Nothing Special   »   [go: up one dir, main page]

JPH05256749A - Analysis pretreating instrument and pretreating method using instrument thereof - Google Patents

Analysis pretreating instrument and pretreating method using instrument thereof

Info

Publication number
JPH05256749A
JPH05256749A JP4088144A JP8814492A JPH05256749A JP H05256749 A JPH05256749 A JP H05256749A JP 4088144 A JP4088144 A JP 4088144A JP 8814492 A JP8814492 A JP 8814492A JP H05256749 A JPH05256749 A JP H05256749A
Authority
JP
Japan
Prior art keywords
outer tube
analytical
pretreatment
droplet
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4088144A
Other languages
Japanese (ja)
Other versions
JP3179175B2 (en
Inventor
Hisashi Muraoka
久志 村岡
Masanobu Ueha
正信 上羽
Kazuo Kawai
一男 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PIYUARETSUKUSU KK
U M S KK
Original Assignee
PIYUARETSUKUSU KK
U M S KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PIYUARETSUKUSU KK, U M S KK filed Critical PIYUARETSUKUSU KK
Priority to JP08814492A priority Critical patent/JP3179175B2/en
Publication of JPH05256749A publication Critical patent/JPH05256749A/en
Application granted granted Critical
Publication of JP3179175B2 publication Critical patent/JP3179175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To make it possible to adjust the sample for total-reflection fluorescent X-ray analysis by providing an outer tube having the end part, which can hold the droplet of sample liquid to be analyzed, so as to surround the end part of a capillary, concentrating the sample liquid, and drying and fixing the liquid in a small area at the specified position of a drying plate for the sample liquid to be analyzed. CONSTITUTION:A tip part 3 of a capillary 2 is washed. Sample liquid of about 200mul is sucked into the capillary 2 through the tip part 3. Then, a wafer is set at a specified position and heated to 90-95 deg.C. Then, the tip part 3 of the capillary 2, which has sucked the sample liquid, is moved to the specified position on the wafer. The tip part 3 is lowered to a specified interval for the wafer, and the sample liquid is discharged slowly. A small droplet is formed between the tip part 3 and the wafer. The diameter of the droplet becomes constant by adjusting the discharging speed of the liquid and the evaporating speed by heating. For example, when the discharging speed is be made to about 10mul/minute at the surface temperature of about 90-95 deg.C, the diameter of the droplet becomes about 2mm. The droplet is dried and fixed in the intact state. Thus, the sample liquid of the large amount of liquid can be dried and fixed in the minute area at the set position of a dying plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超微量の不純物の分析
を行うための前処理器具及び該器具を用いた前処理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment instrument for analyzing ultratrace amounts of impurities and a pretreatment method using the instrument.

【0002】[0002]

【従来技術】分析前処理として液中の分析対象物質を濃
縮する方法としては、液を蒸発皿上で蒸発乾固する方法
が一般的である。この場合、凹面(蒸発皿面)に広く乾
固した対象物質を高感度で定量する適当な方法がないの
で、通常、該乾固物質を微量の溶解液で再溶解し、液体
試料用の分析機器、例えばICP質量分析装置や液体ク
ロマトグラフ等で分析が行われる。
2. Description of the Related Art As a method for concentrating a substance to be analyzed in a liquid as a pretreatment for analysis, a method of evaporating and drying the liquid on an evaporation dish is generally used. In this case, since there is no suitable method to quantify the target substance widely dried on the concave surface (evaporation dish surface) with high sensitivity, usually, the dried substance is redissolved with a small amount of dissolution liquid, and analysis for liquid sample The analysis is performed by an instrument such as an ICP mass spectrometer or a liquid chromatograph.

【0003】最近になって、平板状表面の局部的領域を
高感度で分析する全反射蛍光X線分析法が開発されてい
る。この分析法において、液状試料を分析対象とする場
合、この液滴を高純度の石英ガラス表面や高純度シリコ
ン単結晶ウェーハ表面に滴下し、これを蒸発乾固させ、
平面上の局部に濃縮させる前処理が行われている。
Recently, a total reflection X-ray fluorescence analysis method has been developed for highly sensitive analysis of a local area of a flat plate-shaped surface. In this analysis method, when a liquid sample is to be analyzed, this droplet is dropped onto a high-purity quartz glass surface or a high-purity silicon single crystal wafer surface, which is evaporated to dryness,
Pre-treatment for concentrating locally on the plane is performed.

【0004】一方、シリコンウェーハ等の表面の金属不
純物を濃縮して、微量(即ち 100μリットル程度)の液
に捕集する前処理方法としては、気相分解装置の中で該
ウェーハ等をHF蒸気で処理した後、酸の液滴を表面張
力によりフッ素樹脂製保持具に保持させ、この液滴を走
査装置によって前記ウェーハの中心から周辺まで渦巻き
状に走査した後、該保持具を受皿に移動させ、金属不純
物を捕集した液を回収する方法が知られている。
On the other hand, as a pretreatment method for concentrating metal impurities on the surface of a silicon wafer or the like and collecting it in a trace amount (that is, about 100 μl) of liquid, the wafer or the like is HF vaporized in a vapor phase decomposition apparatus. After the treatment, the acid droplets are held on the fluororesin holder by surface tension, the droplets are swirled from the center to the periphery of the wafer by a scanning device, and then the holder is moved to a saucer. There is known a method of recovering the liquid in which the metal impurities are collected.

【0005】[0005]

【発明が解決しようとする課題】全反射蛍光X線分析法
では、X線の照射量が均一な部分で且つ蛍光X線検出器
の窓の中心の直下に液滴試料の乾固部がなければならな
い。通常の装置では、平坦な基板表面部での不純物乾固
領域は大きくとも5〜6mmφ以内で、しかもその位置
(番地)が正確に認識されなければならない。
In the total reflection fluorescent X-ray analysis method, the dry solid portion of the droplet sample must be located in a portion where the X-ray irradiation dose is uniform and directly below the center of the window of the fluorescent X-ray detector. I have to. In an ordinary apparatus, the impurity dryness region on the flat substrate surface is within 5 to 6 mmφ at the most, and its position (address) must be recognized accurately.

【0006】超高純度のHF溶液中に放射性同位元素59
Feを1ppb 程度溶解させ、あらかじめHFの蒸気を吹き
つけて疏水化したシリコンウェーハ基板上に20μリット
ルの液を滴下すると、基板上には直径4〜5mmの液滴が
できる。これを徐々に乾固させ、オートラジオグラフで
59Feの乾固状態を調べると、乾固が始まる前の液滴の直
径とほぼ同じ位の大きさまで59Feが存在していることが
認められる。
Radioisotope 59 in ultra high purity HF solution
When about 1 ppb of Fe is dissolved and 20 μl of the liquid is dropped on the hydrophobized silicon wafer substrate by spraying HF vapor in advance, droplets having a diameter of 4 to 5 mm are formed on the substrate. Dry it slowly to dryness, and use an autoradiograph
Examination of the dry state of 59 Fe reveals that 59 Fe is present up to a size almost the same as the diameter of the droplet before the start of dry solidification.

【0007】このような微量不純物の場合、蒸発した液
自体の純度が高いので、基板上で乾固の跡をみることが
できない。しかも液滴の蒸発の初期の段階で液滴がかな
り移動することがあり、乾固部が必ずしも液の滴下位置
と同じではない。これは測定にあたって好ましいことで
はない。乾固位置の把握が正確にできないとすると、基
板上の液滴はなるべく小さい方が望ましいが、例えば液
滴の直径を3mmにしようとすると、滴下液量は5μリッ
トル程度となる。分析装置の検出感度は変わらないの
で、滴下液量を減らすことは液の分析感度が低下するこ
とになる。
In the case of such trace impurities, since the evaporated liquid itself has high purity, no trace of dryness can be seen on the substrate. Moreover, the liquid droplets may move considerably in the initial stage of evaporation of the liquid droplets, and the dry solid portion is not always the same as the liquid dropping position. This is not preferable for measurement. If the dry-solid position cannot be accurately grasped, it is desirable that the droplet on the substrate is as small as possible. For example, if the diameter of the droplet is set to 3 mm, the amount of the dropped liquid is about 5 μl. Since the detection sensitivity of the analyzer does not change, reducing the amount of the dropped liquid will lower the analysis sensitivity of the liquid.

【0008】従って本発明の第1の目的は、数百μリッ
トルの量の分析試料液を、乾燥基板上の指定された位置
に正確に且つ2〜3mmφ以下の小面積で乾固させること
のできる分析前処理器具及び前処理方法を提供すること
にある。また半導体分野においては、シリコンウェーハ
表面の不純物を液滴に移行させ、この液を分析する方法
が重要となっており、本発明においては、上記前処理器
具を用いてその移行操作を行う方法及びその操作に必要
な装置を提供することを第2の目的とする。
Therefore, a first object of the present invention is to dry an analytical sample liquid in an amount of several hundreds of microliters to a specified position on a dry substrate accurately and in a small area of 2-3 mmφ or less. An object is to provide an analytical pretreatment instrument and a pretreatment method. Further, in the field of semiconductors, it is important to transfer impurities on the surface of a silicon wafer to liquid droplets and analyze the liquid. In the present invention, a method of performing the transfer operation using the pretreatment tool and A second object is to provide a device necessary for the operation.

【0009】[0009]

【課題を解決するための手段】本発明によれば、分析試
料液の液滴を保持することのできる端部を備えた細管
と、該細管の前記端部を取り囲むように設けられた分析
試料液の液滴を保持することのできる端部を備えた外管
とを有しており、前記細管の他端部には、分析試料液を
吸引及び吐出するための機構が連結され、前記外管に
は、その内部雰囲気を吸引もしくは減圧するための機構
が連結されていることを特徴とする分析前処理器具が提
供される。
According to the present invention, a thin tube having an end capable of holding a droplet of an analytical sample liquid, and an analytical sample provided so as to surround the end of the thin tube. An outer tube having an end capable of holding a liquid droplet, and a mechanism for sucking and discharging an analytical sample solution is connected to the other end of the thin tube. An analytical pretreatment instrument is provided in which a mechanism is connected to the tube to suck or depressurize the internal atmosphere.

【0010】上記細管、外管等は、疎水性の合成樹脂、
例えばポリテトラフルオロエチレン(PTFE)、4 フ
ッ化エチレンパーフルオロアルコキシエチレン(PF
A)、商品名テフロンAF等のフッ素系樹脂から成って
いることが好ましく、また外管のさらに外側に第2の外
管を設けることもできる。
The thin tube, outer tube, etc. are made of hydrophobic synthetic resin,
For example, polytetrafluoroethylene (PTFE), tetrafluoroethylene perfluoroalkoxyethylene (PF
A), preferably made of a fluororesin such as Teflon AF under the trade name, and a second outer tube may be provided further outside the outer tube.

【0011】また本発明によれば、前記分析前処理器具
を使用して前記細管に予め分析試料液を吸引させ、該細
管の端部を、一定の温度に加熱された疎水性分析試料液
乾燥板上に近接させて前記細管から試料液の吐出を徐々
に行い、吐出された試料液滴が該細管の端部に接し且つ
一定の直径以上に広がらないように該液滴の蒸発を行う
とともに、蒸発物質を外管に接続された排気機構により
吸引除去し、前記乾燥板上の指定領域内に分析試料液の
濃縮乾固を行うことを特徴とする分析前処理方法が提供
される。
According to the present invention, the analytical sample solution is sucked into the thin tube in advance by using the analytical pretreatment device, and the end of the thin tube is dried by the hydrophobic analytical sample solution heated to a constant temperature. The sample liquid is gradually ejected from the thin tube in close proximity to the plate, and the ejected sample droplet is in contact with the end of the thin tube and vaporized so that the droplet does not spread beyond a certain diameter. A method for pretreatment of analysis is provided, wherein the evaporation material is sucked and removed by an exhaust mechanism connected to an outer tube, and the analysis sample solution is concentrated and dried in a designated region on the drying plate.

【0012】疎水性分析試料液乾燥板としては、HFに
浸漬したシリコンウェーハ、有機強アルカリと界面活性
剤の水溶液で加熱超音波処理したシリコンウェーハ、商
品名テフロンAFをごく薄くコートしたシリコンウェー
ハ等が有用である。
The hydrophobic analysis sample liquid drying plate is a silicon wafer immersed in HF, a silicon wafer heated and ultrasonically treated with an aqueous solution of an organic strong alkali and a surfactant, a silicon wafer coated with a trade name of Teflon AF very thinly, etc. Is useful.

【0013】前記分析前処理器具として、外管のさらに
外側にこれを取り囲むように第2の外管が設けられてい
る器具を使用することもでき、この場合には、蒸発物質
の排気と同時に、第2の外管から雰囲気を供給すること
ができる。
As the analytical pretreatment instrument, an instrument in which a second outer tube is provided further outside the outer tube so as to surround the outer tube can be used. The atmosphere can be supplied from the second outer tube.

【0014】本発明によれば、上記の分析前処理方法を
実施するための装置として、前記分析前処理器具、該分
析前処理器具を保持するアーム、該アームを移動させる
ための機構、分析試料液の乾燥を行うための乾燥板、前
記アームに保持された分析前処理器具の端部が乾燥板の
所定の位置に設定されるように該乾燥板の位置移動を行
うための駆動機構、及び前記アームに保持された分析前
処理器具の端部に対応して前記乾燥板の反対側に設けら
れた加熱機構を備えていることを特徴とする分析前処理
装置が提供される。
According to the present invention, as an apparatus for carrying out the above analytical pretreatment method, the analytical pretreatment instrument, the arm for holding the analytical pretreatment instrument, the mechanism for moving the arm, the analytical sample A drying plate for drying the liquid, a driving mechanism for moving the position of the drying plate so that the end portion of the analytical pretreatment instrument held by the arm is set at a predetermined position of the drying plate, and There is provided an analytical pretreatment device comprising a heating mechanism provided on the opposite side of the drying plate corresponding to the end of the analytical pretreatment instrument held by the arm.

【0015】本発明によれば更に、シリコンウェーハ等
の疎水性分析面に付着した不純物を捕集する方法とし
て、分析試料液を吸引あるいは吐出する端部を備えた細
管と、該細管の前記端部を取り囲むように設けられた分
析試料液の液滴を保持する端部を備えた外管とを有する
分析前処理器具を使用し、前記細管中に分析面不純物を
溶解捕集するための液を吸引しておき、前記外管の端部
が疎水性分析面に近接するように前処理器具を位置せし
め、前記細管から液を吐出させて外管内の疎水性分析面
上に前記液滴を形成させ、上記液滴が外管内からはみで
ないように、必要により外管内を僅かに減圧しつつ、該
前処理器具を移動させて該液滴を疎水性分析面上を走査
することにより、疎水性分析面上の不純物を液滴中に捕
集することを特徴とする分析前処理方法が提供される。
Further, according to the present invention, as a method for collecting impurities adhering to a hydrophobic analysis surface such as a silicon wafer, a thin tube having an end portion for sucking or discharging an analytical sample liquid, and the end of the thin tube. A liquid for dissolving and collecting impurities on the analytical surface in the narrow tube, using an analytical pretreatment instrument having an outer tube provided with an end portion for holding a droplet of the analytical sample liquid provided so as to surround the portion. Is aspirated, the pretreatment device is positioned so that the end of the outer tube is close to the hydrophobic analysis surface, and the liquid is discharged from the thin tube to deposit the droplet on the hydrophobic analysis surface in the outer tube. By forming a small amount of pressure inside the outer tube so that the droplet does not stick out from the outer tube, the pretreatment instrument is moved to scan the droplet on the hydrophobic analysis surface. The feature is that the impurities on the hydrophobic analysis surface are collected in the droplets. Analysis pretreatment method is provided that.

【0016】上記の前処理方法においても、分析前処理
器具として、外管のさらに外側にこれを取り囲むように
第2の外管が設けられている器具を使用することができ
る。また前記液滴の走査のための分析前処理器具の移動
を、ロボット機構により行うことができる。
Also in the above-mentioned pretreatment method, as the analytical pretreatment instrument, an instrument in which the second outer tube is provided outside the outer tube so as to surround the outer tube can be used. Further, the movement of the pretreatment device for analysis for scanning the droplet can be performed by a robot mechanism.

【0017】本発明によれば、上記の方法により、不純
物の液滴中への捕集が終了した後、該液滴を細管中に吸
引し、これを液滴乾燥域に移動せしめて乾固を行う分析
前処理方法が提供される。
According to the present invention, after the impurities are collected in the liquid droplets by the above method, the liquid droplets are sucked into a thin tube, moved to a liquid droplet drying area, and dried. An analytical pretreatment method is provided for performing.

【0018】[0018]

【実施例】本発明を、以下、添付図面に示す具体例に基
づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail based on specific examples shown in the accompanying drawings.

【0019】実施例1 本発明の二重管構造の分析前処理器具を示す図1におい
て、この分析前処理器具は、基本的にいって、PTFE
製の円柱状の支持体1と、該支持体1の中心を貫通して
延びているPFA製の細管2と、該細管2とほぼ平行に
支持体1に形成されている長孔6と、該支持体1の下端
部に、細管2の先端を囲むように設けられている商品名
テフロンAFなる透明なフッ素樹脂製の外管5(内径:
約10mm)とから成っている。
Example 1 In FIG. 1 showing an analytical pretreatment instrument having a double-tube structure according to the present invention, this analytical pretreatment instrument is basically referred to as PTFE.
A cylindrical support 1 made of PFA, a thin tube 2 made of PFA extending through the center of the support 1, and an elongated hole 6 formed in the support 1 substantially parallel to the thin tube 2. A transparent fluororesin outer tube 5 (inner diameter: Teflon AF) provided at the lower end of the support 1 so as to surround the tip of the thin tube 2.
About 10 mm) and.

【0020】細管2の先端部3は、内径が約 0.1mm程度
に絞られており、その先端部3とほぼ同一平面上に外管
5の先端部4が位置するように構成されている。また長
孔6の上端部には、排気用チューブを接続するための突
出管部7が形成されている。なお、外管5は、その厚み
を十分に薄くして細管2の先端部3が見えるようにした
PFA管であってもよい。
The tip portion 3 of the thin tube 2 has an inner diameter narrowed to about 0.1 mm, and the tip portion 4 of the outer tube 5 is located substantially flush with the tip portion 3. A projecting tube portion 7 for connecting an exhaust tube is formed at the upper end of the elongated hole 6. The outer tube 5 may be a PFA tube whose thickness is made sufficiently thin so that the tip 3 of the thin tube 2 can be seen.

【0021】上記の分析前処理器具を用いて、分析試料
液を濃縮しつつ且つ分析試料液乾燥板の特定の位置に直
径2mm以内の乾固部を作る場合の使用方法を説明する。
尚、分析試料液中の分析対象が乾固部にどの程度移行す
るかを、RIトレーサ法で確認するために、59Feで標識
した Fe 0.01ppb のHF10%溶液を用意した。また分析
試料液乾燥板としては、HFに浸漬して表面を疎水化し
たシリコンウェーハを用いた。
A method of using the above-described analytical pretreatment device to concentrate the analytical sample solution and to form a dry solid portion having a diameter of 2 mm or less at a specific position on the analytical sample solution drying plate will be described.
In order to confirm by the RI tracer method how much the analysis target in the analysis sample solution migrates to the dry solid portion, a 0.01% Fe 0.01 ppb HF 10% solution labeled with 59 Fe was prepared. As the analytical sample liquid drying plate, a silicon wafer whose surface was made hydrophobic by immersion in HF was used.

【0022】図2には、上記分析試料液の乾燥に用いる
液滴乾燥装置を示す。即ち、乾燥用ウェーハ8が石英ガ
ラス板10上にノブ11により正確に位置決めされて保持さ
れる。この石英ガラス板10は、XYステージ9によって
水平方向に可動であり、指定された位置で位置固定され
る。石英ガラス板10の下方には、加熱用ハロゲンランプ
12が配置される。このハロゲンランプ12は、内部が通気
空冷できる石英容器13に納めされている。
FIG. 2 shows a droplet drying apparatus used for drying the above-mentioned analytical sample liquid. That is, the drying wafer 8 is accurately positioned and held on the quartz glass plate 10 by the knob 11. The quartz glass plate 10 is movable in the horizontal direction by the XY stage 9 and is fixed in position at a designated position. Below the quartz glass plate 10 is a halogen lamp for heating.
Twelve are placed. This halogen lamp 12 is housed in a quartz container 13 whose inside can be ventilated and air cooled.

【0023】また石英ガラス板10の上方には、前述した
本発明の分析前処理器具が配置される。該前処理器具に
おいては、支持体1にアーム14が接続され、上下動、回
転及びスライド等により、その位置を自在に調整できる
ようになっている。さらに、細管2にはディスペンサー
15が連結され、突出管部7には、超純水による水流ポン
プ等の排気機構16が連結されている。
Above the quartz glass plate 10, the above-described analytical pretreatment instrument of the present invention is arranged. In the pretreatment instrument, an arm 14 is connected to the support 1, and its position can be freely adjusted by vertical movement, rotation, slide and the like. Furthermore, the thin tube 2 has a dispenser
An exhaust mechanism 16 such as a water flow pump using ultrapure water is connected to the protruding pipe portion 7.

【0024】まず、アーム14の動作により、前処理器具
の細管2の先端部3が所定の洗浄槽に移され、必要に応
じて薬液処理が行われ、水洗される。次に細管2の先端
部3のみが試料槽に入り、ディスペンサー15を逆に動作
させて、試料液 200μリットルを正確に細管2に吸い込
ませる。また、ステージ9を動作して、ウェーハ8を指
定の位置に設定し、ランプ12により該ウェーハ8を90〜
95℃の温度に加熱しておく。
First, by the operation of the arm 14, the tip portion 3 of the thin tube 2 of the pretreatment instrument is transferred to a predetermined washing tank, and if necessary, a chemical solution treatment is performed and water washing is performed. Next, only the tip portion 3 of the thin tube 2 enters the sample tank, and the dispenser 15 is operated in reverse so that 200 μl of the sample solution is accurately sucked into the thin tube 2. In addition, the stage 9 is operated to set the wafer 8 to a specified position, and the lamp 12 moves the wafer 8 to 90-
Heat to 95 ° C.

【0025】さらに試料液を吸い込んだ細管2を、その
先端部3が前記ウェーハ8上の指定位置に位置するよう
に、アーム14を動作させて前処理器具を移動させる。こ
こで、細管2の先端部3がウェーハ8に対して一定の間
隔となるまで降下した時、排気機構16の動作が開始し、
ディスペンサーを働かせて徐々に試料液の吐出が行わ
れ、細管2の先端部3とウェーハ8との間に小液滴が作
られる。尚、この小液滴の位置が指定された位置となる
ように、予めXYステージ9が調整されてある。液滴の
位置精度は、XYステージ9の精度で決まるが、通常、
± 0.1mm程度であり、分析装置に必要な位置精度は十分
に得られる。尚、乾燥板を加熱装置上で均一に加熱され
る位置に配置し、支持体1、即ち細管2の先端部3がX
Yステージ9で乾燥板の指定の位置に移動する構造であ
ってもよい。
Further, the thin tube 2 sucking the sample solution is moved by moving the arm 14 so that the tip portion 3 thereof is located at the designated position on the wafer 8. Here, when the tip portion 3 of the thin tube 2 is lowered to the wafer 8 at a constant interval, the operation of the exhaust mechanism 16 starts,
The sample liquid is gradually discharged by operating the dispenser, and small droplets are formed between the tip portion 3 of the thin tube 2 and the wafer 8. In addition, the XY stage 9 is adjusted in advance so that the position of the small droplet becomes the designated position. The positional accuracy of the liquid droplet is determined by the accuracy of the XY stage 9, but normally,
It is about ± 0.1 mm, and the positional accuracy required for the analyzer can be sufficiently obtained. The drying plate is placed at a position where it is heated uniformly on the heating device, and the support 1, that is, the tip 3 of the thin tube 2 is moved to the X position.
The structure may be such that the Y stage 9 moves to a designated position on the drying plate.

【0026】この液滴の直径は、前記液の吐出速度と加
熱による液の蒸発速度に依存する。従って、吐出速度と
ランプ12のランプ電圧とをを適当に調整することによ
り、吐出速度と蒸発速度とは平衡に達し、液の直径は略
一定になる。例えば、前記表面温度(90〜95℃)におい
て吐出速度を10μリットル/分とした時、液滴の直径は
略2mmとなり、そのまま乾固した。
The diameter of the droplet depends on the discharge speed of the liquid and the evaporation speed of the liquid due to heating. Therefore, by appropriately adjusting the discharge rate and the lamp voltage of the lamp 12, the discharge rate and the evaporation rate reach equilibrium, and the diameter of the liquid becomes substantially constant. For example, when the discharge rate was 10 μl / min at the surface temperature (90 to 95 ° C.), the diameter of the liquid droplet was about 2 mm, and the liquid dried as it was.

【0027】従来のように、1滴での乾固であれば、1
〜2μリットル程度の容量の試料液でないと、乾固面積
を2mmφにすることができない。これに対して本発明に
よれば、従来に比して遙に大きな液量の試料液を乾燥板
の予め設定した位置に微小面積で乾固できるようになっ
たことが理解される。
As in the conventional case, if 1 drop is used for dryness, 1
The dry solid area cannot be 2 mmφ unless the sample liquid has a volume of about 2 μl. On the other hand, according to the present invention, it is understood that the sample liquid having a much larger amount of liquid than the conventional one can be dried at a preset position on the drying plate with a small area.

【0028】上記において、乾固部の放射能量は、当初
の 200μリットル試料液の97%であり、3%が飛散した
ものと思われる。この回収率は、通常の微量不純物を分
析する場合では十分に許されるものである。従って、装
置や環境からの汚染を防ぐことができれば、分析の感度
を大幅に挙げることができ、前記前処理器具を用いた本
発明の前処理方法は極めて有効な方法である。
In the above, the amount of radioactivity in the dried and solidified portion was 97% of the initial 200 μl sample liquid, and it is considered that 3% was scattered. This recovery rate is well tolerated when analyzing ordinary trace impurities. Therefore, if the contamination from the device or the environment can be prevented, the sensitivity of the analysis can be greatly increased, and the pretreatment method of the present invention using the pretreatment instrument is a very effective method.

【0029】尚、比較のために、前記前処理器具におい
て、外管5を取り外して全く同様の実験を行ない、ウェ
ーハ8の全面のオートラジオグラフを行ったところ、か
なり広い範囲に59Feが飛散し、汚染していることが分か
った。さらに、外管5を取り付けて同様の実験を再度行
ったが、外管5の外側のウェーハ部分に59Feの汚染は見
られなかった。本発明の2重管構造の前処理器具を使用
すれば、乾燥板上の複数の番地に、分析用の乾固部を形
成することができ、効率のよい分析を行うことが可能と
なる。
For comparison, when the outer tube 5 was removed from the pretreatment apparatus and the same experiment was conducted and an autoradiograph of the entire surface of the wafer 8 was performed, 59 Fe was scattered in a fairly wide range. And it turned out to be contaminated. Further, the same experiment was conducted again with the outer tube 5 attached, but 59 Fe contamination was not found in the wafer portion outside the outer tube 5. By using the double pipe structure pretreatment tool of the present invention, it is possible to form dry-solid parts for analysis at a plurality of addresses on the drying plate, and it is possible to perform efficient analysis.

【0030】実施例2 図3に本発明の3重構造の前処理器具を示す。この前処
理器具においては、前記図1の前処理器具と同様、支持
体1に、細管2、長孔6及び外管5が設けられていると
ともに、さらに外管5を取り囲むように、第2の外管17
が設けられている。この第2の外管17と第1の外管5と
の間の空間は、上方の両外管を連結する部分を貫通した
長孔16に連通しており、この長孔16の上部には、雰囲気
供給用のチューブ(図示せず)と連結するための突起管
19が形成されている。また第2の外管17の下端部18は、
第1の外管5の下端部よりも若干短くなっており、前記
細管2の下端部3及び外管5の下端部が、第2の外管17
の下端部18よりも外方に突出するようになっている。
尚、かかる第2の外管17も疎水性の合成樹脂で構成さ
れ、例えば支持体1と一体に形成される。
Example 2 FIG. 3 shows a pretreatment device having a triple structure according to the present invention. In this pretreatment instrument, like the pretreatment instrument of FIG. 1, the support 1 is provided with the thin tube 2, the long hole 6 and the outer tube 5, and the second tube is further provided so as to surround the outer tube 5. Outer tube of 17
Is provided. The space between the second outer pipe 17 and the first outer pipe 5 communicates with a long hole 16 penetrating a portion connecting both upper outer pipes. , A projection tube for connecting with an atmosphere supply tube (not shown)
19 are formed. Further, the lower end portion 18 of the second outer pipe 17 is
It is slightly shorter than the lower end of the first outer pipe 5, and the lower end 3 of the thin pipe 2 and the lower end of the outer pipe 5 are the second outer pipe 17
It is adapted to project outwardly from the lower end portion 18 of the.
The second outer tube 17 is also made of a hydrophobic synthetic resin and is formed integrally with the support 1, for example.

【0031】この図3の3重管構造の前処理器具を、図
2と同様にアームに取付け、実施例1と同様に実験を行
った。この場合、長孔6からの排気と同時に、長孔16を
介して、約80℃に加熱した高純度の無塵窒素ガスを、排
気量にバランスさせて供給した。
The pretreatment instrument having the triple tube structure shown in FIG. 3 was attached to the arm in the same manner as in FIG. 2, and the same experiment as in Example 1 was conducted. In this case, high-purity dustless nitrogen gas heated to approximately 80 ° C. was supplied through the long hole 16 at the same time as the exhaust from the long hole 6 while balancing the exhaust amount.

【0032】細管2の末端3に形成される液滴はさらに
小さく制御され、乾固域を1〜1.5mmφとすることがで
きた。59Feの乾固部での回収率は91%となりやや飛散が
多くなったが、分析値への要求が1桁でもよい場合は十
分にこの方法を適用できる。超微量の分析に対して、一
般の高感度分析機器はこの程度の精度であるから、かか
る3重管構造の前処理器具を利用した濃縮処理方法は、
おおむね実用に供することが可能である。
The droplets formed at the end 3 of the thin tube 2 were controlled to be even smaller, and the dry-solid region could be 1 to 1.5 mmφ. The recovery rate of 59 Fe in the dry solid portion was 91%, and the amount of scattering was slightly large, but this method can be sufficiently applied when the demand for the analytical value is one digit. Since a general high-sensitivity analytical instrument has an accuracy of this level for the analysis of an extremely small amount, the concentration treatment method using such a pretreatment instrument with a triple tube structure is
It can be put to practical use.

【0033】実施例3 図1の2重管構造の前処理器具装置において、外管5は
疎水性であるから、その端部で水性液滴を保持しなが
ら、疎水性表面上を移動させることができる。ウェーハ
表面上に、そこに付着した不純物を溶解しつつ分析試料
液滴を作成する方法を、本実施例で説明する。
Example 3 In the pretreatment instrument device having a double-tube structure shown in FIG. 1, since the outer tube 5 is hydrophobic, the outer tube 5 is moved on the hydrophobic surface while holding the aqueous droplets at the ends thereof. You can A method for forming an analysis sample droplet on the surface of a wafer while dissolving impurities attached thereto will be described in this embodiment.

【0034】ウェーハ表面の不純物をどの程度液滴中に
捕集できるかを調べるために、実施例1と同様に、放射
性同位元素によるトレーサ技術を用いた。シリコン表面
にHF系の薬液から還元性物質の共存で付着したCuは、
気相分解法に後続するHF液滴による捕集では非常に回
収率が悪い。しかもその回収は再現性も悪い。そこでこ
の実施例では、このようにしてシリコンウェーハの鏡面
側だけに付着させた回収が困難であった64Cuの液滴捕集
を、本発明の分析前処理器具を用いる処理方法で試み
た。
In order to investigate how much impurities on the wafer surface can be collected in the droplet, the tracer technique using a radioisotope was used as in Example 1. Cu attached to the silicon surface in the coexistence of reducing substances from HF-based chemicals
The collection rate by HF droplets following the gas phase decomposition method has a very poor recovery rate. Moreover, the recovery is poor in reproducibility. Therefore, in this example, the droplet collection of 64 Cu, which had been difficult to collect by adhering only to the mirror surface side of the silicon wafer in this way, was tried by the treatment method using the pretreatment device for analysis of the present invention.

【0035】図4に示す通り、皿状容器21にウェーハ20
を水平に保持固定し、図1に示す前処理器具の外管5の
端部4が上記ウェーハ20の表面に接し、この状態で該処
理器具を自由に走査できるように、前処理器具の支持体
1を所定のロボット機構のアーム22に把持させる。
As shown in FIG. 4, the wafer 20 is placed in a dish-shaped container 21.
1 is held horizontally, and the end 4 of the outer tube 5 of the pretreatment tool shown in FIG. 1 is in contact with the surface of the wafer 20, and the pretreatment tool is supported so that the processing tool can be freely scanned in this state. The body 1 is held by the arm 22 of a predetermined robot mechanism.

【0036】先ず、前記アーム22の動作により、実施例
1と同様に、細管2の先端部3の洗浄を行い、次いでウ
ェーハ表面不純物溶解液の薬液槽に、細管2の先端部3
のみを入れ、ディスペンサー15を逆に作用させて 100〜
200 μリットルの液を吸い込ませる。尚、上記溶解液と
しては、64Cuを溶解させるために、硝酸:水が1:1容
の水溶液にHFを3%加えたものを使用した。
First, as in the first embodiment, the tip portion 3 of the thin tube 2 is cleaned by the operation of the arm 22, and then the tip portion 3 of the thin tube 2 is placed in the chemical solution tank of the wafer surface impurity solution.
Put the chisel and reverse the dispenser 15 to 100 ~
Inhale 200 μl of liquid. In addition, as the above-mentioned solution, in order to dissolve 64 Cu, a solution in which 3% of HF was added to an aqueous solution of nitric acid: water of 1: 1 was used.

【0037】さらに前記アーム22を動作させて、ウェー
ハ20上の所定の分析領域に、図4の状態となるように前
処理器具を移し、ディスペンサー15を早く動作させて外
管5の内部に前記酸液を吐出させる。この場合、表面張
力によって、液滴は外管5の外部にはみださない。同時
に、外管5の内部に通ずる排気機構16をバルブ23でカッ
トし、別に接続してあるディスペンサー15' をごく僅か
に吸引させて外管5内を僅かに減圧する。
Further, the arm 22 is operated to move the pretreatment tool to a predetermined analysis region on the wafer 20 so that the state of FIG. 4 is obtained, and the dispenser 15 is rapidly operated to move the inside of the outer tube 5 to the above-mentioned state. Discharge the acid solution. In this case, due to the surface tension, the droplet does not overflow to the outside of the outer tube 5. At the same time, the exhaust mechanism 16 communicating with the inside of the outer tube 5 is cut by the valve 23, and the separately connected dispenser 15 ′ is slightly sucked to slightly depressurize the inside of the outer tube 5.

【0038】この状態でロボット機構により、前記アー
ム22を介して、前処理器具を走査させることにより、液
滴をウェーハ20上で走査せしめる。この場合、ウェーハ
20上の液滴の走査は、所謂一筆書となるように行われ
る。また、例えばオリフラに平行からスタートして七曲
り方式の往復走査でウェーハ半分の不純物捕集を行うこ
ともできる。
In this state, the robot mechanism scans the pretreatment instrument through the arm 22 to scan the droplets on the wafer 20. In this case, the wafer
The scanning of the droplets on 20 is performed in a so-called one-stroke writing. Further, for example, it is possible to start from parallel to the orientation flat and collect impurities in a half of the wafer by reciprocal scanning of a seven-curve system.

【0039】上記液滴を一定速度で移動させることによ
り、ウェーハ上の全面走査を15分かけて終了した。放射
能測定値の比較により、ウェーハ上の64Cuの82%が液滴
中に捕集された。これは、HFのみを単に走査させた場
合に比して、約2倍の値である。尚、本発明は、支持体
1の位置を固定し、皿上容器21をロボット機構で動かし
ても相対的には上記装置と同一となる。
By moving the droplets at a constant speed, the entire surface scanning on the wafer was completed in 15 minutes. A comparison of the radioactivity measurements showed that 82% of the 64 Cu on the wafer was trapped in the droplet. This is about twice the value compared to the case where only HF is scanned. Incidentally, in the present invention, even if the position of the support 1 is fixed and the dish container 21 is moved by the robot mechanism, it is relatively the same as the above-mentioned device.

【0040】実施例4 実施例3に比して、さらに64Cuの回収率を高くするため
には、硝酸の濃度を60重量%近くまで高くすることが必
要である。しかし、HFを含んでいる場合、還元性の不
純物に該液が接触すると酸化性ガスを発生し、これが液
滴を保持しているシリコン表面を変質・親水性化させ、
この変質面が液を捕捉するため、回収し得る液滴量が減
少する。
Example 4 In order to further increase the recovery rate of 64 Cu as compared with Example 3, it is necessary to increase the concentration of nitric acid to nearly 60% by weight. However, in the case of containing HF, when the liquid comes into contact with the reducing impurities, an oxidizing gas is generated, which deteriorates the surface of the silicon holding the droplets and makes them hydrophilic.
Since the altered surface captures the liquid, the amount of droplets that can be collected is reduced.

【0041】そこで、図3で示されている実施例2で用
いた3重管構造の前処理器具を使用し、実施例3と同様
のウェーハで、硝酸55%、フッ酸2%の水溶液を用い
て、同様の走査を行った。その結果、液滴がウェーハ上
に残存することなく走査が完了し、放射能測定値の比較
により、ウェーハ上の64Cuの93%が液滴中に捕集され
た。これにより、3重管構造の前処理器具の有用性が理
解される。
Therefore, using the triple tube structure pretreatment tool used in Example 2 shown in FIG. 3, the same wafer as in Example 3 was treated with an aqueous solution of 55% nitric acid and 2% hydrofluoric acid. A similar scan was performed using As a result, the scan was completed without the droplet remaining on the wafer, and by comparison of the radioactivity measurements, 93% of 64 Cu on the wafer was collected in the droplet. From this, the usefulness of the triple tube structure pretreatment device is understood.

【0042】実施例5 実施例4のウェーハを用いて同様の走査を行った後、直
ちにディスペンサー15を逆に作用させて液滴の全てを細
管2内に吸い込ませた。この3重管構造の前処理器具
を、実施例1のXYステージの上のアーム14に付け換
え、実施例1と同様に液滴の乾固を指定位置で行った。
形成された液滴は、約 2.5mmの大きさであり、乾固後の
放射能測定値から、ウェーハ上の64Cuの90%が乾固され
ていることが認められた。この結果から、ただ1個の前
処理器具の使用により、ウェーハ上の不純物を濃縮して
乾燥板上の指定位置の小面積に、十分の精度で分析試料
を乾固することができることが了解される。
Example 5 After performing the same scanning using the wafer of Example 4, immediately the dispenser 15 was made to reversely act to suck all the droplets into the thin tube 2. This pretreatment device having a triple tube structure was replaced with the arm 14 on the XY stage of Example 1, and the droplets were dried and solidified at the designated position as in Example 1.
The droplets formed were about 2.5 mm in size, and it was confirmed from the measured values of radioactivity after drying that 90% of 64 Cu on the wafer was dried. From this result, it is understood that the impurity on the wafer can be concentrated and the analytical sample can be dried to a small area at the specified position on the drying plate with sufficient accuracy by using only one pretreatment tool. It

【0043】[0043]

【発明の効果】本発明の分析用前処理器具によれば、分
析試料液を濃縮して分析試料液乾燥板の指定位置に、直
径2〜3mmの乾固を行うことができ、十分に全反射蛍光
X線分析の試料を調製することができる。さらにこの前
処理器具を3重管構造とすることにより、より小さな面
積での乾固が可能となり、すでに広く使用されているが
検出感度の劣るオージェ分光分析やX線光電子分光分析
のような表面分析計でも有効な情報を得ることができる
濃縮が可能となる。また本発明によれば、上記前処理器
具と同じ器具を用いて、シリコンウェーハ表面の不純物
を捕集濃縮することが可能となり、この捕集処理を、上
記プロセスに連続させることにより、固体表面の機器分
析をより有効に行うことが可能となった。
According to the analytical pretreatment instrument of the present invention, the analytical sample liquid can be concentrated and dried at a designated position on the analytical sample liquid drying plate to have a diameter of 2 to 3 mm. A sample for reflected X-ray fluorescence analysis can be prepared. Furthermore, by making this pretreatment instrument a triple tube structure, it becomes possible to dry and solidify in a smaller area, and the surface such as Auger spectroscopic analysis and X-ray photoelectron spectroscopic analysis which are already widely used but have poor detection sensitivity. Concentration is possible with which effective information can be obtained even with an analyzer. Further, according to the present invention, it is possible to collect and concentrate the impurities on the surface of the silicon wafer by using the same device as the pretreatment device described above. It has become possible to carry out instrumental analysis more effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】2重管構造の本発明の分析前処理器具を示す
図。
FIG. 1 is a view showing an analytical pretreatment instrument of the present invention having a double tube structure.

【図2】図1の分析前処理器具を用いた分析前処理装置
の全体の構成を簡単に示す図。
FIG. 2 is a diagram simply showing an overall configuration of an analysis pretreatment apparatus using the analysis pretreatment instrument of FIG.

【図3】3重管構造の本発明の分析前処理器具を示す
図。
FIG. 3 is a view showing an analytical pretreatment instrument of the present invention having a triple tube structure.

【図4】図1の分析前処理器具を用いて、疎水性表面の
微量不純物を液滴中の捕集する方法を説明する図。
FIG. 4 is a diagram illustrating a method of collecting trace impurities on a hydrophobic surface in a droplet using the analytical pretreatment instrument of FIG. 1.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 分析試料液の液滴を保持することのでき
る端部を備えた細管と、該細管の前記端部を取り囲むよ
うに設けられた分析試料液の液滴を保持することのでき
る端部を備えた外管とを有しており、前記細管の他端部
には、分析試料液を吸引及び吐出するための機構が連結
され、前記外管には、その内部雰囲気を吸引もしくは減
圧するための機構が連結されていることを特徴とする分
析前処理器具。
1. A thin tube having an end capable of holding a droplet of an analysis sample liquid, and a droplet of an analysis sample liquid provided so as to surround the end of the thin tube. An outer tube having an end portion is provided, and a mechanism for sucking and discharging an analytical sample solution is connected to the other end portion of the thin tube, and the outer tube is sucked or sucked into its internal atmosphere. An analytical pretreatment instrument characterized in that a mechanism for reducing the pressure is connected.
【請求項2】 前記細管及び外管は、疎水性合成樹脂で
形成されている請求項1に記載の分析前処理器具。
2. The analytical pretreatment instrument according to claim 1, wherein the thin tube and the outer tube are formed of a hydrophobic synthetic resin.
【請求項3】 前記外管の外側に、さらにこれを取り囲
むように第2の外管が設けられている請求項1に記載の
分析前処理器具。
3. The analytical pretreatment instrument according to claim 1, further comprising a second outer tube provided outside the outer tube so as to surround the outer tube.
【請求項4】 請求項1の分析前処理器具を使用して前
記細管に予め分析試料液を吸引させ、 該細管の端部を、一定の温度に加熱された疎水性分析試
料液乾燥板上に近接させて前記細管から試料液の吐出を
徐々に行い、吐出された試料液滴が該細管の端部に接し
且つ一定の直径以上に広がらないように該液滴の蒸発を
行うとともに、 蒸発物質を外管に接続された排気機構により吸引除去
し、前記乾燥板上の指定領域内に分析試料液の濃縮乾固
を行う、ことを特徴とする分析前処理方法。
4. An analytical sample liquid is preliminarily sucked into the thin tube by using the analytical pretreatment instrument according to claim 1, and an end of the thin tube is placed on a hydrophobic analytical sample liquid drying plate heated to a constant temperature. The sample liquid is gradually discharged from the thin tube in close proximity to the sample, and the discharged sample droplet is vaporized so that it is in contact with the end of the thin tube and does not spread beyond a certain diameter. A pretreatment method for analysis, characterized in that the substance is sucked and removed by an exhaust mechanism connected to an outer tube, and the analysis sample liquid is concentrated to dryness in a designated region on the drying plate.
【請求項5】 前記分析前処理器具として、外管のさら
に外側にこれを取り囲むように第2の外管が設けられて
いる器具を使用し、蒸発物質の排気と同時に、第2の外
管から雰囲気を供給する請求項4に記載の分析前処理方
法。
5. An instrument in which a second outer tube is provided further outside the outer tube so as to surround the outer tube is used as the analytical pretreatment instrument, and the second outer tube is used at the same time as the evaporative substance is exhausted. The pretreatment method for analysis according to claim 4, wherein an atmosphere is supplied from
【請求項6】 請求項1の分析前処理器具、該分析前処
理器具を保持するアーム、該アームを移動させるための
機構、分析試料液の乾燥を行うための乾燥板、前記アー
ムに保持された分析前処理器具の端部が乾燥板の所定の
位置に設定されるように該乾燥板の位置移動を行うため
の駆動機構、及び前記アームに保持された分析前処理器
具の端部に対応して前記乾燥板の反対側に設けられた加
熱機構を備えていることを特徴とする分析前処理装置。
6. The analytical pretreatment instrument according to claim 1, an arm for holding the analytical pretreatment instrument, a mechanism for moving the arm, a drying plate for drying an analytical sample solution, and an arm held by the arm. Corresponding to the drive mechanism for moving the position of the drying plate so that the end of the analytical pretreatment device is set at a predetermined position of the drying plate, and the end of the analytical pretreatment device held by the arm. The analytical pretreatment apparatus further comprises a heating mechanism provided on the opposite side of the drying plate.
【請求項7】 分析試料液を吸引あるいは吐出する端部
を備えた細管と、該細管の前記端部を取り囲むように設
けられた分析試料液の液滴を保持する端部を備えた外管
とを有する分析前処理器具を使用し、 前記細管中に分析面不純物を溶解捕集するための液を吸
引しておき、 前記外管の端部が疎水性分析面に近接するように前処理
器具を位置せしめ、 前記細管から液を吐出させて外管内の疎水性分析面上に
前記液滴を形成させ、 上記液滴が外管内からはみでないように、必要により外
管内を僅かに減圧しつつ、該前処理器具を移動させて該
液滴を疎水性分析面上を走査することにより、疎水性分
析面上の不純物を液滴中に捕集することを特徴とする分
析前処理方法。
7. An outer tube provided with a thin tube having an end for sucking or discharging an analytical sample solution, and an outer tube provided so as to surround the end of the thin tube and for holding a droplet of the analytical sample solution. Using an analytical pretreatment instrument having and preliminarily sucking a liquid for dissolving and collecting impurities on the analytical surface in the thin tube, so that the end of the outer tube is close to the hydrophobic analytical surface. Position the instrument, discharge the liquid from the thin tube to form the droplet on the hydrophobic analysis surface in the outer tube, and slightly reduce the pressure in the outer tube as necessary so that the droplet does not stick out from the outer tube. At the same time, the pretreatment device is moved to scan the droplet on the hydrophobic analysis surface to collect impurities on the hydrophobic analysis surface in the droplet. ..
【請求項8】 前記分析前処理器具として、外管のさら
に外側にこれを取り囲むように第2の外管が設けられて
いる器具を使用し、第2の外管を介して排気を行う請求
項7に記載の分析前処理方法。
8. An instrument in which a second outer tube is provided further outside the outer tube so as to surround the outer tube is used as the analytical pretreatment instrument, and exhaust is performed through the second outer tube. Item 8. The pretreatment method for analysis according to Item 7.
【請求項9】 請求項7に記載の不純物の液滴中への捕
集終了後、該液滴を細管中に吸引し、これを液滴乾燥域
に移動せしめて乾固を行う分析前処理方法。
9. An analysis pretreatment in which after the collection of the impurities in the droplets according to claim 7 is completed, the droplets are sucked into a narrow tube and moved to a droplet drying area for dryness. Method.
【請求項10】 分析試料液を吸引あるいは吐出する端
部を備えた細管と、該細管の前記端部を取り囲むように
設けられた分析試料液の液滴を保持する端部を備えた外
管とを有する分析前処理器具、及び該分析器具の外管端
部が被分析ウェーハ表面に常に近接して移動し、且つ所
定の分析領域の全面が走査されるロボット機構より成る
ことを特徴とする分析前処理装置。
10. A thin tube having an end for sucking or discharging an analytical sample solution, and an outer tube provided with an end for holding a droplet of the analytical sample solution provided so as to surround the end of the thin tube. And a robot mechanism in which an outer tube end of the analysis instrument always moves close to the surface of the wafer to be analyzed and the entire surface of a predetermined analysis region is scanned. Analytical pretreatment equipment.
JP08814492A 1992-03-12 1992-03-12 Analysis pretreatment method Expired - Fee Related JP3179175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08814492A JP3179175B2 (en) 1992-03-12 1992-03-12 Analysis pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08814492A JP3179175B2 (en) 1992-03-12 1992-03-12 Analysis pretreatment method

Publications (2)

Publication Number Publication Date
JPH05256749A true JPH05256749A (en) 1993-10-05
JP3179175B2 JP3179175B2 (en) 2001-06-25

Family

ID=13934744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08814492A Expired - Fee Related JP3179175B2 (en) 1992-03-12 1992-03-12 Analysis pretreatment method

Country Status (1)

Country Link
JP (1) JP3179175B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073692A1 (en) * 2004-01-29 2005-08-11 Nas Giken Inc. Substrate inspection device, substrate inspection method, and recovery tool
JP2005236145A (en) * 2004-02-20 2005-09-02 Nas Giken:Kk Substrate inspecting apparatus
US7169300B2 (en) 2004-01-06 2007-01-30 Shimadzu Corporation Fractionating apparatus
CN100350243C (en) * 2004-01-19 2007-11-21 株式会社岛津制作所 Fractionating apparatus
WO2008030070A1 (en) * 2006-09-09 2008-03-13 Seoul National University Industry Foundation Surface treatment method of capillary for droplet formation and surface treated capillary, and production method of droplet for microextraction of chemical using thereof
JP2009294091A (en) * 2008-06-05 2009-12-17 Sumco Corp Analyzing method of contaminant in silicon wafer
JP2010040548A (en) * 2008-07-31 2010-02-18 Nas Giken:Kk Substrate treating method, substrate treating device, and liquid drop holding tool
US7752896B2 (en) * 2004-08-30 2010-07-13 Shimadzu Corporation Specimen pretreating device and probe used therefor
JP2011128033A (en) * 2009-12-18 2011-06-30 Ias Inc Nozzle for substrate analysis, and substrate analysis method
CN102157410A (en) * 2009-12-18 2011-08-17 埃耶士株式会社 Device and method for substrate analysis
JP2013174478A (en) * 2012-02-24 2013-09-05 Kyowa Interface Science Co Ltd Dynamic contact angle gauge and method for measuring dynamic contact angle
JP2013257272A (en) * 2012-06-14 2013-12-26 Ias Inc Nozzle for substrate analysis
WO2016027607A1 (en) * 2014-08-20 2016-02-25 株式会社 イアス Automatic localized substrate analysis device and analysis method
WO2016039032A1 (en) * 2014-09-11 2016-03-17 株式会社 イアス Silicon substrate analysis method
JP6156893B1 (en) * 2016-03-01 2017-07-05 株式会社 イアス Nozzle for substrate analysis
JP6418586B1 (en) * 2017-07-18 2018-11-07 株式会社 イアス Substrate analysis nozzle and substrate analysis method
KR20210092841A (en) * 2018-12-26 2021-07-26 가부시키가이샤 이아스 Substrate analysis method and substrate analysis device
WO2023037564A1 (en) * 2021-09-10 2023-03-16 株式会社 イアス Analysis liquid recovery method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023915B1 (en) * 2007-09-21 2011-03-22 삼성전자주식회사 Dual stacking method combining large volume single drop microextraction and sweeping and the capillary for large volume single drop microextraction

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394181C (en) * 2004-01-06 2008-06-11 株式会社岛津制作所 Fractionating apparatus
US7169300B2 (en) 2004-01-06 2007-01-30 Shimadzu Corporation Fractionating apparatus
CN100350243C (en) * 2004-01-19 2007-11-21 株式会社岛津制作所 Fractionating apparatus
JP4664818B2 (en) * 2004-01-29 2011-04-06 有限会社Nas技研 Substrate inspection device, substrate inspection method and recovery jig
JPWO2005073692A1 (en) * 2004-01-29 2007-09-13 有限会社Nas技研 Substrate inspection device, substrate inspection method and recovery jig
KR100906916B1 (en) * 2004-01-29 2009-07-08 유겐카이샤 나스 기켄 Substrate Inspection Device, Substrate Inspection Method, and Recovery Tool
US7685895B2 (en) 2004-01-29 2010-03-30 Nas Giken Inc. Substrate inspection device, substrate inspection method, and recovery tool
WO2005073692A1 (en) * 2004-01-29 2005-08-11 Nas Giken Inc. Substrate inspection device, substrate inspection method, and recovery tool
JP2005236145A (en) * 2004-02-20 2005-09-02 Nas Giken:Kk Substrate inspecting apparatus
US7752896B2 (en) * 2004-08-30 2010-07-13 Shimadzu Corporation Specimen pretreating device and probe used therefor
WO2008030070A1 (en) * 2006-09-09 2008-03-13 Seoul National University Industry Foundation Surface treatment method of capillary for droplet formation and surface treated capillary, and production method of droplet for microextraction of chemical using thereof
JP2009294091A (en) * 2008-06-05 2009-12-17 Sumco Corp Analyzing method of contaminant in silicon wafer
JP2010040548A (en) * 2008-07-31 2010-02-18 Nas Giken:Kk Substrate treating method, substrate treating device, and liquid drop holding tool
JP2011128033A (en) * 2009-12-18 2011-06-30 Ias Inc Nozzle for substrate analysis, and substrate analysis method
CN102157410A (en) * 2009-12-18 2011-08-17 埃耶士株式会社 Device and method for substrate analysis
JP2013174478A (en) * 2012-02-24 2013-09-05 Kyowa Interface Science Co Ltd Dynamic contact angle gauge and method for measuring dynamic contact angle
JP2013257272A (en) * 2012-06-14 2013-12-26 Ias Inc Nozzle for substrate analysis
WO2016027607A1 (en) * 2014-08-20 2016-02-25 株式会社 イアス Automatic localized substrate analysis device and analysis method
JP2016044988A (en) * 2014-08-20 2016-04-04 株式会社 イアス Automatic analyzer and analytic method of substrate spot
US10151727B2 (en) 2014-08-20 2018-12-11 Ias, Inc. Automatic localized substrate analysis device and analysis method
WO2016039032A1 (en) * 2014-09-11 2016-03-17 株式会社 イアス Silicon substrate analysis method
JP2016057230A (en) * 2014-09-11 2016-04-21 株式会社 イアス Analytic method of silicon substrate
WO2017149833A1 (en) * 2016-03-01 2017-09-08 株式会社 イアス Nozzle for substrate analysis
JP2017156338A (en) * 2016-03-01 2017-09-07 株式会社 イアス Nozzle for substrate analysis
JP6156893B1 (en) * 2016-03-01 2017-07-05 株式会社 イアス Nozzle for substrate analysis
JP6418586B1 (en) * 2017-07-18 2018-11-07 株式会社 イアス Substrate analysis nozzle and substrate analysis method
WO2019016847A1 (en) * 2017-07-18 2019-01-24 株式会社 イアス Nozzle for substrate analysis and substrate analysis method
KR20190087965A (en) * 2017-07-18 2019-07-25 가부시키가이샤 이아스 Substrate analysis nozzle and method for analyzing substrate
US10688485B2 (en) 2017-07-18 2020-06-23 Ias, Inc Substrate analysis nozzle and method for analyzing substrate
TWI702666B (en) * 2017-07-18 2020-08-21 日商埃耶士股份有限公司 Substrate analysis nozzle and substrate analysis method
KR20210092841A (en) * 2018-12-26 2021-07-26 가부시키가이샤 이아스 Substrate analysis method and substrate analysis device
WO2023037564A1 (en) * 2021-09-10 2023-03-16 株式会社 イアス Analysis liquid recovery method

Also Published As

Publication number Publication date
JP3179175B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
JPH05256749A (en) Analysis pretreating instrument and pretreating method using instrument thereof
JP3059144B2 (en) Impurity measurement method
JP3603278B2 (en) X-ray fluorescence analysis system and program used therefor
US6602795B2 (en) System and method for analyzing a semiconductor surface
JP4755746B2 (en) Method for measuring impurities on semiconductor wafer surface and impurity recovery apparatus therefor
JP2604037B2 (en) Semiconductor processing equipment
JP3571930B2 (en) Trace organic matter collection device
TW200419687A (en) Ion sampling system for wafer and method thereof
JP2843600B2 (en) Method for measuring the amount of impurities on the wafer surface
JP4204434B2 (en) Method and apparatus for recovering object to be measured around wafer
JP2004347543A (en) Evaluation method of semiconductor wafer and its evaluation device
JP3627918B2 (en) Semiconductor substrate surface evaluation analyzer and jig used therefor
JPH06130007A (en) Analyzing and determining method for novolatile impurity in ultra-pure water
JPH10339691A (en) Method for measuring surface impurities
JP2006214877A (en) Vapor phase decomposition device, sample pretreatment device using the same, and x-ray fluorescence analytical system
JPH0972836A (en) Method and apparatus for preparation of sample for total-reflection fluorescent x-ray analysis
JP2004101408A (en) Sample condensing method and device and sample analyzing method and device
US7399635B2 (en) Impurity measuring method for Ge substrates
JP3257125B2 (en) Analysis method using decomposition solution
JPH11160208A (en) Method and device for preparing sample for x-ray analysis
JPH08261917A (en) Cleaning method, cleaning device, and instrument for analysis having it
JP3629535B2 (en) Sample pretreatment apparatus for fluorescent X-ray analysis and fluorescent X-ray analysis system provided with the same
JP3365461B2 (en) Surface treatment method and apparatus
WO2023195846A1 (en) Method and system for inspecting a surface
JPH08233709A (en) Method for measuring impurities

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees