Nothing Special   »   [go: up one dir, main page]

JPH05279738A - Manufacture of wear resistant steel pipe - Google Patents

Manufacture of wear resistant steel pipe

Info

Publication number
JPH05279738A
JPH05279738A JP4081110A JP8111092A JPH05279738A JP H05279738 A JPH05279738 A JP H05279738A JP 4081110 A JP4081110 A JP 4081110A JP 8111092 A JP8111092 A JP 8111092A JP H05279738 A JPH05279738 A JP H05279738A
Authority
JP
Japan
Prior art keywords
layer material
steel
less
wear resistance
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4081110A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4081110A priority Critical patent/JPH05279738A/en
Publication of JPH05279738A publication Critical patent/JPH05279738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To easily obtain a steel pipe excellent in wear resistance by subjecting a steel sheet using, as stock, a double-layered slab using low alloy steel contg. high carbon components as an external layer material and low alloy steel contg. low carbon components as an internal layer material to forming and executing seam welding. CONSTITUTION:Low alloy steel contg. high carbon components fundamentally consisting of, by weight, 0.25 to 0.6% S, <=0.6% Si, 0.5 to 3% Mn and <=0.1% Al is used as an external layer material. Furthermore, low alloy steel consisting of 0.01 to 0.15% C, <=0.6% Si, 1.2 to 2% Mn, 0.004 to 0.3% Ti, <=0.006% N and <=0.1% Al, and the balance Fe is used as an internal layer material. A double-layered slab consisting of the internal layer material good in weldability and the external layer material having wear resistance is heated to >=1000 deg.C, and rolling is finished at >=800 deg.C. Next, it is subjected to accelerated cooling to <=550 deg.C at 5 to 40 deg.C/sec cooling rate. Then, the steel sheet is air-cooled, is thereafter subjected to UOE forming and is subjected to seam welding by an internal and external faces one layer submerged welding method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石油やガスの掘削あるい
はラインパイプで要求される鋼管内面側の耐摩耗鋼管の
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a wear-resistant steel pipe on the inner surface of a steel pipe required for oil or gas excavation or line pipes.

【0002】[0002]

【従来の技術】近年、石油やガスを掘削する際に水平掘
りが盛んに行なわれるようになっているが、ドリルパイ
プとケーシングパイプの接触によるケーシングパイプ内
面側の摩耗損傷が問題となっている。またスラリー管に
おいても管内面の耐摩耗性を高めることが要求されてい
る。
2. Description of the Related Art In recent years, horizontal excavation has become popular when excavating oil and gas, but wear and damage on the inner surface of the casing pipe due to contact between the drill pipe and the casing pipe has become a problem. .. Further, in the case of a slurry pipe, it is required to improve the wear resistance of the inner surface of the pipe.

【0003】耐摩耗性を向上させるためには、例えば特
開昭62−270725号公報に開示されている通り、
鋼板全体の硬度を高めることが効果的であるが、鋼板を
UOE成形後、溶接時間短縮のために内外面1層の潜弧
溶接を行なった場合、母材の希釈が大きいために溶接金
属中にCが多量に混入し、溶接金属部で割れが発生す
る。
In order to improve the wear resistance, for example, as disclosed in JP-A-62-270725,
It is effective to increase the hardness of the entire steel sheet, but when UOE forming of the steel sheet is followed by latent arc welding of the inner and outer surfaces of one layer to reduce the welding time, the base metal is diluted so much that the weld metal A large amount of C is mixed in with and cracks occur in the weld metal part.

【0004】このため鋼管全体を高硬度化することは好
ましくない。また、溶接時の割れ発生を抑制するため
に、各層毎に予熱等を入念に行ないながら内外面多層溶
接を実施した場合でも、溶接金属部の割れを完全に防止
することは難しく、かつ溶接時間が莫大に増加し生産性
がきわめて悪くなる。
Therefore, it is not preferable to increase the hardness of the entire steel pipe. In addition, in order to suppress the occurrence of cracks during welding, it is difficult to completely prevent cracks in the weld metal even when performing inner / outer surface multilayer welding while carefully performing preheating for each layer, etc. Will increase enormously and productivity will become extremely poor.

【0005】また近年、異種金属やセラミックス等を溶
射する技術や表面処理等を施して、鋼管の表面近傍だけ
を硬化させる方法が検討されているが、いずれも生産性
の観点からは得策とはいえない。
Further, in recent years, techniques for spraying different metals, ceramics, etc., and methods for applying surface treatment to harden only the vicinity of the surface of the steel pipe have been investigated, but both are not good measures from the viewpoint of productivity. I can't say.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、耐摩
耗特性の優れた鋼管を安価に製造するための製造法を提
供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method for manufacturing a steel pipe having excellent wear resistance at low cost.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は外層材の
成分として重量%で、C:0.25〜0.6%、Si:
0.6%以下、Mn:0.5〜3.0%、Al:0.1
0%以下、を基本成分とした耐摩耗特性に優れた高炭素
成分の低合金鋼とし、内層材の成分として重量%で、
C:0.01〜0.15%、Si:0.6%以下、M
n:1.2〜2.0%、Ti:0.004〜0.03
%、N:0.006%以下、Al:0.10%以下、必
要に応じて、Ni:0.05〜4.00%、Cu:0.
05〜1.50%、Cr:0.05〜1.00%、M
o:0.05〜0.35%、V:0.005〜0.08
0%、Nb:0.01〜0.10%、Ca:0.000
5〜0.005%の一種または二種以上を含有させ、残
部Feおよび不可避的不純物の低合金鋼からなる複層ス
ラブを1000℃以上の温度に加熱し、800℃以上の
温度で圧延を終了した後、冷却速度5〜40℃/秒で5
50℃以下、任意の温度まで加速冷却、その後放冷した
鋼板をUOE成形して内外面1層潜弧溶接法でシーム溶
接することである。
The gist of the present invention is as a component of the outer layer material, in% by weight, C: 0.25 to 0.6%, Si:
0.6% or less, Mn: 0.5 to 3.0%, Al: 0.1
0% or less is a low alloy steel with a high carbon content and excellent wear resistance characteristics with a basic content of 0% or less.
C: 0.01 to 0.15%, Si: 0.6% or less, M
n: 1.2 to 2.0%, Ti: 0.004 to 0.03
%, N: 0.006% or less, Al: 0.10% or less, Ni: 0.05 to 4.00%, Cu: 0.
05 to 1.50%, Cr: 0.05 to 1.00%, M
o: 0.05 to 0.35%, V: 0.005 to 0.08
0%, Nb: 0.01 to 0.10%, Ca: 0.000
A multi-layer slab containing 5 to 0.005% of one kind or two kinds or more and a balance Fe and inevitable impurities of a low alloy steel is heated to a temperature of 1000 ° C or higher, and rolling is completed at a temperature of 800 ° C or higher. And then cooling at 5-40 ° C / sec for 5
This is to accelerate-cool down to 50 ° C. or lower to an arbitrary temperature, and then allow the steel plate to cool, and perform seam welding by UOE forming and a one-layer inner and outer surface latent arc welding method.

【0008】[0008]

【作用】複層スラブは例えば特開昭63−108947
号公報に開示されている方法によって製造されるもので
あるが、ここではスラブ製造の手段には特にこだわらな
い。複層スラブの概略図を図1に示す。成分を異にする
外層部1と内層部2からなるスラブ3が複層スラブであ
る。
A multi-layer slab is disclosed, for example, in JP-A-63-108947.
Although it is manufactured by the method disclosed in the publication, the slab manufacturing means is not particularly limited here. A schematic diagram of a multi-layer slab is shown in FIG. The slab 3 including the outer layer portion 1 and the inner layer portion 2 having different components is a multi-layer slab.

【0009】本発明は外層部1を高炭素成分の低合金鋼
とすることにより耐摩耗性を外層部で確保し、内層部2
を溶接性の良い低炭素成分の低合金鋼とすることにより
UOE成形後の内外面1層潜弧溶接時の割れ発生を抑制
して、耐摩耗性の優れた鋼管を安価に製造することを可
能とするものである。なお、この時の外層部厚みtは、
最終製品の厚みによって適宜設定することができるが、
一般的には全厚みwの5〜20%程度が適当である。
According to the present invention, the outer layer portion 1 is made of a low alloy steel having a high carbon content to ensure wear resistance in the outer layer portion and the inner layer portion 2
Is a low alloy steel with a low carbon content and good weldability, which suppresses the occurrence of cracks during inner-outer surface single-layer latent arc welding after UOE forming, and makes it possible to inexpensively manufacture steel pipes with excellent wear resistance. It is possible. The outer layer thickness t at this time is
It can be set appropriately according to the thickness of the final product,
Generally, about 5 to 20% of the total thickness w is suitable.

【0010】以下、本発明について詳細に説明する。ま
ず、本発明における鋼成分の限定理由について説明す
る。外層材の成分は、硬さを上昇させて耐摩耗性を確保
するものであり、熱間圧延および圧延後の冷却条件が一
定の場合には、硬さはC量に依存する。本発明の耐摩耗
性鋼管ではビッカース硬度400以上を狙うものであ
り、その点からC量は0.25%以上必要となる。一
方、C量が0.6%を超えると熱間圧延時やUOE成形
時に割れが発生するためにその上限を0.6%とした。
The present invention will be described in detail below. First, the reasons for limiting the steel components in the present invention will be described. The component of the outer layer material increases hardness to ensure wear resistance, and the hardness depends on the amount of C when the hot rolling and cooling conditions after rolling are constant. The wear-resistant steel pipe of the present invention is aimed at a Vickers hardness of 400 or more, and in that respect, the amount of C must be 0.25% or more. On the other hand, if the C content exceeds 0.6%, cracking occurs during hot rolling or UOE molding, so the upper limit was made 0.6%.

【0011】Siは脱酸上鋼に含まれる元素であるが、
その過剰添加は溶接性、溶接熱影響部(HAZ)靭性を
阻害する。従って、その上限を0.6%以下とすること
が必要である。
Si is an element contained in deoxidized upper steel,
The excessive addition impairs weldability and weld heat affected zone (HAZ) toughness. Therefore, it is necessary to set the upper limit to 0.6% or less.

【0012】Mnは硬さの上昇に寄与する元素である。
Mn量0.5%未満では硬さの上昇が得られない。また
Mn量が3.0%を超えるとUOEの成形性が劣化す
る。このためMn量を0.5〜3.0%とする。
Mn is an element that contributes to an increase in hardness.
If the Mn content is less than 0.5%, the hardness cannot be increased. If the Mn content exceeds 3.0%, the moldability of UOE deteriorates. Therefore, the Mn content is set to 0.5 to 3.0%.

【0013】Alは一般に脱酸上鋼に含まれる元素であ
るが、SiおよびMnあるいはTiによっても脱酸は行
なわれるので、本発明ではAlについては下限を限定し
ない。しかし、Al量が多くなると鋼の清浄度が悪くな
り、HAZ靭性が劣化するので上限を0.1%とする。
Al is generally an element contained in deoxidized upper steel, but since deoxidation is also performed by Si and Mn or Ti, the lower limit of Al is not limited in the present invention. However, if the amount of Al increases, the cleanliness of the steel deteriorates and the HAZ toughness deteriorates, so the upper limit is made 0.1%.

【0014】Nb,V,Mo,Ti,Cu,Ni,C
r,Bの添加は本発明の必須条件ではないが、これらの
元素の添加は組織の微細化や焼入性の向上に寄与するの
で、選択的に添加することは本発明の主旨に反しない。
また非金属介在物の形態制御を目的としたCa,Zrの
添加も本発明の主旨を損なうものでない。
Nb, V, Mo, Ti, Cu, Ni, C
Although the addition of r and B is not an essential condition of the present invention, the addition of these elements contributes to the refinement of the structure and the improvement of hardenability, so that the selective addition is not against the gist of the present invention. ..
Further, addition of Ca and Zr for the purpose of controlling the morphology of nonmetallic inclusions does not impair the gist of the present invention.

【0015】内層材の成分は、油井用鋼管や、スラリー
管(ラインパイプ)としての基本特性を維持することを
前提としたものである。Cは必要な引張強度を得るため
に0.01%以上の添加が必要である。しかしながら、
Cの過度の添加は溶接性の劣化をもたらすことから、そ
の上限を0.15%とする。
The components of the inner layer material are premised on maintaining the basic characteristics of a steel pipe for oil wells and a slurry pipe (line pipe). It is necessary to add 0.01% or more of C in order to obtain the required tensile strength. However,
Excessive addition of C causes deterioration of weldability, so the upper limit is made 0.15%.

【0016】Siは脱酸上鋼に含まれる元素であるが、
その過剰添加は溶接性、溶接熱影響部(HAZ)靭性を
阻害する。従って、その上限を0.6%以下とすること
が必要である。
Si is an element contained in deoxidized upper steel,
The excessive addition impairs weldability and weld heat affected zone (HAZ) toughness. Therefore, it is necessary to set the upper limit to 0.6% or less.

【0017】Mnは、強度、靭性並びに焼入性を確保す
る上で有用な元素であり、1.2%以上の添加が必要で
ある。しかしMn量が多すぎると溶接性、HAZ靭性の
劣化を招くためその上限を2.0%とする。
Mn is an element useful for ensuring strength, toughness and hardenability, and it is necessary to add 1.2% or more. However, if the Mn content is too large, the weldability and HAZ toughness are deteriorated, so the upper limit is made 2.0%.

【0018】Tiは溶接時のオーステナイト粒の粗大化
を抑制し、HAZ靭性を確保する上で有用である。しか
し、0.004%未満の添加では効果がなく、また0.
03%以上の添加ではTiCの析出硬化により逆にHA
Z靭性の劣化を招くため、その添加量を0.004〜
0.03%に限定する。
Ti is useful for suppressing coarsening of austenite grains during welding and ensuring HAZ toughness. However, addition of less than 0.004% has no effect, and addition of 0.
If it is added more than 03%, the precipitation hardening of TiC causes conversely HA.
Since the Z toughness is deteriorated, the addition amount is 0.004 to
It is limited to 0.03%.

【0019】Nは一般に不可避的不純物として鋼中に含
まれるが、Nの過量添加はHAZ靭性の劣化を招くた
め、その上限を0.006%とする。
N is generally contained in steel as an unavoidable impurity, but excessive addition of N causes deterioration of HAZ toughness, so its upper limit is made 0.006%.

【0020】Alは一般に脱酸上鋼に含まれる元素であ
るが、SiおよびMnあるいはTiによっても脱酸は行
なわれるので、本発明ではAlについては下限を限定し
ない。しかし、Al量が多くなると鋼の清浄度が悪くな
り、HAZ靭性が劣化するので上限を0.1%とする。
Al is generally an element contained in deoxidized upper steel, but since deoxidation is also performed by Si and Mn or Ti, the lower limit of Al is not limited in the present invention. However, if the amount of Al increases, the cleanliness of the steel deteriorates and the HAZ toughness deteriorates, so the upper limit is made 0.1%.

【0021】なお、P,Sは不可避的不純物として鋼中
に含まれる。本発明では、その量を特に限定しないが、
これらは母材ならびに溶接部の靭性を劣化させるため、
その量は極力少ない方が好ましく、それぞれ0.03
%,0.01%以下とすることが望ましい。
Note that P and S are contained in steel as inevitable impurities. In the present invention, the amount is not particularly limited,
Since these deteriorate the toughness of the base material and the weld,
The amount is preferably as small as possible, 0.03 each
%, Preferably 0.01% or less.

【0022】本発明鋼においては、さらに必要によりN
i:0.05〜4.00%、Cu:0.05〜1.50
%、Cr:0.05〜1.00%、Mo:0.05〜
0.35%、V:0.005〜0.080%、Nb:
0.01〜0.1%、Ca:0.0005〜0.005
%のうちいずれか一種、または二種以上を含有させるこ
とができる。
In the steel of the present invention, if necessary, N
i: 0.05 to 4.00%, Cu: 0.05 to 1.50
%, Cr: 0.05 to 1.00%, Mo: 0.05 to
0.35%, V: 0.005-0.080%, Nb:
0.01-0.1%, Ca: 0.0005-0.005
%, Any one kind or two or more kinds may be contained.

【0023】これらの元素を含有させる主たる目的は本
発明鋼の特徴を損なうことなく、強度、靭性の向上およ
び製造板厚の拡大を可能にするところにあり、その添加
量は溶接性およびHAZ靭性等の面から自ずと制限され
るべき性質のものである。
The main purpose of incorporating these elements is to enable the strength and toughness to be improved and the production plate thickness to be expanded without impairing the characteristics of the steel of the present invention, and the addition amount thereof is weldability and HAZ toughness. It is of a nature that should be naturally restricted from the standpoint of the above.

【0024】Niは溶接性、HAZ靭性に悪影響を及ぼ
すことなく、母材の強度、靭性を向上させるが、0.0
5%以下では効果が薄く、4.00%以上の添加は溶接
性に好ましくないために上限を4.00%とした。
Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness.
If the amount is 5% or less, the effect is small, and the addition of 4.00% or more is not preferable for weldability, so the upper limit was made 4.00%.

【0025】CuはNiとほぼ同様の効果とともに耐食
性、耐水素誘起割れ性等にも効果があるが、1.50%
を超えると熱間圧延時にCu−クラックが発生し、製造
困難となる。このため上限を1.50%とした。
Cu has an effect similar to that of Ni, as well as an effect of corrosion resistance, resistance to hydrogen-induced cracking, etc., but 1.50%
If it exceeds, Cu-cracks are generated during hot rolling, which makes manufacturing difficult. Therefore, the upper limit is set to 1.50%.

【0026】Crは母材の強度を高める元素であり、
0.05%以上の添加が必要である。しかし、Cr量が
1.00%を超えると溶接性やHAZ靭性を劣化させる
ため、その上限を1.00%とする。
Cr is an element that enhances the strength of the base material,
It is necessary to add 0.05% or more. However, if the amount of Cr exceeds 1.00%, the weldability and HAZ toughness deteriorate, so the upper limit is made 1.00%.

【0027】Moは母材の強度を向上させる元素であ
り、0.05%以上添加しないとその効果がない。しか
し、0.35%を超えると溶接部靭性および溶接性の劣
化を招き好ましくないため、上限を0.35%に限定す
る。
Mo is an element that improves the strength of the base material, and its effect is not achieved unless it is added in an amount of 0.05% or more. However, if it exceeds 0.35%, the weld zone toughness and weldability are deteriorated, which is not preferable, so the upper limit is limited to 0.35%.

【0028】Vは圧延組織の細粒化と析出強化のために
含有させるもので、強度、靭性をともに向上させる元素
であるが0.005%未満では十分にその効果が得られ
ず、また0.080%を超えると溶接性および溶接部靭
性に有害であるためにその範囲を0.005〜0.08
0に制限した。
V is an element to be added for making the rolling structure finer and strengthening the precipitation. It is an element that improves both strength and toughness, but if it is less than 0.005%, its effect is not sufficiently obtained, and 0 is obtained. If it exceeds 0.080%, it is harmful to the weldability and weld toughness, so the range is 0.005-0.08.
Limited to 0.

【0029】Nbは結晶粒の微細化や析出硬化に寄与
し、鋼を強靭化する効果を有する。この効果を発揮させ
るために0.01%以上のNb添加が必要である。しか
し、Nbを0.1%以上添加すると、溶接部の靭性が劣
化するので、その上限を0.1%とした。
Nb contributes to grain refinement and precipitation hardening, and has the effect of strengthening the steel. In order to exert this effect, it is necessary to add 0.01% or more of Nb. However, if Nb is added in an amount of 0.1% or more, the toughness of the welded portion deteriorates, so the upper limit was made 0.1%.

【0030】Caは硫化物の形態を制御し、シャルピー
吸収エネルギーを増加させ低温靭性を向上させるほか、
耐水素誘起割れ性の改善にも効果を発揮する。しかしC
a量は0.0005%以下では実用上効果がなく、ま
た、0.005%を超えるとCaO,CaSが多量に生
成して大型介在物となり、鋼の靭性のみならず清浄度も
害し、さらに溶接性にも悪影響を与えるので、Ca添加
量の範囲を0.0005〜0.005%とする。
Ca controls the sulfide morphology, increases Charpy absorbed energy and improves low temperature toughness.
Also effective in improving hydrogen-induced cracking resistance. But C
If the amount of a is 0.0005% or less, there is no practical effect, and if it exceeds 0.005%, large amounts of CaO and CaS are formed to form large inclusions, which impair not only the toughness of the steel but also the cleanliness. Since the weldability is also adversely affected, the range of the Ca addition amount is set to 0.0005 to 0.005%.

【0031】つぎに複層スラブの熱間圧延条件について
説明する。まず、スラブの加熱温度は1000℃以上と
する必要がある。加熱温度が1000℃未満になると外
層材のオーステナイト粒が極度に微細化し、冷却時に焼
入性が低下するために硬さの上昇が不十分となる。また
内層材においてもNb,Vの固溶が不十分となり強度が
確保できないためである。
Next, the hot rolling conditions for the multi-layer slab will be described. First, the heating temperature of the slab needs to be 1000 ° C. or higher. If the heating temperature is less than 1000 ° C., the austenite grains of the outer layer material become extremely fine, and the hardenability deteriorates during cooling, so that the increase in hardness becomes insufficient. Also, in the inner layer material, the solid solution of Nb and V is insufficient and the strength cannot be secured.

【0032】つぎに、圧延終了温度は800℃以上とす
る必要がある。圧延を800℃未満で終了した場合、オ
ーステナイトが過度に細粒化あるいは延伸化するので焼
入性が低下し、外層材において硬さの上昇が不十分とな
るからである。
Next, the rolling end temperature must be 800 ° C. or higher. When the rolling is completed at less than 800 ° C., the austenite is excessively fine-grained or stretched, so that the hardenability is lowered and the hardness of the outer layer material is insufficiently increased.

【0033】つぎに圧延後の冷却は、冷却速度5〜40
℃/秒で550℃以下、任意の温度まで加速冷却、その
後放冷する。冷却速度を5〜40℃/秒とする理由は、
5℃/秒未満では外層材において、硬さの上昇が不十分
となるためであり、また40℃/秒超では、粗大かつ多
量のマルテンサイトが生成し、延靭性を劣化させるとと
もに割れの発生を誘発するからである。
Next, the cooling after rolling is performed at a cooling rate of 5 to 40.
Accelerated cooling to an arbitrary temperature of 550 ° C. or less at ℃ / sec, and then cooling. The reason why the cooling rate is 5 to 40 ° C / sec is
If it is less than 5 ° C / sec, the hardness of the outer layer material is insufficiently increased, and if it exceeds 40 ° C / sec, coarse and large amounts of martensite are produced, which deteriorates ductility and causes cracking. Because it induces.

【0034】冷却停止温度を550℃以下の任意の温度
と指定したのは、冷却停止温度が550℃を超えると、
外層材において冷却停止後の放冷中に軟化し、硬さの上
昇が不十分となるとともに、内層材においても十分な強
度上昇が期待できないためである。冷却停止温度の下限
については要求される特性や成分によって異なるが、適
宜その条件を選択することができる。なお、冷却媒体と
しては一般的には噴霧水あるいは水が適当である。
The cooling stop temperature is designated as an arbitrary temperature of 550 ° C. or lower, when the cooling stop temperature exceeds 550 ° C.
This is because the outer layer material softens during cooling after cooling is stopped and the increase in hardness becomes insufficient, and a sufficient strength increase cannot be expected in the inner layer material. The lower limit of the cooling stop temperature varies depending on the required characteristics and components, but the conditions can be appropriately selected. As the cooling medium, spray water or water is generally suitable.

【0035】また本発明に従って製造した鋼を脱水素等
の目的で再加熱する場合、600℃超では強度の劣化を
招き好ましくない。しかし、約600℃以下の温度に再
加熱することは若干の強度低下はあるものの、本発明の
特徴を損なうものでない。
When the steel produced according to the present invention is reheated for the purpose of dehydrogenation or the like, if it exceeds 600 ° C., the strength is deteriorated, which is not preferable. However, reheating to a temperature of about 600 ° C. or less does not impair the characteristics of the present invention, although the strength is slightly reduced.

【0036】以上のような条件で製造された鋼板をUO
E成形した後、内外面1層潜弧溶接法でシーム溶接す
る。鋼管を安価に製造するためには、溶接時間の低減が
必須であり、内外面1層潜弧溶接法によるシーム溶接が
有効である。この際、鋼板全体の硬さが非常に高い場合
には、内外面1層潜弧溶接時に割れが発生する。
The steel sheet produced under the above conditions is UO
After E-forming, seam welding is performed by the inner and outer surface single layer latent arc welding method. In order to manufacture a steel pipe at low cost, it is essential to reduce the welding time, and the seam welding by the inner and outer surface one-layer latent arc welding method is effective. At this time, if the hardness of the entire steel sheet is extremely high, cracking occurs during inner-outer surface single-layer latent arc welding.

【0037】しかし、本複層鋼板は溶接性の良い低炭素
の低合金鋼を内層材としており、全厚みに対する内層材
の割合も80%以上であることから、内外面1層潜弧溶
接の場合でも希釈率に注意して溶接材料および溶接条件
を設定することにより溶接割れは未然に防止でき、耐摩
耗性の優れた鋼管が安価に製造できる。
However, this multi-layered steel sheet uses low carbon low alloy steel having good weldability as the inner layer material, and the ratio of the inner layer material to the total thickness is 80% or more. Even in such a case, welding cracks can be prevented in advance by setting the welding material and welding conditions while paying attention to the dilution rate, and a steel pipe having excellent wear resistance can be manufactured at low cost.

【0038】[0038]

【実施例】表1に供試鋼管の化学成分と製造条件および
機械的性質を示す。種々の板厚の鋼板を製造した後、U
OE成形し、内外面1層潜弧溶接法により製造した鋼管
の機械的性質、およびシーム溶接部の割れ発生状況を調
査した。引張特性はAPI引張試験片、シャルピー特性
は内層材1/4t部から採取したJIS4号試験片を用
いて調査した。また耐摩耗性については外層材をビッカ
ース硬さ計で測定し、Hv400以上を目標とした。表
1において、鋼1〜4は本発明鋼、5〜11は比較鋼を
示す。
EXAMPLES Table 1 shows the chemical composition, production conditions and mechanical properties of the test steel pipes. After manufacturing steel sheets of various thicknesses, U
The mechanical properties of the steel pipe produced by OE molding and the inner-outer surface single-layer latent arc welding method, and the crack generation state of the seam weld were investigated. The tensile properties were investigated using API tensile test pieces, and the Charpy properties were examined using JIS No. 4 test pieces taken from the 1/4 t part of the inner layer material. Regarding the wear resistance, the outer layer material was measured with a Vickers hardness meter, and the target was Hv 400 or higher. In Table 1, Steels 1 to 4 are steels of the present invention, and 5 to 11 are comparative steels.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】本発明鋼1〜4はシーム溶接部の割れ発生
もなく、良好な耐摩耗性を示す。これに対して、比較鋼
5はスラブ再加熱温度が低すぎるために、外層材の硬さ
が低く、良好な耐摩耗性が得られないと同時に内層材で
十分な強度が得られない。比較鋼6は圧延終了温度が低
すぎるために外層材の硬さが低く、良好な耐摩耗性が得
られない。比較鋼7は加速冷却時の冷却速度が遅いため
に外層材の硬さが低く、良好な耐摩耗性が得られない。
Steels 1 to 4 of the present invention show good wear resistance without cracking at seam welds. On the other hand, in Comparative Steel 5, since the slab reheating temperature is too low, the hardness of the outer layer material is low and good wear resistance cannot be obtained, and at the same time, sufficient strength cannot be obtained with the inner layer material. In Comparative Steel 6, the rolling finish temperature is too low, so the hardness of the outer layer material is low, and good wear resistance cannot be obtained. Comparative Steel 7 has a low cooling rate at the time of accelerated cooling, so that the hardness of the outer layer material is low, and good wear resistance cannot be obtained.

【0042】比較鋼8は加速冷却時の冷却速度が大きす
ぎるために靭性が劣化し、外層材で割れが発生する。比
較鋼9は冷却停止温度が高すぎるために、外層材の硬さ
が低く、良好な耐摩耗性が得られないと同時に内層材で
十分な強度が得られない。比較鋼10は高C成分系の単
層スラブであるために、靭性が劣化し、シーム溶接時に
割れが発生する。比較鋼11は低C成分系の単層スラブ
であるために表層部の硬さが低く、耐摩耗性が劣化す
る。
Comparative steel 8 deteriorates in toughness because the cooling rate during accelerated cooling is too high, and cracks occur in the outer layer material. Since the comparative steel 9 has an excessively high cooling stop temperature, the hardness of the outer layer material is low, so that good wear resistance cannot be obtained, and at the same time, sufficient strength cannot be obtained with the inner layer material. Since the comparative steel 10 is a single-layer slab with a high C content, its toughness deteriorates and cracks occur during seam welding. Since the comparative steel 11 is a single-layer slab of low C component system, the hardness of the surface layer is low and the wear resistance is deteriorated.

【0043】[0043]

【発明の効果】本発明は耐摩耗性の優れた鋼管を安価に
製造する手段を提供するものであり、この鋼管は産業
上、きわめて大きな効果が期待できる。
INDUSTRIAL APPLICABILITY The present invention provides a means for inexpensively producing a steel pipe having excellent wear resistance, and this steel pipe can be expected to have a very great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】複層スラブの概略図である。FIG. 1 is a schematic view of a multi-layer slab.

【符号の説明】 1 外層部 2 内層部 3 スラブ[Explanation of symbols] 1 outer layer 2 inner layer 3 slab

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/14 38/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 38/14 38/50

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外層材の成分として重量%で、 C :0.25〜0.6%、 Si:0.6%以下、 Mn:0.5〜3.0%、 Al:0.10%以下、 を基本成分とした耐摩耗特性に優れた高炭素成分の低合
金鋼とし、 内層材の成分として重量%で、 C :0.01〜0.15%、 Si:0.6%以下、 Mn:1.2〜2.0%、 Ti:0.004〜0.03%、 N :0.006%以下、 Al:0.10%以下、 残部Feおよび不可避的不純物の低合金鋼からなる複層
スラブを1000℃以上の温度に加熱し、800℃以上
の温度で圧延を終了した後、冷却速度5〜40℃/秒で
550℃以下、任意の温度まで加速冷却、その後放冷し
た鋼板をUOE成形して内外面1層潜弧溶接法でシーム
溶接することを特徴とする耐摩耗鋼管の製造法。
1. As a component of the outer layer material, in% by weight, C: 0.25 to 0.6%, Si: 0.6% or less, Mn: 0.5 to 3.0%, Al: 0.10% Below is a low content of high carbon components with excellent wear resistance characteristics based on
Gold steel, in% by weight as a component of the inner layer material, C: 0.01 to 0.15%, Si: 0.6% or less, Mn: 1.2 to 2.0%, Ti: 0.004 to 0 0.03%, N: 0.006% or less, Al: 0.10% or less, balance multi-layer made of low alloy steel containing Fe and unavoidable impurities
The slab is heated to a temperature of 1000 ° C or higher, 800 ° C or higher
At the cooling rate of 5-40 ° C / sec.
Accelerated cooling to an arbitrary temperature below 550 ° C, then let it cool
Steel plate is UOE-formed and seamed by inner-outer surface 1-layer latent arc welding method
A method for manufacturing a wear-resistant steel pipe characterized by welding.
【請求項2】 内層材の成分として重量%で、 Ni:0.05〜4.00%、 Cu:0.05〜1.50%、 Cr:0.05〜1.00%、 Mo:0.05〜0.35%、 V :0.005〜0.080%、 Nb:0.01〜0.10%、 Ca:0.0005〜0.005%の一種または二種以
上を含有することを特徴とする請求項1記載の耐摩耗鋼
管の製造法。
2. In% by weight as a component of the inner layer material, Ni: 0.05 to 4.00%, Cu: 0.05 to 1.50%, Cr: 0.05 to 1.00%, Mo: 0 0.05 to 0.35%, V: 0.005 to 0.080%, Nb: 0.01 to 0.10%, Ca: 0.0005 to 0.005%, or a combination of two or more thereof. The method for producing a wear-resistant steel pipe according to claim 1, wherein
JP4081110A 1992-04-02 1992-04-02 Manufacture of wear resistant steel pipe Pending JPH05279738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4081110A JPH05279738A (en) 1992-04-02 1992-04-02 Manufacture of wear resistant steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081110A JPH05279738A (en) 1992-04-02 1992-04-02 Manufacture of wear resistant steel pipe

Publications (1)

Publication Number Publication Date
JPH05279738A true JPH05279738A (en) 1993-10-26

Family

ID=13737246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081110A Pending JPH05279738A (en) 1992-04-02 1992-04-02 Manufacture of wear resistant steel pipe

Country Status (1)

Country Link
JP (1) JPH05279738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794840A (en) * 1995-06-14 1998-08-18 Mannesmann Aktiengesellschaft Process for the production of pipes by the UOE process
WO2012087028A3 (en) * 2010-12-23 2012-09-07 주식회사 포스코 Steel sheet for an oil sand slurry pipe having excellent abrasion resistance, corrosion resistance and low-temperature toughness and method for manufacturing same
CN112090955A (en) * 2020-09-04 2020-12-18 新疆八一钢铁股份有限公司 Composite rolling method of corrosion-resistant spring flat steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207511A (en) * 1985-03-11 1986-09-13 Nippon Steel Corp Production of wear-resistant steel product for structure purpose
JPH03227233A (en) * 1990-02-02 1991-10-08 Nippon Steel Corp Wear-resistant composite steel plate having excellent workability and weldability
JPH03285770A (en) * 1990-03-30 1991-12-16 Nippon Steel Corp Manufacture of large diameter steel pipe excellent in sour gas resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207511A (en) * 1985-03-11 1986-09-13 Nippon Steel Corp Production of wear-resistant steel product for structure purpose
JPH03227233A (en) * 1990-02-02 1991-10-08 Nippon Steel Corp Wear-resistant composite steel plate having excellent workability and weldability
JPH03285770A (en) * 1990-03-30 1991-12-16 Nippon Steel Corp Manufacture of large diameter steel pipe excellent in sour gas resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794840A (en) * 1995-06-14 1998-08-18 Mannesmann Aktiengesellschaft Process for the production of pipes by the UOE process
WO2012087028A3 (en) * 2010-12-23 2012-09-07 주식회사 포스코 Steel sheet for an oil sand slurry pipe having excellent abrasion resistance, corrosion resistance and low-temperature toughness and method for manufacturing same
US9238849B2 (en) 2010-12-23 2016-01-19 Posco Steel sheet for an oil sand slurry pipe having excellent abrasion resistance, corrosion resistance, and low-temperature toughness and method for manufacturing same
CN112090955A (en) * 2020-09-04 2020-12-18 新疆八一钢铁股份有限公司 Composite rolling method of corrosion-resistant spring flat steel

Similar Documents

Publication Publication Date Title
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
EP2036995B1 (en) High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP2003138340A (en) Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP3770106B2 (en) High strength steel and its manufacturing method
JP4171267B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP3814112B2 (en) Super high strength steel pipe excellent in low temperature toughness of seam welded portion and manufacturing method thereof
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JPH05279738A (en) Manufacture of wear resistant steel pipe
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP2002129288A (en) High strength pipe bend and its manufacturing method
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970610