Nothing Special   »   [go: up one dir, main page]

JPH05258615A - Insulated electric cable and its manufacture - Google Patents

Insulated electric cable and its manufacture

Info

Publication number
JPH05258615A
JPH05258615A JP4086491A JP8649192A JPH05258615A JP H05258615 A JPH05258615 A JP H05258615A JP 4086491 A JP4086491 A JP 4086491A JP 8649192 A JP8649192 A JP 8649192A JP H05258615 A JPH05258615 A JP H05258615A
Authority
JP
Japan
Prior art keywords
layer
conductor
insulated wire
insulator
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4086491A
Other languages
Japanese (ja)
Inventor
Sakuko Kaneda
佐久子 金田
Yoshiaki Sato
喜昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP4086491A priority Critical patent/JPH05258615A/en
Publication of JPH05258615A publication Critical patent/JPH05258615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To provide a fluororesin-type insulated electric cable with good electric properties and mechanical properties and lightweight and provide its manufacturing method. CONSTITUTION:After the outer circumference of a conductor 2 is coated with a thin film of a thermally fusible fluororesin such as tetrafluoroethylene- perfluoroalkyl vinyl ether copolymer resin as a peeling layer 3, a coating is formed further on the outer circumference by paste-extrusion of a mixture of fine hollow spherical bodies made of glass and unsintered tetrafluororesin fine powder. Then, the coating layer is sintered to give an insulator layer 4 and at the same time to be fused with the peeling layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電気特性と機械特性
に優れ、さらに軽量化が可能なフッ素樹脂系の絶縁電線
と、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluororesin-based insulated wire which is excellent in electrical characteristics and mechanical characteristics and can be reduced in weight, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】四フッ化エチレン樹脂(PTFE)、テ
トラフルオロエチレン−ヘキサフルオロプロピレン共重
合樹脂(FEP)、テトラフルオロエチレン−パーフル
オロアルキルビニルエーテル共重合樹脂(PFA)等の
フッ素樹脂は、電気特性、耐熱性、耐寒性の点において
他の高分子材料よりも優れ、また化学的にも安定である
ことから、電線の絶縁体材料として従来より広く使用さ
れている。このようなフッ素樹脂を用いた絶縁電線は、
薄い絶縁体でも通常の絶縁電線と同等以上の性能を有す
るから、信頼性を損なわずに電線を小型、細線化するこ
とが可能であり、機器の容量、重量を減少する上で大い
に役立っている。このため、フッ素樹脂絶縁電線は、高
度の信頼性と高密度化が要求される航空機や電子機器の
内部配線として賞用されている。
Fluorine resins such as tetrafluoroethylene resin (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA) have electrical characteristics. Since it is superior to other polymer materials in terms of heat resistance and cold resistance and is chemically stable, it has been widely used as an insulator material for electric wires. Insulated wires using such fluororesin,
Even with a thin insulator, it has the same or better performance as a normal insulated wire, so it is possible to make the wire smaller and thinner without sacrificing reliability, which is extremely useful in reducing the capacity and weight of the equipment. .. For this reason, the fluororesin insulated wire has been prized as internal wiring for aircraft and electronic devices that require high reliability and high density.

【0003】ところで、近年におけるそれら機器の進歩
は目ざましく、樹脂をそのまま被覆した従来のフッ素樹
脂絶縁電線では、特に電気特性等の点においてそれに対
応できない場合があり、その有効な解決手段として、発
泡あるいは延伸により多孔質化したフッ素樹脂絶縁体を
使用することが検討されている(特開平3−97746
号、特開昭59−149608号公報等参照)。
By the way, the progress of these devices in recent years has been remarkable, and the conventional fluororesin-insulated electric wire coated with the resin as it is may not be able to deal with it particularly in terms of electrical characteristics, and foaming is an effective solution. Alternatively, the use of a fluororesin insulator which has been made porous by stretching has been investigated (Japanese Patent Laid-Open No. 3-97746).
No. 59-149608).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法により絶縁体層を多孔質化したフッ素樹脂絶縁電線に
あっては、いずれも次のような欠点があった。
However, any of the fluororesin-insulated electric wires in which the insulator layer is made porous by the above method has the following drawbacks.

【0005】即ち、特公昭42−13560号公報等に
記載の延伸法により得られる多孔質四フッ化エチレン樹
脂シートは、繊維質化された微細な連続気孔性の多孔質
構造に形成されるから、圧縮力に対して本質的に弱く、
圧縮を受けた部分では内部の気孔が潰れて非多孔質構造
に変化しやすい性質がある。このため、気孔率の高いシ
ートを使用しても、これを導体に巻き付けて絶縁体とし
たときには、製造時に負荷される張力により気孔の何割
かが潰れてしまい、所期の特性を得ることは困難であっ
た。その傾向は、気孔率の高いシートを用いるほど顕著
である。さらに、このような気孔の潰れは、絶縁体層の
比重を増加させるから、絶縁電線の軽量化を図る上での
妨げとなっていた。また、延伸によりテープ状やシート
状に成形された多孔質四フッ化エチレン樹脂は、加熱さ
れると収縮して気孔率が低下しやすいために熱融着が困
難である。したがって、電線の絶縁体として使用する場
合には、単に導体外周に重ね巻きするにとどまり、絶縁
体層として一体化されていないことから、屈曲に対して
巻付け状態が変化しやすく、そのため電気特性が不安定
になるなど、連続気孔性の四フッ化エチレン樹脂シート
を用いた絶縁電線には解決すべき幾つかの問題点が残さ
れている。
That is, the porous tetrafluoroethylene resin sheet obtained by the stretching method described in Japanese Patent Publication No. 42-13560 is formed into a fibrous fine continuous porous structure. , Inherently weak against compressive forces,
The compressed portion has a property that the internal pores are crushed and easily change to a non-porous structure. Therefore, even if a sheet with a high porosity is used, when it is wound around a conductor to form an insulator, some of the pores are crushed due to the tension applied during manufacturing, and the desired characteristics cannot be obtained. It was difficult. The tendency is more remarkable as the sheet having higher porosity is used. Further, such collapse of the pores increases the specific gravity of the insulating layer, which has been an obstacle to reducing the weight of the insulated wire. Further, the porous tetrafluoroethylene resin formed into a tape or sheet by stretching is contracted when heated, and the porosity is likely to decrease, so that heat fusion is difficult. Therefore, when it is used as an insulator for electric wires, it is merely wrapped around the outer circumference of the conductor and is not integrated as an insulator layer. There are some problems to be solved in the insulated wire using the continuous porous tetrafluoroethylene resin sheet, such as instability.

【0006】また、発泡による絶縁体層の多孔質化は、
発泡核剤を含む溶融状態のフッ素樹脂に対して、発泡剤
として窒素ガスもしくは炭化水素などの揮発性有機液体
をガス状または液状で押出機のシリンダーの中途部分か
ら高圧にて吹き込み、溶融した樹脂が押出機を出るとき
に樹脂内に含まれる発泡剤が発泡核剤を基点として膨張
することを利用している。この方法によれば、気孔が連
通していない独立気孔性の発泡絶縁体を得ることができ
るが、その対象は融点以上に加熱した場合に可塑化して
流動性を示す熱溶融性のフッ素樹脂に限定され、融点以
上でもほとんど流動しない溶融粘度の極めて高い四フッ
化エチレン樹脂に適用することは不可能である。ところ
が、熱溶融性のフッ素樹脂を使用した場合でも、溶融状
態における樹脂の粘度は他の発泡用の樹脂に比べると全
般的に高く、加工温度と加工圧が高くなることから、発
泡率の制御が極めて難しく、しかも得られる発泡体の気
泡径はいずれも100μm以上でそのばらつきも大きい
ため、長手方向の全長に渡り均一で安定した電気特性を
有する絶縁電線が得られない欠点があった。さらに、こ
のような独立気孔性の発泡絶縁体であっても、圧縮力を
受けた場合には、連続気孔構造の絶縁体ほどではない
が、気孔の潰れが生じて電気特性を変化させるため、圧
縮に対する機械強度の向上も望まれていた。
In addition, the foaming of the insulating layer by foaming is
A resin that is melted by blowing a volatile organic liquid such as nitrogen gas or hydrocarbon as a foaming agent in a gaseous or liquid form into a molten fluororesin containing a foam nucleating agent at a high pressure from the middle part of the extruder cylinder. Utilizes that the foaming agent contained in the resin expands on the basis of the foam nucleating agent as it exits the extruder. According to this method, it is possible to obtain a foamed insulator with independent porosity in which the pores are not communicated, but the object is a heat-meltable fluororesin that plasticizes and shows fluidity when heated above the melting point. It is limited and cannot be applied to a tetrafluoroethylene resin having an extremely high melt viscosity that hardly flows even above the melting point. However, even when a heat-meltable fluororesin is used, the viscosity of the resin in the molten state is generally higher than that of other foaming resins, and the processing temperature and processing pressure become high, so it is possible to control the foaming rate. However, since the bubble diameters of the obtained foams are all 100 μm or more and the variation is large, there is a drawback that an insulated wire having uniform and stable electrical characteristics over the entire length in the longitudinal direction cannot be obtained. Further, even with such an independent pore foamed insulator, when it receives a compressive force, it is not as much as an insulator with a continuous pore structure, but since the pores are collapsed and the electrical characteristics are changed, Improvement of mechanical strength against compression has also been desired.

