Nothing Special   »   [go: up one dir, main page]

JPH05258758A - Internally reformed type molten carbonate fuel battery - Google Patents

Internally reformed type molten carbonate fuel battery

Info

Publication number
JPH05258758A
JPH05258758A JP4052369A JP5236992A JPH05258758A JP H05258758 A JPH05258758 A JP H05258758A JP 4052369 A JP4052369 A JP 4052369A JP 5236992 A JP5236992 A JP 5236992A JP H05258758 A JPH05258758 A JP H05258758A
Authority
JP
Japan
Prior art keywords
gas
reforming
reformer plate
fuel gas
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4052369A
Other languages
Japanese (ja)
Other versions
JP2697461B2 (en
Inventor
Junji Niikura
順二 新倉
Kazuhito Hado
一仁 羽藤
Noboru Taniguchi
昇 谷口
Eiichi Yasumoto
栄一 安本
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4052369A priority Critical patent/JP2697461B2/en
Priority to US08/028,976 priority patent/US5348814A/en
Publication of JPH05258758A publication Critical patent/JPH05258758A/en
Application granted granted Critical
Publication of JP2697461B2 publication Critical patent/JP2697461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To provide an internally reformed type molten carbonate fuel battery is simple in structure and in which the stack can be uniformly cooled. CONSTITUTION:Raw fuel gas is supplied, with an internal manifold system, to a reformer plate 1 and is thereby reformed, after which this reformed fuel gas is supplied to each elemental battery 2. Metallic support portions 13 are installed inside the reformer plate 1 over an entire region thereof to decrease the thermal and electrical resistances and simultaneously increase the mechanical strength as well. Further, the interior of the reformer plate 1 is divided into three gas channels, in only a central channel of which a reformer catalyst 12 is installed, thereby making even the cooling of the stack.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内部改質型溶融炭酸塩
型燃料電池に関し、特にスタックおよび改質器プレート
の構造を改良した内部改質型溶融炭酸塩型燃料電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal reforming molten carbonate fuel cell, and more particularly to an internal reforming molten carbonate fuel cell having an improved stack and reformer plate structure.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は燃料ガスとして
水素を主成分とするガスを用いており、大規模な溶融炭
酸塩型燃料電池発電では石炭ガス利用や天然ガスを改質
装置で改質して水素を主成分としたガスに変えて使用す
ることが考えられている。比較的小規模な発電、特に需
要地発電(オンサイト発電)においても原燃料として都
市ガス(メタンが主成分)などを使用するため、これを
水蒸気改質などの方法によって改質する必要がある。し
かし小規模な発電装置の場合、大がかりな改質装置を発
電部分と別個に設置することは、コンパクト性、システ
ム効率の低下やコストの上昇をもたらす。このため特に
オンサイト用途では電池内部で改質を行ういわゆる内部
改質方式がとられることが多い。
2. Description of the Related Art A molten carbonate fuel cell uses a gas whose main component is hydrogen as a fuel gas. In large-scale molten carbonate fuel cell power generation, coal gas is used or natural gas is modified by a reformer. It has been considered to use it by converting it into a gas containing hydrogen as a main component. City gas (mainly composed of methane) is used as raw fuel for relatively small-scale power generation, especially for power generation in demand areas (on-site power generation), so it is necessary to reform it by methods such as steam reforming. .. However, in the case of a small-scale power generation device, installing a large-scale reformer separately from the power generation part brings down compactness, system efficiency, and cost. For this reason, a so-called internal reforming method in which reforming is performed inside the battery is often adopted especially for on-site use.

【0003】内部改質方式は、燃料電池の反応発熱およ
び電池部材の抵抗発熱などが電池内部の温度を上昇させ
るのに対して改質反応が吸熱反応であることを利用し、
電池スタック内部において改質反応を行わせる方式であ
る。従って内部改質方式では外部の改質装置を必要とし
ないうえ電池を冷却する効果も得られる。こうした方式
は燃料ガスとして都市ガスを直接供給することができる
うえ電池の発熱を有効に利用できるため、システム効率
の向上、コスト低減、コンパクト性向上のうえで大変有
利である。
The internal reforming system takes advantage of the fact that the reforming reaction is an endothermic reaction, while the reaction heating of the fuel cell and the resistance heating of the cell member increase the temperature inside the cell.
This is a system in which a reforming reaction is performed inside the battery stack. Therefore, the internal reforming method does not require an external reforming device and has the effect of cooling the battery. Since such a system can directly supply city gas as a fuel gas and can effectively utilize the heat generation of the battery, it is very advantageous in improving system efficiency, reducing cost and improving compactness.

【0004】このため従来からいわゆる直接内部改質
型,間接内部改質型の2つの内部改質方式が検討されて
きている。直接内部改質型は効率が高いが発電部分に触
媒を設置するため電解質のしみだしや電解質蒸気との接
触により改質触媒の劣化が起こるという問題がある。こ
れに対して間接内部改質型は熱効率の点で多少不利では
あるが、発電部分と改質部分を分離しているため寿命の
点で有利である。
Therefore, two types of internal reforming systems, so-called direct internal reforming type and indirect internal reforming type, have been studied conventionally. The direct internal reforming type has high efficiency, but since the catalyst is installed in the power generation part, there is a problem that the reforming catalyst deteriorates due to electrolyte bleeding or contact with electrolyte vapor. On the other hand, the indirect internal reforming type is somewhat disadvantageous in terms of thermal efficiency, but is advantageous in terms of life because the power generation part and the reforming part are separated.

【0005】一方、スタックを構成する各素電池へのガ
ス供給方式には外部マニホルド方式と内部マニホルド方
式がある。外部マニホルド方式はスタックの側面に各素
電池の燃料側あるいは酸化剤側の気室が開口している構
造とし、ここに箱状の外部マニホルドを取り付けて、各
素電池にガスを分配する方式である。一方内部マニホル
ド方式は素電池の周辺部分にガスの流通孔を設置し、こ
の孔(内部マニホルド)から各素電池にガスを分配する
方式である。
On the other hand, there are an external manifold system and an internal manifold system as a gas supply system to each unit cell which constitutes the stack. The external manifold system has a structure in which the fuel-side or oxidant-side air chambers of each cell are open on the side of the stack, and a box-shaped external manifold is attached here to distribute gas to each cell. is there. On the other hand, the internal manifold system is a system in which a gas flow hole is provided in the peripheral portion of the unit cell, and the gas is distributed to each unit cell from this hole (internal manifold).

【0006】外部マニホルド方式で間接内部改質を行う
場合、たとえば特開昭61−13576号公報に開示さ
れるようにマニホルド内部を二分した構造とする方式が
あるが、マニホルド構造が複雑になるうえガスシールを
確実に行うのが困難となる。また外部マニホルド方式で
はマニホルドシール材を介して電解質の移動が起こるた
め、その対策を施すことが必要であるなどの不利な面が
ある。
When performing indirect internal reforming by an external manifold system, for example, there is a system in which the inside of the manifold is divided into two as disclosed in Japanese Patent Laid-Open No. 61-13576, but the manifold structure becomes complicated. It becomes difficult to make a reliable gas seal. Further, in the external manifold system, there is a disadvantage in that it is necessary to take a countermeasure because the electrolyte moves through the manifold seal material.

【0007】一方、内部マニホルド型で内部改質を行う
方法としては特開平3−105865号公報に開示され
ているように素電池内を二分し、ガス上流側に改質触媒
を充填した改質域を設けここで改質するなどの手段があ
る。その他、改質器プレート内部を平面に沿って二分
し、片側に改質触媒を充填し他の側に燃料極からの排出
未反応燃料を燃焼させるための燃焼触媒を充填し、これ
を素電池の間に設置し燃焼熱と電池の熱で改質すること
も考えられている。
On the other hand, as a method of performing internal reforming with an internal manifold type, as disclosed in JP-A-3-105865, reforming is performed by dividing the inside of the unit cell into two and filling a reforming catalyst on the gas upstream side. There is a means such as providing a zone and reforming here. In addition, the inside of the reformer plate is divided into two parts along a plane, one side is filled with a reforming catalyst, and the other side is filled with a combustion catalyst for burning unreacted fuel discharged from the fuel electrode. It is also considered to install between them and reform with the heat of combustion and the heat of the battery.

【0008】[0008]

【発明が解決しようとする課題】しかし、内部マニホル
ド型で内部改質を行う場合、前記従来法のうち前者の方
式では素電池の一部が改質部分に当てられるために、改
質部では温度が下がり、一方の発電部では温度上昇が起
こるなど温度均一性の点に問題があった。また後者の方
式では燃料排ガスの燃焼熱も改質反応に利用できるが、
改質器プレートの改質側に接する素電池は冷却される反
面、触媒燃焼部分に接する素電池は逆に温度が上昇する
ため好ましいとは言えない。さらにこの方式では燃料排
ガスや燃焼用空気を供給するためにスタック構造がやや
複雑になる問題があった。そこで本発明はこれらの問題
を回避し、構造が簡単でかつスタックの冷却が均一に行
える内部改質型溶融炭酸塩型燃料電池を得ることを目的
としている。
However, in the case of performing internal reforming with the internal manifold type, in the former method of the above-mentioned conventional methods, a part of the unit cell is applied to the reforming portion, so that the reforming section There was a problem in temperature uniformity such that the temperature decreased and one of the power generation sections increased in temperature. In the latter method, the combustion heat of the fuel exhaust gas can also be used for the reforming reaction,
While the unit cell in contact with the reforming side of the reformer plate is cooled, the unit cell in contact with the catalytic combustion portion, on the contrary, increases in temperature, which is not preferable. Further, in this method, there is a problem that the stack structure is slightly complicated because the fuel exhaust gas and the combustion air are supplied. Therefore, an object of the present invention is to avoid these problems and to obtain an internal reforming molten carbonate fuel cell having a simple structure and capable of uniformly cooling the stack.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
本発明の内部改質型溶融炭酸塩型燃料電池は、積層され
た素電池および原燃料を改質する改質器プレートと、こ
の改質器プレートを縦貫した状態で設けられた原燃料ガ
ス供給用内部マニホルド孔、燃料ガス用,酸化剤ガス用
のマニホルド孔とを備え、前記素電池は前記燃料ガス
用,酸化剤ガス用のそれぞれのマニホルド孔を介して各
ガスを給排し、前記改質器プレートは素電池のバイポー
ラ板と類似し、かつ前記原燃料ガス供給用内部マニホル
ド孔および燃料ガス用マニホルド孔にのみ給排できる構
造を有し、バイポーラ板としても機能するとともに供給
された原燃料ガスを改質して得られた燃料ガスを各素電
池に供給する簡単な構成を備えている。
In order to achieve this object, an internal reforming molten carbonate fuel cell of the present invention includes a laminated unit cell and a reformer plate for reforming raw fuel, and a modified reformer plate. An internal manifold hole for supplying raw fuel gas, which is provided in a state of vertically penetrating a pledget plate, and a manifold hole for fuel gas and oxidant gas, wherein the unit cell is for fuel gas and oxidant gas, respectively. Each gas is supplied and discharged through the manifold hole of the reformer plate, the reformer plate is similar to the bipolar plate of the unit cell, and can be supplied and discharged only to the internal manifold hole for supplying the raw fuel gas and the manifold hole for the fuel gas. And has a simple structure that also functions as a bipolar plate and that supplies the fuel gas obtained by reforming the supplied raw fuel gas to each unit cell.

【0010】また改質器プレート内部に上下の端板を電
気的に接続し、かつ機械的強度を有する金属からなる支
持部を10cm以内の距離間隔で複数個設置し、前記改質
器プレートの上下の端板間を熱的,電気的に接続し、機
械的,熱的,電気的特性の向上をはかっている。
Further, upper and lower end plates are electrically connected to each other inside the reformer plate, and a plurality of supporting portions made of metal having mechanical strength are installed at a distance interval of 10 cm or less. The upper and lower end plates are connected thermally and electrically to improve the mechanical, thermal and electrical characteristics.

【0011】さらに改質器プレート内部を、切欠きを有
する仕切により3つのガス流路に分割し、中央に位置す
る流路の中央部にのみ改質触媒を設置し、その外縁部分
に原燃料ガス供給用内部マニホルド孔の開口部を設け、
改質した燃料ガスは切欠き部から両側のガス流路を経て
流れを反転し、前記原燃料ガス供給用内部マニホルド孔
の両側に設けた燃料用マニホルド孔を経て各素電池に供
給する構造としスタック冷却の均一化をはかっている。
Further, the inside of the reformer plate is divided into three gas passages by a partition having a notch, the reforming catalyst is installed only in the central portion of the passage located at the center, and the raw fuel is provided at the outer edge portion thereof. The opening of the internal manifold hole for gas supply is provided,
The reformed fuel gas has a structure in which the flow is reversed from the notch through the gas passages on both sides and is supplied to each cell through the fuel manifold holes provided on both sides of the raw fuel gas supply internal manifold hole. Aim for uniform cooling of the stack.

【0012】[0012]

【作用】この構成により、原燃料ガス供給用内部マニホ
ルド孔は改質器プレートに原燃料を供給し、改質器プレ
ート内で改質した燃料ガスを各素電池に供給する。また
改質器プレート自体はバイポーラ板としても機能する。
With this structure, the internal manifold hole for supplying raw fuel gas supplies the raw fuel to the reformer plate and the fuel gas reformed in the reformer plate to each unit cell. The reformer plate itself also functions as a bipolar plate.

【0013】また改質器プレート内部に複数個設置され
た支持部は上下の端板を電気的,熱的に接続し改質器プ
レートの電気抵抗,熱抵抗を低減する。またこの支持部
は機械的強度を有するため上下からのスタック圧に対し
て改質器プレートの変形を防止する。
A plurality of supporting parts installed inside the reformer plate electrically and thermally connect the upper and lower end plates to reduce the electric resistance and thermal resistance of the reformer plate. Further, since this support portion has mechanical strength, it prevents deformation of the reformer plate against stack pressure from above and below.

【0014】改質器プレート内部の3つのガス流路のう
ち、中央流路では改質触媒により原燃料の改質が行わ
れ、同時に上下に接する素電池群の中央部から熱を吸収
する。改質された燃料ガスは両側のガス流路および燃料
用マニホルド孔を経て各素電池に供給される。
Of the three gas passages inside the reformer plate, the reforming catalyst reforms the raw fuel in the central passage, and at the same time, absorbs heat from the central portion of the unit cell groups that are in contact with each other vertically. The reformed fuel gas is supplied to each unit cell through the gas passages on both sides and the fuel manifold hole.

【0015】[0015]

【実施例】以下、本発明の実施例の内部改質型溶融炭酸
塩型燃料電池について図面を参照して説明する。
Embodiments An internal reforming molten carbonate fuel cell according to an embodiment of the present invention will be described below with reference to the drawings.

【0016】(実施例1)図1,図2において、改質器
プレート1は素電池2の間に挟持されており、素電池2
のバイポーラ板と類似の構造を有している。このため燃
料極3,電解質板4,酸化剤極5と組み合わせて電池の
一部として機能することができる。また改質器プレート
1および素電池2は、ともにスタックを縦貫して設置さ
れた原燃料ガス供給用内部マニホルド孔6,燃料ガス用
マニホルド孔7,酸化剤ガス用マニホルド8およびそれ
らの排ガス用マニホルド9,10とを有し、これらガス
は下部のヘッダ11から供給あるいは排出される。
(Embodiment 1) In FIGS. 1 and 2, the reformer plate 1 is sandwiched between the unit cells 2, and the unit cell 2
It has a structure similar to that of the bipolar plate. Therefore, it can function as a part of the battery in combination with the fuel electrode 3, the electrolyte plate 4, and the oxidant electrode 5. In addition, the reformer plate 1 and the unit cell 2 are both provided with a raw fuel gas supply internal manifold hole 6, a fuel gas manifold hole 7, an oxidant gas manifold 8 and their exhaust gas manifolds which are installed longitudinally through the stack. 9 and 10, these gases are supplied or discharged from the lower header 11.

【0017】原燃料ガス供給用内部マニホルド孔6に対
しては改質器プレート1内部へのみ開口部6cがあり、
ここから原燃料が供給され、素電池2には供給されな
い。改質器プレート1内部に供給された原燃料は改質触
媒12に接触して電池から発生する熱を利用して改質さ
れ、出口6aから燃料ガス用マニホルド孔7を経て各素
電池2に供給される。なお図2ではバイポーラ板として
みた場合、燃料極3側が上面となっており、酸化剤極5
側は下面となる。また酸化剤ガスは酸化剤ガス用マニホ
ルド8から各素電池2に供給され、反応後の排ガスは燃
料排ガス用マニホルド9,酸化剤排ガス用マニホルド1
0から排出される。
With respect to the internal manifold hole 6 for supplying raw fuel gas, there is an opening 6c only inside the reformer plate 1,
Raw fuel is supplied from here, and is not supplied to the unit cell 2. The raw fuel supplied into the reformer plate 1 contacts the reforming catalyst 12 and is reformed by using the heat generated from the cell, and is passed from the outlet 6a to the fuel cell manifold hole 7 to each cell 2. Supplied. When viewed as a bipolar plate in FIG. 2, the fuel electrode 3 side is the upper surface, and the oxidizer electrode 5
The side is the bottom surface. The oxidant gas is supplied from the oxidant gas manifold 8 to each cell 2, and the exhaust gas after the reaction is a fuel exhaust gas manifold 9 and an oxidant exhaust gas manifold 1.
Emitted from 0.

【0018】以上のように本実施例ではバイポーラ板構
造を有する改質器プレート1を素電池2間に設置し、ま
た原燃料ガス供給用内部マニホルド孔6を各素電池2お
よび改質器プレート1に付加設置するのみの極めて簡単
な構造で内部マニホルド方式による内部改質型溶融炭酸
塩型燃料電池を実現している。また改質器プレート1は
発電部分や燃焼部分などの発熱部をもたず、改質器プレ
ート1に接する素電池群をほぼ均等に冷却することがで
きるため電池の管理上も好都合となる。しかも外部マニ
ホルドの場合のようなシールに関与するガス漏れ,腐食
の問題を非常に小さくすることができる。
As described above, in this embodiment, the reformer plate 1 having a bipolar plate structure is installed between the unit cells 2, and the internal manifold hole 6 for supplying the raw fuel gas is provided for each unit cell 2 and the reformer plate. The internal reforming type molten carbonate fuel cell by the internal manifold system has been realized with an extremely simple structure that is only additionally installed in 1. Further, the reformer plate 1 does not have a heat generating portion such as a power generation portion or a combustion portion, and the unit cell group in contact with the reformer plate 1 can be cooled substantially evenly, which is convenient for battery management. Moreover, the problems of gas leakage and corrosion associated with the seal as in the case of the external manifold can be greatly reduced.

【0019】(実施例2)次に実施例1と同様の構造を
有する内部改質型溶融炭酸塩型燃料電池の改質器プレー
トに請求項2記載の発明を適用した実施例2について図
3に従って説明する。図3は改質器プレート1の燃料極
側の端板14を取り外した状態を示しているが、実際に
はガス漏れがないように溶接あるいはろうづけにより外
縁部分1aと接合されている。改質器プレート1の外縁
部分1aおよび端板14は耐熱合金で製作されており内
部にはやはり同一素材からなり充分な機械的強度を有す
る支持部13がバイポーラ板構造を有する端板14と接
する高さで設置してある。本実施例の改質器プレート1
は大きさが40cm角のもので、厚みは1.2cm、支持部
13は1cm角でこれを5cm間隔で設置した。改質触媒1
2は改質器プレート1の内縁から5cmの間隔を残して全
面に充填した。
(Embodiment 2) Next, Embodiment 2 in which the invention according to claim 2 is applied to a reformer plate of an internal reforming molten carbonate fuel cell having a structure similar to that of Embodiment 1 is shown in FIG. Follow the instructions below. FIG. 3 shows a state in which the end plate 14 on the fuel electrode side of the reformer plate 1 is removed, but it is actually joined to the outer edge portion 1a by welding or brazing so as to prevent gas leakage. The outer edge portion 1a and the end plate 14 of the reformer plate 1 are made of a heat-resistant alloy, and a support portion 13 made of the same material and having sufficient mechanical strength is in contact with the end plate 14 having a bipolar plate structure. It is installed at the height. Reformer plate 1 of this embodiment
Has a size of 40 cm square, a thickness of 1.2 cm, and the support portion 13 has a size of 1 cm square and is arranged at intervals of 5 cm. Reforming catalyst 1
No. 2 was filled on the entire surface of the reformer plate 1 leaving a space of 5 cm from the inner edge thereof.

【0020】この改質器プレート1を40cm角の素電池
2を10セル積層したスタックの中央部に設置し、運転
試験を行った。原燃料ガスとしては脱硫した都市ガス
(メタン主成分)にスチーム/カーボン比3.0の割合
で水蒸気を添加し、これを650℃に予熱して原燃料供
給用内部マニホルド孔6を用いて改質器プレート1に供
給した。酸化剤ガスには空気70%炭酸ガス30%の混
合ガスをやはり予熱して供給した。また運転中のスタッ
ク圧は4トン(2.5kg/cm2)を加えた。スタック平
均温度650℃で定常運転している状態において改質器
プレート1の温度分布を測定した。その結果、高温部分
が660℃、低温部分が620℃で差は約40℃であっ
た。また100Aの電流を取り出した際の改質器プレー
ト1部分の電圧降下は5mVと小さいものであった。試
験後、改質器プレート1の外観検査を行ったが変形など
は認められなかった。
The reformer plate 1 was placed in the center of a stack of 10 cells of a 40 cm square unit cell 2 and an operation test was conducted. As raw fuel gas, steam was added to desulfurized city gas (main component of methane) at a steam / carbon ratio of 3.0, preheated to 650 ° C., and reformed using the internal manifold hole 6 for supplying raw fuel. Pour plate 1 was supplied. As the oxidant gas, a mixed gas of 70% air and 30% carbon dioxide gas was also preheated and supplied. The stack pressure during operation was 4 tons (2.5 kg / cm 2 ). The temperature distribution of the reformer plate 1 was measured in a state where the stack was steadily operated at an average temperature of 650 ° C. As a result, the high temperature portion was 660 ° C and the low temperature portion was 620 ° C, and the difference was about 40 ° C. Further, the voltage drop in the reformer plate 1 portion when a current of 100 A was taken out was as small as 5 mV. After the test, the appearance of the reformer plate 1 was inspected, but no deformation was found.

【0021】また比較のため支持部13を設置せず、図
示していないが、中央の対称線上に補強用の幅1cmの仕
切部をガス流れに沿って設置したのみの改質器プレート
を試作して同様の試験を行った。その結果、高温部分,
低温部分の差は約70℃、100Aの電流を取り出した
際の改質器プレート部分の電圧降下は35mAとかなり
大きいものであった。試験後、改質器プレートは仕切部
が無い部分の端板に微かなへこみが認められた。こうし
た変形は素電池との緊密な接触を大きく阻害するため、
熱および電気抵抗が大きかったものと見られる。
Further, for comparison, a reformer plate having no supporting portion 13 installed and a partitioning portion having a width of 1 cm for reinforcement arranged along the gas flow on the central symmetry line (not shown) is manufactured. Then, the same test was performed. As a result, the hot part,
The difference in the low temperature portion was about 70 ° C., and the voltage drop at the reformer plate portion when a current of 100 A was taken out was a very large value of 35 mA. After the test, the reformer plate was found to have a slight dent on the end plate where there was no partition. Since such deformation greatly hinders close contact with the unit cell,
It seems that the heat and electric resistance were high.

【0022】他方、本実施例2による改質器プレート1
ではこうした変形が起こらないうえ、5cm間隔で金属の
支持部13が存在するためこれが熱および電気抵抗の低
減を実現し、より均一な温度分布と小さな電圧降下をも
たらしたものといえる。
On the other hand, the reformer plate 1 according to the second embodiment
However, such deformation does not occur, and since the metal supporting portions 13 are present at intervals of 5 cm, this realizes reduction of heat and electric resistance, which leads to a more uniform temperature distribution and a small voltage drop.

【0023】(実施例3)次に実施例2と同様の構造を
有する改質器プレート1に、請求項3記載の発明を適用
した実施例3について図4に従って説明する。図4は改
質器プレート1の燃料極側の端板14を取り外した状態
を示している。改質器プレート1はその内部が、切欠き
15を有する仕切16により3つのガス流路に分割さ
れ、中央に位置する流路の中央部にのみ改質触媒12を
設置している。また改質器プレート1の外縁部分1aに
は原燃料ガス供給用内部マニホルド孔6への開口部(図
示していないが、図2の6c参照)があり、ここから原
燃料が供給され、途中の改質触媒12がない部分を通過
した後、改質触媒12が充填された部位で改質触媒12
に接触して改質される。改質された燃料ガスは切欠き部
15から両側のガス流路を経て流れを反転し、燃料ガス
出口から燃料ガス用マニホルド孔7を経て各素電池2に
供給される。
(Embodiment 3) Next, Embodiment 3 in which the invention according to claim 3 is applied to the reformer plate 1 having the same structure as that of Embodiment 2 will be described with reference to FIG. FIG. 4 shows a state in which the end plate 14 on the fuel electrode side of the reformer plate 1 is removed. The interior of the reformer plate 1 is divided into three gas passages by a partition 16 having a notch 15, and the reforming catalyst 12 is installed only in the central portion of the passage located at the center. Further, the outer edge portion 1a of the reformer plate 1 has an opening (not shown, but see 6c in FIG. 2) to the internal manifold hole 6 for supplying raw fuel gas, from which the raw fuel is supplied, Of the reforming catalyst 12 after passing through the portion where the reforming catalyst 12 does not exist.
To be modified. The reformed fuel gas flows from the notch 15 through the gas passages on both sides to reverse the flow, and is supplied to each cell 2 from the fuel gas outlet through the fuel gas manifold hole 7.

【0024】熱収支の観点から以上の過程をみると、原
燃料ガス供給用内部マニホルド孔6から改質触媒12が
ない流路部分および、改質後の燃料ガスが両ガス流路を
経て燃料ガス用マニホルド孔7に至る過程では素電池2
との熱のやりとりは極めて小さく、改質が行われている
中央付近で大きな吸熱が起こり、素電池2の中心付近を
重点的に冷却することとなる。
From the viewpoint of the heat balance, from the viewpoint of the heat balance, the flow passage part without the reforming catalyst 12 from the internal manifold hole 6 for supplying the raw fuel gas, and the fuel gas after reforming pass through both gas flow passages to form the fuel. In the process of reaching the gas manifold hole 7, the unit cell 2
The heat exchange with the is extremely small, and a large heat absorption occurs near the center where the reforming is performed, and the vicinity of the center of the unit cell 2 is cooled intensively.

【0025】ところで燃料電池では一般的にいえば周辺
部分よりは中央部分のほうが高温化する傾向がある。大
形のスタックの場合には燃料ガスおよび酸化剤ガスの供
給方向、たとえば直行流か並行流かなどにより素電池2
内部の温度上昇部位が変化するが、傾向としてはやはり
中心よりの部位が高温化する。特にオンサイト発電など
に用いられる比較的小規模のスタックの場合、スタック
側面からの放熱の影響が大きくなるためこうした傾向は
顕著である。このため本実施例の改質器プレート1では
改質反応による吸熱が中心付近に集中し、他のガス流路
では熱のやりとりは極めて小さいため素電池2中央部の
温度上昇を効果的に抑制することができ、スタックの温
度均一化に大きく寄与することができる。
By the way, generally speaking, in the fuel cell, the temperature tends to be higher in the central portion than in the peripheral portion. In the case of a large stack, the unit cell 2 depends on the fuel gas and oxidant gas supply directions, for example, direct flow or parallel flow.
Although the internal temperature rise part changes, the tendency is that the part from the center also becomes hot. Especially in the case of a relatively small-scale stack used for on-site power generation, this tendency is remarkable because the influence of heat radiation from the side surface of the stack increases. Therefore, in the reformer plate 1 of the present embodiment, the heat absorption by the reforming reaction is concentrated near the center, and the heat exchange in the other gas flow paths is extremely small, so that the temperature rise in the central portion of the unit cell 2 is effectively suppressed. Therefore, it is possible to greatly contribute to the temperature uniformity of the stack.

【0026】続いて本実施例による電池試験の結果につ
いて述べる。改質器プレート1の大きさ,試験条件など
は実施例2と同じである。スタック平均温度650℃で
定常運転している状態において改質器プレート1の温度
分布を測定したところ、高温部分が660℃、低温部分
が630℃で差は約30℃であり温度均一化に大きく寄
与することがわかった。
Next, the result of the battery test according to this embodiment will be described. The size and test conditions of the reformer plate 1 are the same as in the second embodiment. When the temperature distribution of the reformer plate 1 was measured in a state where the stack average temperature was 650 ° C. in the steady operation, the high temperature part was 660 ° C. and the low temperature part was 630 ° C. The difference was about 30 ° C., which is great for temperature uniformity. It turned out to contribute.

【0027】以上本実施例で記述した素電池,改質器プ
レートはともに矩形であるがこれは他の形状、例えば円
形などであっても良い。また各マニホルド孔およびその
出入口の形状も本実施例に関わらずどのような形状であ
っても良く、配置についても本発明の実施上可能な範囲
でどのようなものであっても良い。
Although the unit cell and the reformer plate described in the present embodiment are both rectangular, they may have other shapes such as a circle. Further, the shape of each manifold hole and its inlet / outlet may be any shape regardless of the present embodiment, and the arrangement may be any shape within the range in which the present invention can be carried out.

【0028】また改質器プレートの構造については実施
例2の場合、各流路の仕切はほぼ均等になっているがこ
れは適当な比率で分割されていてもよく、さらに仕切が
一部または全体が斜めに設置されていても良い。さらに
実施例3では切欠きは仕切板の端部にのみあるが、これ
は仕切板の任意の位置であって良い。
With respect to the structure of the reformer plate, in the case of the second embodiment, the partition of each flow path is substantially equal, but it may be divided at an appropriate ratio, and the partition may be partially or partially. The whole may be installed diagonally. Further, in the third embodiment, the notch is only at the end of the partition plate, but this may be at any position on the partition plate.

【0029】改質触媒については本実施例では粒状のも
のを図示しているが、これは他の形状のもの、たとえば
ハニカム状のものでも良い。また触媒とともに他の物
体、たとえば触媒保持用の部材や炭酸塩蒸気除去用の部
材が存在していても良い。
Although the reforming catalyst is shown as a granular one in this embodiment, it may have another shape, for example, a honeycomb shape. In addition to the catalyst, other objects such as a catalyst holding member and a carbonate vapor removing member may be present.

【0030】[0030]

【発明の効果】以上の実施例の説明により明らかなよう
に、本発明の内部改質型溶融炭酸塩型燃料電池によれ
ば、特にガス供給関係の構造簡略化を可能としたうえ、
改質器プレートに接する素電池群を均等に冷却すること
ができる。また外部マニホルドの場合のようなガスシー
ルに関与する問題が起こらない利点がある。
As is apparent from the above description of the embodiments, according to the internal reforming molten carbonate fuel cell of the present invention, in particular, the structure of gas supply can be simplified and
It is possible to evenly cool the unit cells in contact with the reformer plate. It also has the advantage that the problems associated with gas sealing, such as with an external manifold, do not occur.

【0031】また請求項2により内部に複数個設置され
た金属支持部は上下の端板を電気的,熱的に接続し改質
器プレートの電気抵抗,熱抵抗を低減する。また機械的
強度を向上させるため上下からのスタック圧に対して改
質器プレートの変形を防止し、素電池群との接触を正常
に維持する効果がある。これらの結果、電池の効率と信
頼性の向上を高めることができる。
According to the second aspect of the present invention, the plurality of metal supporting portions provided inside the upper and lower end plates are electrically and thermally connected to each other to reduce electric resistance and thermal resistance of the reformer plate. Further, in order to improve the mechanical strength, the reformer plate is prevented from being deformed against stack pressure from above and below, and the contact with the unit cell group is maintained normally. As a result, the efficiency and reliability of the battery can be improved.

【0032】さらに請求項3による改質器プレートを用
いれば、改質触媒が中央流路にのみ設置されているため
反応による吸熱が中心付近に集中し、素電池中央部の温
度上昇を効果的に抑制し、より均一な冷却効果を得るこ
とができ、電池の温度管理のための設備を軽減し信頼性
も大きく向上させる効果がある。
Further, when the reformer plate according to claim 3 is used, since the reforming catalyst is installed only in the central flow path, the heat absorption due to the reaction is concentrated near the center, which effectively raises the temperature in the central part of the unit cell. Therefore, it is possible to obtain a more uniform cooling effect, reduce the equipment for temperature control of the battery, and significantly improve the reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の内部改質型溶融炭酸塩型燃料
電池の構成の概念を示す斜視図
FIG. 1 is a perspective view showing the concept of the configuration of an internal reforming molten carbonate fuel cell according to an embodiment of the present invention.

【図2】同実施例1の改質器プレートの一部を切り欠い
て断面を示す斜視図
FIG. 2 is a perspective view showing a cross-section with a part of the reformer plate of the first embodiment cut away.

【図3】同実施例2の改質器プレートの燃料極側の端板
を取り外して内部の構成を示す斜視図
FIG. 3 is a perspective view showing the internal structure of the reformer plate of Embodiment 2 with the fuel electrode side end plate removed.

【図4】同実施例3の改質器プレートの燃料極側の端板
を取り外して内部の構成を示す斜視図
FIG. 4 is a perspective view showing the internal structure of the reformer plate of Embodiment 3 with the end plate on the fuel electrode side removed.

【符号の説明】[Explanation of symbols]

1 改質器プレート 2 素電池 6 原燃料ガス供給用内部マニホルド孔 7 燃料ガス用マニホルド孔 8 酸化剤ガス用マニホルド 9 燃料排ガス用マニホルド 10 酸化剤排ガス用マニホルド 1 reformer plate 2 unit cell 6 internal manifold hole for supplying raw fuel gas 7 manifold hole for fuel gas 8 manifold for oxidant gas 9 manifold for fuel exhaust gas 10 manifold for oxidant exhaust gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Eiichi Yasumoto Eiichi Yasumoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 積層された素電池および原燃料を改質す
る改質器プレートと、この改質器プレートを縦貫した状
態で設けられた原燃料ガス供給用内部マニホルド孔、燃
料ガス用,酸化剤ガス用のマニホルド孔とを備え、前記
素電池は前記燃料ガス用,酸化剤ガス用のそれぞれのマ
ニホルド孔を介して前記各ガスを給排し、前記改質器プ
レートは素電池のバイポーラ板と類似し、かつ前記原燃
料ガス供給用内部マニホルド孔および燃料ガス用マニホ
ルド孔にのみ給排できる構造を有し、バイポーラ板とし
ても機能するとともに、供給された原燃料ガスを改質し
て得られた燃料ガスを各素電池に供給する構成を備えた
内部改質型溶融炭酸塩型燃料電池。
1. A stacked unit cell and a reformer plate for reforming raw fuel, an internal manifold hole for supplying raw fuel gas, which is provided in a state of vertically extending through the reformer plate, for fuel gas, and oxidation. And a manifold hole for the agent gas, the unit cell supplies and discharges each gas through the manifold holes for the fuel gas and the oxidant gas, and the reformer plate is a bipolar plate of the unit cell. Similar to the above, and has a structure that can be supplied and discharged only to the internal manifold hole for supplying the raw fuel gas and the manifold hole for the fuel gas, and also functions as a bipolar plate and is obtained by reforming the supplied raw fuel gas. An internal reforming molten carbonate fuel cell having a structure for supplying the produced fuel gas to each unit cell.
【請求項2】 改質器プレート内部に金属からなる支持
部を10cm以内の距離間隔で複数個設置し、前記改質器
プレートの上下の端板間を熱的,電気的に接続した請求
項1記載の内部改質型溶融炭酸塩型燃料電池。
2. A plurality of supporting portions made of metal are installed inside the reformer plate at a distance of 10 cm or less, and upper and lower end plates of the reformer plate are thermally and electrically connected. 1. The internal reforming molten carbonate fuel cell according to 1.
【請求項3】 改質器プレート内部を切欠きを有する仕
切により3つのガス流路に分割し、中央に位置する流路
の中央部にのみ改質触媒を設置し、その外縁部分に原燃
料ガス供給用内部マニホルド孔の開口部を設け、改質し
た燃料ガスは切欠き部から両側のガス流路を経て流れを
反転し、前記原燃料ガス供給用内部マニホルド孔の両側
に設けた燃料用マニホルド孔を経て各素電池に供給する
構成を備えた請求項1または2記載の内部改質型溶融炭
酸塩型燃料電池。
3. The inside of the reformer plate is divided into three gas passages by a partition having a notch, and the reforming catalyst is installed only in the central portion of the passage located at the center, and the raw fuel is provided at the outer edge portion thereof. The opening of the internal manifold hole for gas supply is provided, and the reformed fuel gas flows through the gas passages on both sides from the notch to reverse the flow, and is used for the fuel provided on both sides of the internal manifold hole for raw fuel gas supply. The internal reforming molten carbonate fuel cell according to claim 1 or 2, further comprising a structure for supplying each unit cell through a manifold hole.
JP4052369A 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell Expired - Fee Related JP2697461B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4052369A JP2697461B2 (en) 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell
US08/028,976 US5348814A (en) 1992-03-11 1993-03-10 Internal reforming type molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052369A JP2697461B2 (en) 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH05258758A true JPH05258758A (en) 1993-10-08
JP2697461B2 JP2697461B2 (en) 1998-01-14

Family

ID=12912898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052369A Expired - Fee Related JP2697461B2 (en) 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2697461B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059614A (en) * 2004-08-19 2006-03-02 Hitachi Ltd Fuel cell
KR100744940B1 (en) * 2006-06-14 2007-08-01 삼성전기주식회사 A micro reformer and its manufacturing method
JP2010171018A (en) * 2010-03-08 2010-08-05 Nissan Motor Co Ltd Solid-oxide fuel cell
US11201275B1 (en) 2020-06-10 2021-12-14 Palo Alto Research Center Incorporated Superconducting stress-engineered micro-fabricated springs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239774A (en) * 1988-03-18 1989-09-25 Sanyo Electric Co Ltd Molten carbonate fuel cell
JPH0240863A (en) * 1988-08-01 1990-02-09 Sanyo Electric Co Ltd Molten carbonate fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239774A (en) * 1988-03-18 1989-09-25 Sanyo Electric Co Ltd Molten carbonate fuel cell
JPH0240863A (en) * 1988-08-01 1990-02-09 Sanyo Electric Co Ltd Molten carbonate fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059614A (en) * 2004-08-19 2006-03-02 Hitachi Ltd Fuel cell
KR100744940B1 (en) * 2006-06-14 2007-08-01 삼성전기주식회사 A micro reformer and its manufacturing method
JP2010171018A (en) * 2010-03-08 2010-08-05 Nissan Motor Co Ltd Solid-oxide fuel cell
US11201275B1 (en) 2020-06-10 2021-12-14 Palo Alto Research Center Incorporated Superconducting stress-engineered micro-fabricated springs

Also Published As

Publication number Publication date
JP2697461B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US5348814A (en) Internal reforming type molten carbonate fuel cell
US8187559B2 (en) Heat exchanger system comprising fluid circulation zones which are selectively coated with a chemical reaction catalyst
US5100743A (en) Internal reforming type molten carbonate fuel cell
US5227256A (en) Fully internal manifolded fuel cell stack
US20070184310A1 (en) Molten Carbonate Fuel Cell Provided with Indirect Internal Steam Reformer
US8034496B2 (en) Fuel cell
US9123946B2 (en) Fuel cell stack
US5518827A (en) Internal reforming type fuel cell device and fuel cell generating system
US7855028B2 (en) Separator plate for molten carbonate fuel cell
JPH05190187A (en) Fuel cell stack
JPH06260189A (en) Fuel cell
KR20080000674A (en) Fuel cell system
JP2737535B2 (en) Internal reforming molten carbonate fuel cell
JP4513282B2 (en) Fuel cell
JPS63232275A (en) Fuel cell of lamination type
JP4461955B2 (en) Solid oxide fuel cell
US7097929B2 (en) Molten carbonate fuel cell
JPH05258758A (en) Internally reformed type molten carbonate fuel battery
JP4956946B2 (en) Fuel cell
US8110318B2 (en) Solid oxide fuel cell with reforming chamber integrated within separator plates
JP4507453B2 (en) Fuel cell manifold
JP2009129701A (en) Fuel cell module
US8753784B2 (en) Separator for molten carbonate fuel cell
JP4706191B2 (en) Solid oxide fuel cell
JP5077384B2 (en) Fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees