is not obtained. Incidentally, in the past, the average cooling rate was about 10 ° C./min, which was a cause of reducing the characteristics. Here, the cooling method may be any of furnace hollow cooling, air blowing cooling, water cooling, mist spraying, etc., and is not particularly limited.

【0011】本発明では、上記のように冷却した熱交換
器をさらに、120〜220℃の温度で30分以上48
時間以内の時効処理を行う。これは、特にチューブやプ
レートの強度を向上させることを目的として行う。時効
処理温度、時間は熱交換器に使われている合金によって
若干ことなるが、いずれも120℃以上220℃以下で
30分以上48時間以内とするが、これは120℃未満
では温度が低く十分に時効硬化しないためであり、22
0℃を超えると析出量が多くなりすぎ耐食性を低下する
ためである。また、時間が30分未満では十分に時効硬
化せず、48時間を超える処理は経済的でないためであ
る。この時効処理は、上記冷却により室温まで冷却後に
通常行うが、200℃未満の温度の場合、上記冷却中に
行ってもかまわない。さて、以上本発明の熱交換器の製
造方法について述べたが、本発明の熱交換機の材料とし
て用いられるアルミニウム合金について説明する。
In the present invention, the heat exchanger cooled as described above is further heated at a temperature of 120 to 220 ° C. for 30 minutes or more 48.
Perform aging treatment within time. This is done especially for the purpose of improving the strength of the tubes and plates. The aging temperature and time are slightly different depending on the alloy used in the heat exchanger, but both are 120 ° C or more and 220 ° C or less and 30 minutes or more and 48 hours or less. This is because it does not age harden.
This is because if the temperature exceeds 0 ° C., the amount of precipitation becomes too large and the corrosion resistance decreases. Also, if the time is less than 30 minutes, age hardening is not sufficiently performed, and the treatment exceeding 48 hours is not economical. This aging treatment is usually performed after cooling to room temperature by the above cooling, but when the temperature is less than 200 ° C., it may be performed during the above cooling. The method for manufacturing the heat exchanger of the present invention has been described above, and the aluminum alloy used as the material for the heat exchanger of the present invention will be described.

【0012】本発明は、熱交換機の材料のいずれかの部
材に時効硬化型の合金を用いた場合の製造方法であり、
時効硬化型の合金を用いない場合、最後の時効処理が無
駄になる。通常、熱交換器に用いられるアルミニウム合
金の添加元素の上限は、Fe:1.2%、Si:1.2
%、Cu:1%、Mn:2.0%、Mg:2.5%、C
r:0.3%、Zr:0.3%、Ti:0.3%、N
i:0.5%、Zn:3.0%、In:0.3%、S
n:0.3%である。これらは各部材の種類や組み立て
られる熱交換器の種類等によって添加されたり、されな
かったりする。本発明においては、熱交換器の部材のい
ずれかに、上記上限を超えない範囲の合金で、Cu:
0.3%以上、Mg:0.1%以上、の少なくとも一方
を含有したアルミニウム合金を使用する。CuまたはM
gは時効硬化により合金の強度を向上させる元素であ
り、これらのいずれかが含有した合金でないと、本発明
の最後の時効処理が無駄になる。このような、時効硬化
性を有する合金は熱交換器の部材のうちチューブ等の冷
媒溶液の通路となる部材に使われることが多い。
The present invention is a manufacturing method in which an age hardening type alloy is used for any member of the material of the heat exchanger,
If no age-hardening alloy is used, the final aging treatment is wasted. Usually, the upper limit of the additive element of the aluminum alloy used for the heat exchanger is Fe: 1.2%, Si: 1.2.
%, Cu: 1%, Mn: 2.0%, Mg: 2.5%, C
r: 0.3%, Zr: 0.3%, Ti: 0.3%, N
i: 0.5%, Zn: 3.0%, In: 0.3%, S
n: 0.3%. These may or may not be added depending on the type of each member and the type of heat exchanger to be assembled. In the present invention, one of the members of the heat exchanger is made of an alloy that does not exceed the above upper limit, and is Cu:
An aluminum alloy containing at least one of 0.3% or more and Mg: 0.1% or more is used. Cu or M
g is an element that improves the strength of the alloy by age hardening, and unless the alloy contains any of these, the final aging treatment of the present invention becomes useless. Such an age-hardening alloy is often used as a member of a heat exchanger, which serves as a passage for a refrigerant solution such as a tube.

【0013】ところで、本発明では400〜500℃の
温度での熱処理により、熱交換器の全ての部材の熱伝導
性が向上する。これは、工業的に用いられるアルミニウ
ム合金には、不可避的不純物として、Fe、Siが必ず
含有され、本発明はFe、Siの析出をさせるため、ど
のようなアルミニウム合金材料を用いても適用できる方
法である。さらに、120〜220℃の温度での時効処
理では熱伝導性は低下しない。したがって、本発明では
上記の時効硬化用の合金をいずれかの部材に用いれば、
他の部材では合金を限定しないが、従来の3003系の
Mnを1%程度添加した合金で本発明を用いた場合、M
nの析出による熱効率向上効果が顕著である。また、A
l−Zr系合金の場合、Zrの析出効果により、熱効率
向上効果がある。
By the way, in the present invention, the thermal conductivity of all members of the heat exchanger is improved by the heat treatment at a temperature of 400 to 500 ° C. This is because industrially used aluminum alloys always contain Fe and Si as unavoidable impurities, and since the present invention causes precipitation of Fe and Si, any aluminum alloy material can be used. Is the way. Furthermore, the thermal conductivity does not decrease in the aging treatment at a temperature of 120 to 220 ° C. Therefore, in the present invention, if the above age hardening alloy is used for any member,
Although the alloy is not limited to other members, when the present invention is used for an alloy containing 1% of conventional 3003 series Mn, M
The effect of improving the thermal efficiency by the precipitation of n is remarkable. Also, A
In the case of the 1-Zr-based alloy, there is an effect of improving thermal efficiency due to the precipitation effect of Zr.

【0014】また、ろう材は上記のように本発明には影
響を与えるものではないので、従来より用いられている
Al−Si系やAl−Si−Mg系のろう材を用いれば
よく、本発明ではろう材に関する限定を一切行わない。
なお、本発明の後にフラックス除去や塗装等の工程は従
来通り、行えばよい。
Further, since the brazing material does not affect the present invention as described above, it is sufficient to use a conventionally used Al--Si type or Al--Si--Mg type brazing material. The invention makes no limitation on the brazing material.
After the present invention, steps such as flux removal and coating may be performed as usual.

【0015】[0015]

【実施例】以下に実施例により本発明を具体的に説明す
る。 〔実施例1〕表1に示す組成のアルミニウム合金フィン
材とチューブ材およびヘッダープレート材と組合せ図1
に示すラジエーターを組み立てた(組合わせは表3)。
チューブ材は、表1に示す板厚0.4mmのコイル状板材
を通常の方法により製造し、コイル状板材は電縫管のサ
イズに合わせスリッターして35.0mmの条材にした。
この条材を電縫管製造装置を用い、幅16.0、厚さ
2.2mmの通液管用の電縫管に加工した。また、同一の
構成の板厚1.0mmのコイル状板材を幅60mmにスリッ
ターしてヘッダー用の条材とした。組み立てられたラジ
エーターは、弗化物系フラックスの10%濃度液を塗布
し、N2 ガス中で通常の条件で加熱を行い、ろう付けし
た。その後、表2に示す条件で再加熱を行った。材料お
よび加熱条件の組合せを表3に示す。得られたラジエー
ターについて、熱効率と耐食性について調査した。熱効
率については、JIS D 1618(自動車用冷房機
試験方法)に準じて行い、それぞれ従来法により熱交換
器の熱効率に対する向上の割合を表3に記した。また、
フィン材とチューブ材をそれぞれ同時に加熱し、強度を
測定した。結果を表3に示す。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Combination of aluminum alloy fin material having the composition shown in Table 1, tube material and header plate material
The radiator shown in was assembled (combinations are shown in Table 3).
As the tube material, a coil-shaped plate material having a plate thickness of 0.4 mm shown in Table 1 was manufactured by an ordinary method, and the coil-shaped plate material was slitted into a strip material of 35.0 mm according to the size of the electric resistance welded pipe.
This strip material was processed into an electric resistance welded pipe having a width of 16.0 and a thickness of 2.2 mm by using an electric resistance welded pipe manufacturing apparatus. Further, a coil-shaped plate material having a plate thickness of 1.0 mm and having the same structure was slitted to a width of 60 mm to obtain a header strip. The assembled radiator was applied with a 10% solution of a fluoride-based flux, heated in N 2 gas under normal conditions, and brazed. Then, reheating was performed under the conditions shown in Table 2. Table 3 shows combinations of materials and heating conditions. The resulting radiator was investigated for thermal efficiency and corrosion resistance. The thermal efficiency was measured according to JIS D 1618 (Testing method for air conditioners for automobiles), and the rate of improvement with respect to the thermal efficiency of the heat exchanger by the conventional method is shown in Table 3. Also,
The fin material and the tube material were simultaneously heated and the strength was measured. The results are shown in Table 3.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】表3から明らかなように本発明法により製
造した本発明例No.1〜3、8〜10は従来例に比較し
て熱効率に優れている。さらに、チューブ材において強
度の向上効果が顕著である。これに対し、比較法により
製造した比較例No.4〜6、11〜13は熱効率が向上
せず、チューブ材の強度も向上していないことが判る。
As is apparent from Table 3, Example No. 1 of the present invention produced by the method of the present invention. 1 to 3 and 8 to 10 are superior in thermal efficiency to the conventional example. Furthermore, the effect of improving the strength is remarkable in the tube material. On the other hand, Comparative Example No. manufactured by the comparative method. It can be seen that in Nos. 4 to 6 and 11 to 13, the thermal efficiency is not improved and the strength of the tube material is not improved.

【0020】〔実施例2〕表1に示す組成のアルミニウ
ム合金フィン材と表1に示す組成のプレート材を組み合
わせ、図2に示すコアを組み立て、通常の条件で真空ろ
う付けを行った。その後表2に示す条件の再加熱を行っ
た。これらの組合せを表4に示す。得られた熱交換器に
ついて、実施例1と同様に熱効率について調査した。結
果を表4に示す。また、フィン材とチューブ材をそれぞ
れ同時に加熱し、強度を測定した。結果を表4に示す。
Example 2 An aluminum alloy fin material having the composition shown in Table 1 and a plate material having the composition shown in Table 1 were combined, the core shown in FIG. 2 was assembled, and vacuum brazing was performed under normal conditions. After that, reheating was performed under the conditions shown in Table 2. These combinations are shown in Table 4. The heat efficiency of the obtained heat exchanger was investigated in the same manner as in Example 1. The results are shown in Table 4. In addition, the fin material and the tube material were simultaneously heated to measure the strength. The results are shown in Table 4.

【0021】[0021]

【表4】 [Table 4]

【0022】表4から明らかなように本発明法により製
造した本発明例No.21〜23、28〜30は熱効率に
優れており、プレート材の強度も高い。これに対し比較
法により製造した比較例No.24〜26、31〜33は
熱効率向上の効果が見られず、プレート材の強度も向上
していないことが判る。
As is clear from Table 4, Example No. of the present invention produced by the method of the present invention. 21-23 and 28-30 have excellent thermal efficiency, and the plate material has high strength. On the other hand, Comparative Example No. manufactured by the comparative method. It can be seen that 24-26, 31-33 do not show the effect of improving the thermal efficiency, and the strength of the plate material is not improved.

【0023】〔実施例3〕表1に示す組成のアルミニウ
ム合金フィン材と表1に示す組成の押し出し多穴チュー
ブに塩化物系のフラックスを塗布し、図3に示すコアを
組み立て、通常の条件でろう付けを行った。その後表2
に示す条件の再加熱を行った。これらの組合せを表5に
示す。得られた熱交換器について、熱効率について調査
した。結果を表5に示す。また、フィン材とチューブ材
をそれぞれ同時に加熱し、強度を測定した。結果を表5
に示す。
Example 3 An aluminum alloy fin material having the composition shown in Table 1 and an extruded multi-hole tube having the composition shown in Table 1 were coated with a chloride flux to assemble the core shown in FIG. I brazed in. Then Table 2
Reheating was performed under the conditions shown in. These combinations are shown in Table 5. The heat efficiency of the obtained heat exchanger was investigated. The results are shown in Table 5. In addition, the fin material and the tube material were simultaneously heated to measure the strength. The results are shown in Table 5.
Shown in.

【0024】[0024]

【表5】 [Table 5]

【0025】表5から明らかなように、本発明法により
製造した本発明例No.41〜43、48〜50は従来例
に比較して熱効率に優れて、チューブ材の強度も高い。
これに対し比較法により製造した比較例No.44〜4
6、51〜53は熱効率向上の効果が見られず、チュー
ブ材の強度も向上していないことが判る。
As is apparent from Table 5, Example No. of the present invention produced by the method of the present invention. Nos. 41 to 43 and 48 to 50 are superior in thermal efficiency to the conventional example, and the strength of the tube material is also high.
On the other hand, Comparative Example No. manufactured by the comparative method. 44-4
It can be seen that Nos. 6, 51 to 53 are not effective in improving the thermal efficiency, and the strength of the tube material is not improved.

【0026】[0026]

【発明の効果】以上述べたように本発明アルミニウム合
金製熱交換器の製造方法で熱交換器を製造した場合、部
材の熱伝導性、強度の向上効果があり、熱交換器の小
型、軽量化が可能であり、工業上顕著な効果を奏するも
のである。
As described above, when the heat exchanger is manufactured by the method for manufacturing the aluminum alloy heat exchanger of the present invention, the heat conductivity and strength of the members are improved, and the heat exchanger is small and lightweight. It is possible to make it possible, and it has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】ラジエーターを示す一部断面の斜視図。FIG. 1 is a partial cross-sectional perspective view showing a radiator.

【図2】積層型エバポレーターを示す一部断面の斜視
図。
FIG. 2 is a partial cross-sectional perspective view showing a laminated evaporator.

【図3】積層型エバポレーターを示す一部断面の斜視
図。
FIG. 3 is a perspective view of a partial cross-section showing a laminated evaporator.

【符号の説明】[Explanation of symbols]

1 偏平チューブ 2 薄肉フィン 3 ヘッダー 4 タンク 5 フィン 6、6′通路構成シート 7、7′冷媒通路 8 管材 9 コルゲートフィン 10 コネクター 1 Flat Tube 2 Thin Fin 3 Header 4 Tank 5 Fin 6, 6'Passage Constituent Sheet 7, 7'Refrigerant Passage 8 Tubing 9 Corrugated Fin 10 Connector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ろう付け工法にてアルミニウム合金製熱
交換器を製造するに当たり、ろう付け加熱終了後の冷却
中に、400〜500℃の温度に10分以上30時間以
内保持し、その後200℃以上、400℃未満の間の温
度域の冷却を30℃/分以上の冷却速度で行い、さら
に、120〜220℃の温度で30分以上48時間以内
の時効処理を行うことを特徴とするアルミニウム合金製
熱交換器の製造方法。
1. When manufacturing an aluminum alloy heat exchanger by a brazing method, a temperature of 400 to 500 ° C. is maintained for 10 minutes or more and 30 hours during cooling after completion of brazing heating, and then 200 ° C. As described above, aluminum is characterized by performing cooling in a temperature range of less than 400 ° C at a cooling rate of 30 ° C / min or more, and further performing aging treatment at a temperature of 120 to 220 ° C for 30 minutes to 48 hours. Method for manufacturing alloy heat exchanger.
JP9178492A 1992-03-17 1992-03-17 Production of heat exchanger made of aluminum alloy Pending JPH05279817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9178492A JPH05279817A (en) 1992-03-17 1992-03-17 Production of heat exchanger made of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9178492A JPH05279817A (en) 1992-03-17 1992-03-17 Production of heat exchanger made of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH05279817A true JPH05279817A (en) 1993-10-26

Family

ID=14036229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9178492A Pending JPH05279817A (en) 1992-03-17 1992-03-17 Production of heat exchanger made of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH05279817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042823A (en) * 2009-08-20 2011-03-03 Furukawa-Sky Aluminum Corp Age hardening aluminum alloy brazing sheet, method for producing the same, and heat exchanger using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042823A (en) * 2009-08-20 2011-03-03 Furukawa-Sky Aluminum Corp Age hardening aluminum alloy brazing sheet, method for producing the same, and heat exchanger using the same

Similar Documents

Publication Publication Date Title
EP0537764B1 (en) Method of producing aluminum alloy heat-exchanger
JP2006045667A (en) Heat exchanger tube made of aluminum and its production method
JPH11335764A (en) Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
JPH05263172A (en) Aluminum alloy for fin material of heat exchanger
JP2000008130A (en) Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JPH05279817A (en) Production of heat exchanger made of aluminum alloy
JPH05263173A (en) Aluminum alloy for fin material of heat exchanger
JPH05263202A (en) Production of heat exchanger made of aluminum alloy
JPH0693364A (en) Aluminum alloy fin material for heat exchanger
JPH09157807A (en) Production of aluminum alloy fin material for brazing
JP2555187B2 (en) Method for manufacturing aluminum fin material for heat exchanger
JPH0331454A (en) Manufacture of aluminum alloy fin material for heat exchanger
JPH05111751A (en) Manufacture of heat exchanger made of aluminum alloy
JPH05171324A (en) Aluminum alloy clad fin material
JPH05112853A (en) Manufacture of heat exchanger made of aluminum alloy
JP3291042B2 (en) Aluminum alloy fin material and method for manufacturing aluminum alloy heat exchanger
JPH05105980A (en) Aluminum alloy for heat exchanger tube material
JPH01198453A (en) Manufacture of high electric conductive aluminum alloy fin material
JPH11100628A (en) Heat exchanger made of aluminum alloy
JP2813484B2 (en) Aluminum brazing sheet
JPH0724593A (en) Aluminum alloy brazing filter metal and manufacture of heat exchanger made of aluminum alloy
JPH05264195A (en) Manufacture of heat exchanger made of aluminum alloy
JP2003147465A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JPH05368A (en) Heat exchanger made of low-temperature brazed aluminum alloy
JP2000160271A (en) Aluminum alloy fin material for brazing and heat exchanger using the fin material