【0007】そこで、この発明は、これら従来技術の問
題点に鑑み、軽量で電気特性に優れ、しかも圧縮や屈曲
などの外力に対して電気特性の変化がほとんどない絶縁
電線と製造方法の提供をその目的とする。
Therefore, in view of these problems of the prior art, the present invention provides an insulated wire which is light in weight, has excellent electric characteristics, and hardly changes in electric characteristics due to an external force such as compression or bending, and a manufacturing method. To that end.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、この発明による絶縁電線では、導体と、この導体の
外周に被覆される熱溶融性フッ素樹脂からなる薄膜状の
剥離層と、この剥離層よりも肉厚でその外周に融着され
る無機系微小中空球体と四フッ化エチレン樹脂の焼成さ
れた混和物からなる絶縁体層を備えた構成とする。
In order to achieve the above object, in an insulated wire according to the present invention, a conductor, a thin film-like release layer made of a heat-meltable fluororesin coated on the outer periphery of the conductor, and the release The insulator layer is thicker than the layer and is made of a fired mixture of an inorganic micro hollow sphere and a tetrafluoroethylene resin, which is fused to the outer periphery of the layer.

【0009】また、かかる絶縁電線は、導体の外周に熱
溶融性フッ素樹脂からなる薄膜状の剥離層を被覆した
後、この剥離層の外周に無機系微小中空球体と未焼成四
フッ化エチレン樹脂粉末の混和物をペースト押出しによ
り被覆し、しかる後該被覆層を焼成して絶縁体層とする
と同時に剥離層に融着せしめることによって得られる。
Further, in such an insulated wire, a thin-film release layer made of a heat-meltable fluororesin is coated on the outer periphery of the conductor, and then the outer periphery of the release layer is covered with an inorganic micro hollow sphere and an unsintered tetrafluoroethylene resin. It is obtained by coating a mixture of powders by paste extrusion, and then calcining the coating layer to form an insulating layer and at the same time fusion-bonding it to the release layer.

【0010】本発明において、剥離層として導体と絶縁
体層の間に設けられる薄膜状の熱溶融性フッ素樹脂層
は、絶縁体層と導体との過剰な密着を防止することによ
り、結線等の作業に際して絶縁電線端部における絶縁体
層の切除(以下、ストリップと称する)を確実且つ容易
にするためのものであり、外側の絶縁体層に対して融着
一体化することでそれを実現している。なお、この剥離
層は、その材質から絶縁電線の絶縁体としても作用して
いるが、外側に積層される絶縁体層に比べると誘電率が
かなり高いため、本発明では、絶縁電線の電気特性の面
からできるだけ薄い被覆厚であることが望ましい。した
がって、薄膜状の剥離層を形成するに当たっては、押出
被覆よりはディスパージョンもしくは溶液状態でのコー
ティングが好ましい。その被覆厚は、絶縁電線のサイズ
によっても異なるが、一般的には5〜20μm程度の範
囲内で選択される。このような目的で使用される熱溶融
性フッ素樹脂は、絶縁体層の母材である四フッ化エチレ
ン樹脂に対する接着強度の点から、四フッ化エチレン樹
脂の融点に近いものが望ましく、具体例を挙げれば、F
EP、PFA、テトラフルオロエチレン−ヘキサフルオ
ロプロピレン−パーフルオロアルキルビニルエーテル三
元共重合樹脂(EPE)などがある。これらの熱溶融性
フッ素樹脂は溶剤には溶解しないから、押出被覆以外の
方法としてはディスパージョンでのコーティングに限定
されるが、例えばテトラフルオロエチレンとパーフルオ
ロ−2,2−ジメチル−1,3−ジオキソールの共重合
体に代表される主鎖に環構造を含むフッ素樹脂は、電気
特性が良好で且つフッ素系の溶剤に溶解する性質がある
ため溶液でのコーティングが可能であり、剥離層の被覆
厚を薄くする場合には好都合な素材である。
In the present invention, the thin-film heat-meltable fluororesin layer provided as a peeling layer between the conductor and the insulator layer prevents excessive adhesion between the insulator layer and the conductor, so that a wiring or the like can be prevented. It is intended to surely and easily cut off the insulating layer at the end of the insulated wire (hereinafter referred to as a strip) at the time of work, and realizes it by fusion-bonding to the outer insulating layer. ing. Although the peeling layer also acts as an insulator of the insulated wire due to its material, since the dielectric constant is considerably higher than that of the insulator layer laminated on the outer side, in the present invention, the electrical characteristics of the insulated wire are It is desirable that the coating thickness be as thin as possible from the viewpoint of. Therefore, in forming a thin film-like release layer, dispersion or solution state coating is preferable to extrusion coating. The coating thickness varies depending on the size of the insulated wire, but is generally selected within the range of about 5 to 20 μm. From the viewpoint of adhesive strength to the tetrafluoroethylene resin that is the base material of the insulating layer, it is desirable that the heat-fusible fluororesin used for such a purpose be close to the melting point of the tetrafluoroethylene resin. For example, F
There are EP, PFA, tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether terpolymer resin (EPE) and the like. Since these heat-meltable fluororesins are not dissolved in a solvent, methods other than extrusion coating are limited to dispersion coating, for example, tetrafluoroethylene and perfluoro-2,2-dimethyl-1,3. A fluororesin containing a ring structure in the main chain, which is represented by a dioxole copolymer, has good electric properties and has a property of being dissolved in a fluorine-based solvent, so that coating with a solution is possible, and a release layer It is a convenient material when the coating thickness is reduced.

【0011】また、四フッ化エチレン樹脂と絶縁体層を
形成する無機系微小中空球体とは、殻壁がガラス、セラ
ミック等の耐熱性の良好な無機材料からなる粒径0.1
〜30μm程度の中空球体であって、薄い殻壁の内部に
空気、窒素、アルゴン等を抱持することにより、低誘電
率、低誘電正接、低比重となっている。本発明では、絶
縁体層表面の平滑性を確保すると共に、ペースト押出し
時における微小中空球体の破損を防止するため、使用す
る微小中空球体の粒径は小さいほどよく、望ましくは粒
径20μm以下のものが用いられる。無機系微小中空球
体の具体例としては、アルミナ、シリカ、ジルコニア、
ガラス、シラスなどからなるものがあるが、電気特性等
の点から、シリカ製の中空球体が好ましい。なお、微小
中空球体は必ずしも完全に密閉された球体である必要は
なく、多数の微細な気孔が開口した発泡状球体も使用可
能であり、この球体も本発明でいうところの微小中空球
体に含まれる。これら微小中空球体と四フッ化エチレン
樹脂との混合比については特に限定されないが、多量に
添加した場合には、ペースト押出し時に破壊される微小
中空球体が多くなるため、配合量の割には電気特性が向
上せず経済的でない。また、少なすぎると配合効果が小
さいので、一般的には四フッ化エチレン樹脂に対して1
〜50重量%の範囲で混入することが望ましく、好まし
くは5〜20重量%である。なお、四フッ化エチレン樹
脂に対する親和性を高め絶縁体層の機械強度を向上させ
る目的で、微小中空球体の表面をシラン系カップリング
剤等の処理剤で表面処理しておいてもよい。
In addition, the tetrafluoroethylene resin and the inorganic micro hollow spheres forming the insulating layer have a particle diameter of 0.1 with a shell wall made of an inorganic material having good heat resistance such as glass or ceramics.
It is a hollow sphere of about 30 μm and has a low dielectric constant, a low dielectric loss tangent, and a low specific gravity by holding air, nitrogen, argon or the like inside the thin shell wall. In the present invention, in order to ensure the smoothness of the surface of the insulating layer and prevent damage to the micro hollow spheres during paste extrusion, the smaller the size of the micro hollow spheres used, the better. Things are used. Specific examples of the inorganic micro hollow spheres include alumina, silica, zirconia,
Some are made of glass, shirasu, etc., but hollow spheres made of silica are preferable from the viewpoint of electrical characteristics and the like. The micro hollow sphere does not necessarily have to be a completely closed sphere, and a foamed sphere having a large number of fine pores can be used, and this sphere is also included in the micro hollow sphere in the present invention. Be done. The mixing ratio of these micro hollow spheres and the tetrafluoroethylene resin is not particularly limited, but if a large amount is added, the number of micro hollow spheres destroyed during paste extrusion will be large, so the amount of electricity will be relative to the blending amount. It is not economical because the characteristics are not improved. Also, if the amount is too small, the compounding effect is small.
It is desirable to mix in the range of ˜50 wt%, preferably 5 to 20 wt%. The surface of the hollow microspheres may be surface-treated with a treating agent such as a silane coupling agent for the purpose of enhancing the affinity for the tetrafluoroethylene resin and improving the mechanical strength of the insulating layer.

【0012】[0012]

【作用】本発明による絶縁電線では、剥離層は絶縁体と
しても作用するが、その被覆厚が絶縁体層に比べると極
めて薄いので、実質的には外側の絶縁体層が絶縁電線の
電気特性を支配している。この絶縁体層は、焼成により
溶融した四フッ化エチレン樹脂粒子が無数の微小中空球
体を結着一体化し、内部構造としては独立気孔性の多孔
質構造となっている。そして、微小中空球体の結着材と
なる四フッ化エチレン樹脂は、絶縁材料の中でも最も誘
電率の低い材料であり、それが微小中空球体の存在によ
り多孔質化されるから、絶縁体層の誘電率は大幅に低下
する。
In the insulated wire according to the present invention, the peeling layer also acts as an insulator, but since the coating thickness is extremely thin as compared with the insulator layer, the outer insulator layer is substantially the electrical characteristics of the insulated wire. Dominates. This insulator layer has a porous structure with independent porosity as an internal structure, in which tetrafluoroethylene resin particles melted by firing bind and integrate a myriad of minute hollow spheres. The tetrafluoroethylene resin, which serves as a binder for the micro hollow spheres, has the lowest dielectric constant among the insulating materials, and since it is made porous by the presence of the micro hollow spheres, The permittivity drops significantly.

【0013】さらに、絶縁体層中に分散する微小中空球
体は、ガラスやセラミックなどの硬度の高い無機材料か
ら形成され、特に圧縮力に対しては大きな抵抗力を有す
るものであるから、屈曲や圧縮などの外力を受けた時に
絶縁体層の多孔質構造に大きな変化が生じることはな
い。このため、絶縁電線における電気特性の安定性が大
幅に向上し、併せて絶縁電線の軽量化も実現される。し
かも、微小中空球体として粒径が均一で微細なものを使
用すれば、長手方向における電気特性のばらつきがない
絶縁電線とすることが可能である。
Further, the fine hollow spheres dispersed in the insulating layer are made of an inorganic material having a high hardness such as glass and ceramics, and have a great resistance to a compressive force. When an external force such as compression is applied, the porous structure of the insulator layer does not change significantly. Therefore, the stability of the electric characteristics of the insulated wire is significantly improved, and the weight of the insulated wire is also reduced. Moreover, by using fine hollow spheres having a uniform particle size, it is possible to obtain an insulated wire having no variation in electrical characteristics in the longitudinal direction.

【0014】また、四フッ化エチレン樹脂は非粘着性に
優れ、絶縁体層として多孔質化せずに使用する限りは導
体に対してそれほど強く密着することはないが、無機系
微小中空球体を混入した混和物では、四フッ化エチレン
樹脂による非粘着作用が大きく減殺され、そのまま導体
に被覆した場合には密着が強すぎてストリップ性が極め
て悪い。撚線を導体として使用した場合には、絶縁体層
が素線間に食い込むためそれが顕著である。そこで、本
発明では、絶縁体層の電気特性を低下させることなくス
トリップ性を改善するため、四フッ化エチレン樹脂に対
して融着可能で且つ導体には適度に密着する熱溶融性フ
ッ素樹脂を剥離層として使用している。この場合、熱溶
融性フッ素樹脂からなる剥離層は、絶縁体層を焼成する
際の熱により絶縁体層に融着されるが、剥離層と絶縁体
層との密着力が剥離層の導体に対する密着力よりも大き
いため、絶縁電線端部のストリップ時に剥離層と絶縁体
層とが分離せず、剥離層が破断して絶縁体層と共に除去
される。したがって、一回の操作で剥離層と絶縁体層と
を同時に除去することができる。
Further, the tetrafluoroethylene resin is excellent in non-adhesiveness and does not adhere to the conductor so strongly as long as it is used as the insulating layer without being made porous, but the inorganic micro hollow sphere is used. In the admixed mixture, the non-adhesive action of the tetrafluoroethylene resin is greatly reduced, and when the conductor is directly coated, the adhesion is too strong and the strip property is extremely poor. When a stranded wire is used as a conductor, this is remarkable because the insulating layer cuts between the wires. Therefore, in the present invention, in order to improve the stripping property without deteriorating the electrical characteristics of the insulating layer, a heat-meltable fluororesin which can be fused to the tetrafluoroethylene resin and which is appropriately adhered to the conductor is used. It is used as a release layer. In this case, the peeling layer made of the heat-meltable fluororesin is fused to the insulator layer by the heat when firing the insulator layer, but the adhesion between the peeling layer and the insulator layer is different from that of the conductor of the peeling layer. Since the peel strength is larger than the adhesive strength, the peeling layer and the insulator layer are not separated when the end portion of the insulated wire is stripped, and the peeling layer is broken and removed together with the insulator layer. Therefore, the peeling layer and the insulating layer can be simultaneously removed by a single operation.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明による絶縁電線の一実施例を示す
断面図であり、図示の絶縁電線1は、導体2の外周に薄
膜状の熱溶融性フッ素樹脂からなる剥離層3が被覆さ
れ、さらにその外周には、ガラスマイクロバルーン等の
無機系微小中空球体と四フッ化エチレン樹脂の焼成され
た混和物からなる絶縁体層4が剥離層3よりも肉厚に被
覆され、これら剥離層3と絶縁体層4とが融着した構成
になっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of an insulated wire according to the present invention. In the illustrated insulated wire 1, an outer periphery of a conductor 2 is covered with a peeling layer 3 made of a thin film heat-meltable fluororesin, The outer periphery thereof is covered with an insulator layer 4 made of a fired mixture of inorganic micro hollow spheres such as glass microballoons and a tetrafluoroethylene resin in a thickness thicker than that of the peeling layer 3. The insulating layer 4 and the insulating layer 4 are fused together.

【0016】次に、上記絶縁電線の製造方法を図2によ
り説明する。導体供給装置20から送り出された導体2
は、ダイス21でその外周に熱溶融性フッ素樹脂のディ
スパージョンが薄くコーティングされ、このディスパー
ジョン層は加熱炉22において溶融して薄膜状の剥離層
3を形成する。剥離層3が被覆された導体2は、ペース
ト押出装置23において、その外周に無機系微小中空球
体と未焼成四フッ化エチレン樹脂粉末の混和物が液状潤
滑剤の添加のもとにペースト押出しされ、液状潤滑剤を
除去した後、400℃程度に加温された加熱炉24で焼
成される。この焼成により、無機系微小中空球体と四フ
ッ化エチレン樹脂とが結着して一体化し、独立気孔性の
多孔質絶縁体層4が形成され、その際に内側の剥離層3
が溶融して絶縁体層4と融着する。このようにして剥離
層3と絶縁体層4が一体に被覆された絶縁電線1は、巻
き取り装置25に送られる。
Next, a method of manufacturing the insulated wire will be described with reference to FIG. Conductor 2 sent from conductor supply device 20
The die 21 is coated with a dispersion of a heat-meltable fluororesin thinly on the outer periphery thereof, and the dispersion layer is melted in a heating furnace 22 to form a thin-film release layer 3. The conductor 2 coated with the release layer 3 is paste-extruded in the paste extruding device 23 with a mixture of inorganic micro hollow spheres and unsintered tetrafluoroethylene resin powder on the outer periphery thereof under the addition of a liquid lubricant. After removing the liquid lubricant, it is fired in the heating furnace 24 heated to about 400 ° C. By this firing, the inorganic micro hollow spheres and the tetrafluoroethylene resin are bound and integrated to form a porous insulator layer 4 having independent porosity. At that time, the inner release layer 3 is formed.
Melts and fuses with the insulator layer 4. The insulated electric wire 1 in which the peeling layer 3 and the insulating layer 4 are thus integrally covered is sent to the winding device 25.

【0017】以上の方法により製造される絶縁電線の具
体例を示すと、次の通りである。直径0.203mmの銀
メッキ軟銅線を19本撚り合わせ直径0.950mmとし
た導体2を用い、この外周にPFAのディスパージョン
をコーティングして厚さ0.006mmの剥離層3を形成
した。次に、シラン系カップリング剤(信越化学社製L
SX−6815)で表面処理したガラス製微小中空球体
(旭硝子社製 セルスターZ−45 平均粒径52μ
m)16重量部と未焼成四フッ化エチレン樹脂微粉末
(ダイキン工業社製 F−201)84重量部との混和
物に、液状潤滑剤としてソルベントナフサを添加して所
定時間放置した後、これをペースト押出装置を用いて剥
離層3の外周に押出し被覆した。そして、加熱炉におい
て未焼成の被覆層中に含まれる液状潤滑剤を乾燥除去
し、さらに焼成することにより厚さ0.4mmの絶縁体層
4を形成して外径1.76mmの本発明による絶縁電線1
を得た。
A specific example of the insulated wire manufactured by the above method is as follows. A conductor 2 having a diameter of 0.950 mm was obtained by twisting 19 silver-plated annealed copper wires having a diameter of 0.203 mm, and the outer periphery of the conductor 2 was coated with PFA dispersion to form a release layer 3 having a thickness of 0.006 mm. Next, a silane coupling agent (L manufactured by Shin-Etsu Chemical Co., Ltd.
SX-6815) surface-treated glass micro hollow spheres (Asahi Glass Co. Cellstar Z-45 average particle size 52μ
m) To a mixture of 16 parts by weight and 84 parts by weight of unburned tetrafluoroethylene resin fine powder (F-201 manufactured by Daikin Industries, Ltd.) was added solvent naphtha as a liquid lubricant and allowed to stand for a predetermined time. Was extruded and coated on the outer periphery of the release layer 3 using a paste extrusion device. Then, the liquid lubricant contained in the unsintered coating layer is dried and removed in a heating furnace, and further sintered to form an insulator layer 4 having a thickness of 0.4 mm, and an outer diameter of 1.76 mm according to the present invention. Insulated wire 1
Got

【0018】上記絶縁電線の電気特性として、絶縁体層
4の外側に銅パイプを装着してセミリジッド同軸ケーブ
ルの状態で伝搬遅延時間を測定したところ、4.33n
s/mであり、このことから剥離層を含む絶縁体層の実
効比誘電率は1.69と推測することができ、実用上十
分な特性を有するものであった。また、この絶縁電線
は、外径の2倍の径で曲げたり、あるいは絶縁体層に1
0kg/平方メートルの荷重を10分間負荷した場合にも
電気特性にほとんど変化はみられず、その安定性は極め
て高いものであった。
As electric characteristics of the insulated wire, a copper pipe was attached to the outside of the insulator layer 4 and a propagation delay time was measured in the state of a semi-rigid coaxial cable.
Since this is s / m, the effective relative permittivity of the insulating layer including the peeling layer can be estimated to be 1.69, and the insulating layer had practically sufficient characteristics. Also, this insulated wire may be bent at a diameter twice the outer diameter, or the insulated layer may be
Even when a load of 0 kg / square meter was applied for 10 minutes, almost no change was observed in the electrical characteristics, and the stability was extremely high.

【0019】また、ストリップ性の評価では、市販のス
トリッパーで問題なく処理することができ、さらに重量
については、本発明による絶縁電線が1mあたり7.6
グラムであるのに対し、従来の連続気孔性の多孔質四フ
ッ化エチレン樹脂テープを用いた同程度の電気特性を有
する絶縁電線では1mあたり10グラムとなり、かなり
軽量になっていることが確認された。
In the strip property evaluation, a commercially available stripper can be used without any problem, and the weight of the insulated wire according to the present invention is 7.6 per 1 m.
In contrast to the gram, it is confirmed that the insulated wire using the conventional continuous-pore porous tetrafluoroethylene resin tape having the same electrical characteristics has 10 grams per 1 m, which is considerably lightweight. It was

【0020】図3は、この発明による絶縁電線の異なる
実施例で、ツイストペアケーブルに適用した例を示して
いる。この場合、絶縁電線10は、前記実施例の絶縁電
線1の外周にさらにFEPのディスパージョンをコーテ
ィングし、これを焼き付けて厚さ0.02mmの外被11
としたものを二本撚り合わせ、外被11において融着し
た構成になっている。このツイストペアケーブルの電気
特性として、伝搬遅延時間は3.97ns/m であ
り、実用上有用なものであった。さらに、二本の絶縁電
線10を撚り合わせた状態で融着したときの絶縁体層4
の潰れや変形は、その断面を観察して比較した場合、従
来例である連続気孔性の多孔質四フッ化エチレン樹脂テ
ープを使用した絶縁電線、あるいは発泡により絶縁体層
を多孔質化した絶縁電線に比べてはるかに少なく、絶縁
体層の形状安定性は大幅に向上していた。また、このよ
うに外被11を被覆した場合でも、ストリップ性につい
ては全く問題はなかった。
FIG. 3 shows another embodiment of the insulated wire according to the present invention, which is applied to a twisted pair cable. In this case, the insulated electric wire 10 is obtained by further coating the outer periphery of the insulated electric wire 1 of the above-mentioned embodiment with a dispersion of FEP and baking it to coat the outer cover 11 with a thickness of 0.02 mm.
2 are twisted together, and the outer cover 11 is fused. As the electrical characteristics of this twisted pair cable, the propagation delay time was 3.97 ns / m 2, which was practically useful. Furthermore, the insulating layer 4 when the two insulated electric wires 10 are twisted and fused
The crushing or deformation of the wire is, when the cross sections are observed and compared, an insulated wire using a porous tetrafluoroethylene resin tape of the conventional porosity, which is a conventional example, or an insulation layer in which the insulation layer is made porous by foaming. The shape stability of the insulator layer was significantly improved, compared with the number of wires. Even when the outer cover 11 is coated in this manner, there is no problem in stripping property.

【0021】なお、上記実施例では、導体として撚線を
使用した例について説明したが、これを単線に変えた
り、あるいは剥離層の材質や被覆厚を変更するなど、こ
の発明の技術思想内での変更実施はもちろん可能であ
る。
In the above embodiment, an example in which a stranded wire is used as a conductor has been described. However, within the technical concept of the present invention, such as changing to a single wire or changing the material and coating thickness of the release layer. Of course, it is possible to make changes.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれ
ば、電気的、機械的特性に優れ、さらにストリップ性が
良好で軽量化も可能な絶縁電線を容易に得ることがで
き、その工業的価値は極めて大なるものがある。
As described above, according to the present invention, it is possible to easily obtain an insulated electric wire which is excellent in electrical and mechanical characteristics, has a good strip property, and can be reduced in weight, and is industrially used. The value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による絶縁電線の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of an insulated wire according to the present invention.

【図2】本発明による絶縁電線の製造方法の一例を示す
概略説明図である。
FIG. 2 is a schematic explanatory view showing an example of a method of manufacturing an insulated wire according to the present invention.

【図3】本発明による絶縁電線の他の実施例を示す断面
図である。
FIG. 3 is a sectional view showing another embodiment of the insulated wire according to the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁電線 2 導体 3 剥離層 4 絶縁体層 10 絶縁電線 11 外被 23 ペースト押出装置 24 加熱炉 DESCRIPTION OF SYMBOLS 1 Insulated electric wire 2 Conductor 3 Release layer 4 Insulator layer 10 Insulated electric wire 11 Outer coating 23 Paste extruding device 24 Heating furnace

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導体と、この導体の外周に被覆される熱溶
融性フッ素樹脂からなる薄膜状の剥離層と、この剥離層
よりも肉厚でその外周に融着される無機系微小中空球体
と四フッ化エチレン樹脂の焼成された混和物からなる絶
縁体層を備える絶縁電線。
1. A conductor, a thin-film release layer made of a heat-meltable fluororesin covering the outer periphery of the conductor, and an inorganic micro hollow sphere having a thickness larger than that of the release layer and fused to the outer periphery thereof. And an insulated wire comprising an insulator layer made of a fired mixture of tetrafluoroethylene resin.
【請求項2】導体の外周に熱溶融性フッ素樹脂からなる
薄膜状の剥離層を被覆した後、この剥離層の外周に無機
系微小中空球体と未焼成四フッ化エチレン樹脂粉末の混
和物をペースト押出しにより被覆し、しかる後該被覆層
を焼成して絶縁体層とすると同時に剥離層に融着せしめ
る絶縁電線の製造方法。
2. A conductor is coated with a thin-film release layer made of a heat-meltable fluororesin, and then the release layer is provided with a mixture of inorganic hollow microspheres and unfired tetrafluoroethylene resin powder. A method for producing an insulated wire, which comprises coating by paste extrusion, and then calcining the coating layer to form an insulating layer and at the same time fusion-bonding to a peeling layer.
JP4086491A 1992-03-09 1992-03-09 Insulated electric cable and its manufacture Pending JPH05258615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086491A JPH05258615A (en) 1992-03-09 1992-03-09 Insulated electric cable and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086491A JPH05258615A (en) 1992-03-09 1992-03-09 Insulated electric cable and its manufacture

Publications (1)

Publication Number Publication Date
JPH05258615A true JPH05258615A (en) 1993-10-08

Family

ID=13888459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086491A Pending JPH05258615A (en) 1992-03-09 1992-03-09 Insulated electric cable and its manufacture

Country Status (1)

Country Link
JP (1) JPH05258615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037508A1 (en) * 2000-11-01 2002-05-10 Daikin Industries, Ltd. Insulation wire having fluororesin fiber insulation layer
WO2004086416A1 (en) * 2003-03-24 2004-10-07 Kurabe Industrial Co., Ltd. Dielectric, insulated wire, coaxial cable, and dielectric production method
JP2009212034A (en) * 2008-03-06 2009-09-17 Hitachi Magnet Wire Corp Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire
JP2011011535A (en) * 2009-06-03 2011-01-20 Nichias Corp Paste extrusion molding method and paste extrusion molding product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037508A1 (en) * 2000-11-01 2002-05-10 Daikin Industries, Ltd. Insulation wire having fluororesin fiber insulation layer
WO2004086416A1 (en) * 2003-03-24 2004-10-07 Kurabe Industrial Co., Ltd. Dielectric, insulated wire, coaxial cable, and dielectric production method
JPWO2004086416A1 (en) * 2003-03-24 2006-06-29 株式会社クラベ Dielectric, insulated wire, coaxial cable, dielectric manufacturing method
CN100419919C (en) * 2003-03-24 2008-09-17 株式会社克拉比 Dielectric, insulated wire, coaxial cable, and dielectric production method
JP4657729B2 (en) * 2003-03-24 2011-03-23 株式会社クラベ Dielectric, insulated wire, coaxial cable, dielectric manufacturing method
JP2009212034A (en) * 2008-03-06 2009-09-17 Hitachi Magnet Wire Corp Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire
JP2011011535A (en) * 2009-06-03 2011-01-20 Nichias Corp Paste extrusion molding method and paste extrusion molding product

Similar Documents

Publication Publication Date Title
US5468314A (en) Process for making an electrical cable with expandable insulation
US5477011A (en) Low noise signal transmission cable
KR100789760B1 (en) Expandable resin composition, expanded article using the same and coaxial insulated cable
GB2070617A (en) Foamable perfluorocarbon resin compositions and foam jacketed cables produced therefrom
US3573976A (en) Method of making coaxial cable
JPH0413770A (en) Insulating material and production thereof
JP2006164646A (en) Fluorine resin-coated wire, coaxial cable using it and manufacturing method thereof
KR20200136883A (en) Insulated wire
GB2209167A (en) Composite material of low dielectric constant
JPH05509433A (en) Electrical insulation composite material
JPH05258615A (en) Insulated electric cable and its manufacture
JP4990503B2 (en) PTFE paste body, PTFE porous body, composite using PTFE porous body, and method for producing PTFE porous body
US5744756A (en) Blown microfiber insulated cable
JP2001067944A (en) Fluororesin-coated electric wire and manufacture of fluororesin-coated electric wire
JP5004212B2 (en) Composite using PTFE porous material
JP2016160416A (en) Pellet, foamed resin compact, foamed insulated wire and cable
JP2011076860A (en) Ptfe insulated conductor cable, and method of manufacturing the same
JP2861283B2 (en) Foam plastic insulated wire
JP2737234B2 (en) Insulated wire and its manufacturing method
CN110964278A (en) Physical foaming fluoride cable material and preparation method thereof
JP2008226618A (en) Covered wire by porous ptfe resin insulating layer, and coaxial cable using it
JP3195006B2 (en) Polytetrafluoroethylene resin foam and method for producing the same
JP4518552B2 (en) High frequency coaxial cable
JP2514705B2 (en) Insulated wire and its manufacturing method
JP2001357730A (en) Products for transmission of high frequency signal and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees