JPH05240828A - Electrode and measuring method using the same - Google Patents
Electrode and measuring method using the sameInfo
- Publication number
- JPH05240828A JPH05240828A JP4044207A JP4420792A JPH05240828A JP H05240828 A JPH05240828 A JP H05240828A JP 4044207 A JP4044207 A JP 4044207A JP 4420792 A JP4420792 A JP 4420792A JP H05240828 A JPH05240828 A JP H05240828A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- measurement
- hydrogen peroxide
- water
- working electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、作用電極と対極の2電
極、または作用電極、対極、参照極の3電極系と、酸化
還元酵素を有する吸水体を備えた電気化学測定電極及び
それを用いた測定法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical measurement electrode provided with two electrodes of a working electrode and a counter electrode, or a three-electrode system of a working electrode, a counter electrode and a reference electrode, and a water absorbing body having an oxidoreductase. Regarding the measurement method used.
【0002】[0002]
【従来の技術】近年分析技術の進歩にともない、分析項
目数と分析試料数は増加の一途をたどっている。このよ
うな状況下で、より簡単に、より迅速に分析操作を処理
できる装置の開発が続けられている。その中でも電気化
学測定を応用した方法は、測定目的物質から定量的に発
生する電子移動を観測するもので、比較的簡単に測定が
行える。2. Description of the Related Art In recent years, the number of analysis items and the number of analysis samples have been increasing with the progress of analysis technology. Under such circumstances, the development of a device that can process an analytical operation more easily and more rapidly continues. Among them, the method to which the electrochemical measurement is applied observes the electron transfer generated quantitatively from the target substance to be measured and can be measured relatively easily.
【0003】この利点を応用し、ポーラログラフィー等
従来よりの測定法に加え、液体クロマトグラフィーやフ
ローインジェクション分析などと組み合わされ広い範囲
で応用されている。電気化学検出の特長は、 (1)一般には測定困難な化学量を、測定が容易な電気
量に直接変換して測定するために簡単に行える。 (2)ファラデーの法則に従って進行する電気化学反応
を観察するために、電流値や電気量から微量な物質変化
を捉えることができ高感度の測定が行える。 (3)反応の過程を即時に知ることができ、迅速な検出
・定量が可能である。 等であり、ポテンショメトリー、アンペロメトリー、ポ
ーラログラフィー、クーロメトリー、インピーダンス測
定、サイクリックボルタンメトリー等の方法で各種物質
の測定に応用されている。By applying this advantage, in addition to conventional measurement methods such as polarography, it is applied in a wide range by combining with liquid chromatography, flow injection analysis and the like. The features of electrochemical detection are as follows: (1) A chemical quantity that is generally difficult to measure is converted directly into an easy-to-measure quantity of electricity and measured easily. (2) Since the electrochemical reaction that proceeds according to Faraday's law is observed, a minute change in the substance can be captured from the current value or the amount of electricity, and highly sensitive measurement can be performed. (3) The reaction process can be immediately known, and rapid detection / quantification is possible. Etc., and has been applied to the measurement of various substances by methods such as potentiometry, amperometry, polarography, coulometry, impedance measurement, and cyclic voltammetry.
【0004】さらにこれらの検出方法と、各種化学物質
に対する選択的な反応性に優れている生物由来の変換素
子と組み合わせた測定方法は、簡単に選択性よく測定を
行える方法である。またそれに用いられる生物由来の変
換素子の研究開発も酵素・微生物からはじまり、抗原・
抗体などその種類を増やしつつある。Further, the measuring method in which these detection methods are combined with a conversion element of biological origin, which is excellent in selective reactivity to various chemical substances, is a method which enables easy and selective measurement. In addition, research and development of conversion elements derived from living organisms used for it begins with enzymes and microorganisms,
The types of such as antibodies are increasing.
【0005】これらの生物由来の変換素子の中で、基質
と反応して酸素を消費したり過酸化水素を生成する酵素
は、応答速度、測定感度が優れており電気化学的検出が
容易なために広く用いられている。代表的なものに過酸
化水素生成型酸化還元酵素があり、測定目的物質との酵
素反応によって消費される酸素や生成する過酸化水素を
検出することにより、グルコース等の物質の定量に利用
されている。Among these conversion elements derived from organisms, enzymes that react with a substrate to consume oxygen or produce hydrogen peroxide have excellent response speed and measurement sensitivity, and are easily electrochemically detected. Widely used in. A typical example is hydrogen peroxide-producing oxidoreductase, which is used to quantify substances such as glucose by detecting oxygen consumed by the enzymatic reaction with the target substance to be measured and hydrogen peroxide produced. There is.
【0006】一方、電気化学測定には問題点として電極
等の電気化学検出器部分での選択性の低さが挙げられ
る。これは検出の最終段が電流値のみに依存しているた
め、測定目的物質の反応によって生じた電流か、測定の
妨害物質によって生じた電流かの区別が出来なことが原
因となっている。On the other hand, a problem in the electrochemical measurement is low selectivity in the electrochemical detector portion such as an electrode. This is because the final stage of detection depends only on the current value, and therefore it is not possible to distinguish between the current generated by the reaction of the measurement target substance and the current generated by the interfering substance of the measurement.
【0007】従来電気化学測定ではサイクリックボルタ
ンメトリーやパルスボルタンメトリーなど選択性を向上
させる測定方法が用いられてきたが、アンペロメトリー
法などと比較した場合に測定法が複雑であり、また測定
目的物質と妨害物質との選択透過の比率や測定時間の短
縮化などの点において十分な成果が得られなかった。ア
ンペロメトリー法において測定目的物質(酵素の基質)
と妨害物質が試料中に共存しているような場合の対処法
として、酸素濃度を検出する酸素電極では選択透過膜が
用いられている。酸素電極では、分子の大きさの差異を
利用し、酸素の透過のみを許し他の物質は透過しない程
度の微小な穴の開いた高分子膜を酸素電極に装着して成
果を挙げている。Conventionally, in electrochemical measurement, a measuring method such as cyclic voltammetry or pulse voltammetry for improving the selectivity has been used, but the measuring method is complicated as compared with the amperometric method, and the measurement target substance is also used. Sufficient results were not obtained in terms of the ratio of selective permeation between the and interfering substances and shortening of the measurement time. Target substance (substrate of enzyme) in amperometry
As a coping method in the case where the interfering substance and the interfering substance coexist in the sample, a selective permeable membrane is used in the oxygen electrode for detecting the oxygen concentration. In the oxygen electrode, the difference in molecular size is used, and a polymer membrane with minute holes that allow only oxygen to permeate and other substances do not permeate is attached to the oxygen electrode.
【0008】しかし、一般に酸素電極に用いられている
多孔性高分子膜は、酸素より大きな分子量を持つ過酸化
水素の透過速度が遅く、またフッ素樹脂等の材質で構成
されている場合には固定化酵素膜を直接その表面上に製
膜するのは困難であるため、過酸化水素電極には応用で
きない。一方、過酸化水素をアンペロメトリー法で検出
する場合は、過酸化水素の電極表面での分解反応の酸化
還元電位が0.68V(対標準水素電極、25℃)であ
るので、検出電極には通常用いられる銀・塩化銀参照電
極に対して約0.46V以上の電位に保持する必要があ
る。However, a porous polymer membrane generally used for an oxygen electrode has a slow permeation rate of hydrogen peroxide having a molecular weight larger than that of oxygen, and is fixed when made of a material such as fluororesin. Since it is difficult to form an enzyme membrane directly on the surface, it cannot be applied to a hydrogen peroxide electrode. On the other hand, when hydrogen peroxide is detected by the amperometry method, since the redox potential of the decomposition reaction of hydrogen peroxide on the electrode surface is 0.68 V (vs. standard hydrogen electrode, 25 ° C), Must be maintained at a potential of about 0.46 V or higher with respect to a commonly used silver / silver chloride reference electrode.
【0009】しかし、測定妨害物質の代表的な物質であ
るアスコルビン酸を例にとれば、アスコルビン酸の標準
酸化還元電位は0.34V(pH7.0)であるので過
酸化水素の酸化電流を検出しようとすればアスコルビン
酸の酸化電流値も上乗せされてしまい、過酸化水素のみ
を正確に測定することができない。従って、過酸化水素
電極と固定化酵素を組み合せたアンペロメトリー法のバ
イオセンサーでは、酵素反応により生じた過酸化水素に
対する妨害物質の応答を低く抑える必要がある。However, taking ascorbic acid, which is a typical substance that interferes with measurement, as the standard oxidation-reduction potential of ascorbic acid is 0.34 V (pH 7.0), the oxidation current of hydrogen peroxide is detected. If this is done, the oxidation current value of ascorbic acid will also be added, and hydrogen peroxide alone cannot be accurately measured. Therefore, in an amperometric biosensor in which a hydrogen peroxide electrode and an immobilized enzyme are combined, it is necessary to suppress the response of the interfering substance to hydrogen peroxide generated by the enzymatic reaction to a low level.
【0010】そこで、従来よりアセチルセルロース膜な
ど種々の過酸化水素選択透過膜を電極表面を被覆するよ
うにあらかじめ製膜した測定セルを固定化酵素体と組み
合せた測定セルが提案されている。例えば、特開昭52
−55691号にはアセチルセルロースを素材にした過
酸化水素選択透過膜を装着した電極が例示されている。
しかし、アセチルセルロースは水に不溶であるために、
揮発性有機溶媒に溶解後展開し製膜しなければならな
い。この製造方法では有機溶媒が蒸発しやすいために、
アセチルセルロース濃度が変化しやすく、一定の厚みの
膜を作成して選択透過能に再現性のある膜を得ることは
困難であった。またアセチルセルロース膜は数十μmの
厚み以下でないと、十分な応答速度が得られないため
に、アセチルセルロース膜を酵素固定化膜とともに測定
セルや電極に装着するのには熟練を要し、簡単迅速に効
率よく分析操作を行うことが出来なかった。Therefore, conventionally, there has been proposed a measurement cell in which a measurement cell in which various hydrogen peroxide selective permeation membranes such as an acetyl cellulose membrane are formed in advance so as to cover the electrode surface is combined with an immobilized enzyme. For example, JP-A-52
No. 55691 exemplifies an electrode equipped with a hydrogen peroxide selective permeable membrane made of acetyl cellulose.
However, because acetyl cellulose is insoluble in water,
It must be dissolved in a volatile organic solvent and then developed to form a film. In this manufacturing method, since the organic solvent easily evaporates,
The concentration of acetyl cellulose was liable to change, and it was difficult to prepare a membrane having a constant thickness to obtain a membrane having reproducible selective permeability. In addition, the acetyl cellulose membrane must have a thickness of several tens of μm or less to obtain a sufficient response speed. Therefore, it requires skill to attach the acetyl cellulose membrane together with the enzyme-immobilized membrane to the measurement cell or the electrode. It was not possible to perform the analysis operation quickly and efficiently.
【0011】このように従来用いられてきた過酸化水素
選択透過膜を用いた電極は、酵素反応によって生成した
過酸化水素に対する選択性が不十分であるか、または応
答速度が不十分であり、実用的なレベルまで達していな
かった。As described above, the electrode using the hydrogen peroxide selective permeable membrane which has been conventionally used has an insufficient selectivity for hydrogen peroxide produced by an enzymatic reaction or an insufficient response speed, It was not at a practical level.
【0012】[0012]
【発明が解決しようとする課題】本発明は、上記の問題
を解決し、測定妨害物質の影響を受けずに正確な測定を
行える電気化学測定電極及びそれを用いた測定法を提供
する。DISCLOSURE OF THE INVENTION The present invention solves the above problems and provides an electrochemical measurement electrode capable of performing accurate measurement without being affected by a measurement interfering substance, and a measurement method using the same.
【0013】[0013]
【課題を解決するための手段】本発明は、少なくとも作
用電極と対極を含む電極系と、過酸化水素を生成する反
応を触媒する酸化還元酵素を吸着または固定化してなる
吸水体層を有する電気化学測定電極であり、前記吸水体
層が作用電極を覆い、且つ前記吸水体層の作用電極に近
い面側の酵素活性より、作用電極から遠い面側の酵素活
性が大である電気化学測定電極である。DISCLOSURE OF THE INVENTION The present invention provides an electric system having an electrode system including at least a working electrode and a counter electrode, and a water-absorbing layer formed by adsorbing or immobilizing a redox enzyme which catalyzes a reaction for producing hydrogen peroxide. An electrochemical measurement electrode, which is a chemical measurement electrode, in which the water-absorbent layer covers the working electrode, and the enzyme activity of the surface side far from the working electrode is greater than the enzyme activity of the surface side of the water-absorbent layer near the working electrode. Is.
【0014】また本発明は、酸化還元酵素を吸着または
固定化した吸水体層が、吸水体層の片面に酸化還元酵素
含有液を塗布してなり、塗布面を作用電極から遠い面側
になるように作用電極上に装着した電気化学測定電極で
ある。更に本発明は、上記の電気化学測定電極の吸水体
層の作用電極から遠い面側より酸化還元酵素の基質を含
む試料を供給し、基質に由来する過酸化水素を検出する
測定方法であり、前記過酸化水素が吸水体層を透過して
作用電極に到達した後で、且つ試料中の電極活性を有す
る測定妨害物質が吸水体層を透過して作用電極に到達し
前記過酸化水素の検出値に誤差を生じさせる前の出力値
に基づいて、基質の定量を行う測定方法を開示する。た
だし本発明で、測定妨害物質が吸水体層を透過して作用
電極に到達する前とは、測定妨害物質の影響が実質的に
無視できる程度の出力値しか与えない場合を含む。Further, according to the present invention, the water-absorbent layer on which the oxidoreductase is adsorbed or immobilized is formed by applying the oxidoreductase-containing liquid on one surface of the water-absorbent layer, and the coated surface is the side far from the working electrode. An electrochemical measurement electrode mounted on the working electrode. Furthermore, the present invention is a measurement method of supplying a sample containing a substrate of oxidoreductase from the side far from the working electrode of the water absorbent layer of the electrochemical measurement electrode, and detecting hydrogen peroxide derived from the substrate, Detection of the hydrogen peroxide after the hydrogen peroxide permeates the water-absorber layer and reaches the working electrode, and the measurement-interfering substance having electrode activity in the sample permeates the water-absorber layer and reaches the working electrode. Disclosed is a measuring method for quantifying a substrate based on an output value before causing an error in the value. However, in the present invention, before the measurement-interfering substance permeates the water-absorbent layer and reaches the working electrode includes a case where the influence of the measurement-interfering substance gives a substantially negligible output value.
【0015】[0015]
【作用】一般に電気化学測定において酵素等の生物由来
の変換素子によって生成する過酸化水素を検出するため
には、電極構成が簡単であり高感度測定に適しているた
め、白金等の電極を用いたアンペロメトリーが多く用い
られている。しかしこの場合、被測定試料中に酵素反応
により生成する過酸化水素と同電位で電解電流を生じる
還元物質が共存すると測定値に誤差を与える。このよう
な測定妨害物質にはアスコルビン酸、還元型グルタチオ
ン、尿素、尿酸等、一般的に食品・発酵液等の試料中に
存在する物質も多く含まれる。したがって固定化酵素体
と電気化学測定を用いて精度の良好な測定を行うために
は、これら測定妨害物質に対する何等かの対策が必要と
なる。[Function] Generally, in the electrochemical measurement, in order to detect hydrogen peroxide produced by a conversion element derived from a living organism such as an enzyme, the electrode configuration is simple and suitable for highly sensitive measurement. The amperometry that was used is often used. However, in this case, if a reducing substance that produces an electrolysis current at the same potential as hydrogen peroxide produced by an enzymatic reaction coexists in the sample to be measured, an error is given to the measured value. Such measurement-interfering substances include ascorbic acid, reduced glutathione, urea, uric acid, and many other substances that are generally present in samples such as foods and fermentation liquors. Therefore, in order to perform highly accurate measurement using the immobilized enzyme body and electrochemical measurement, some measures against these measurement interfering substances are required.
【0016】以下に主にグルコースオキシダーゼを吸水
体層に固定化して過酸化水素電極上に装着して、測定妨
害物質であるグルコースとアスコルビン酸を含む試料よ
りグルコースを測定する場合を例にとって説明する。グ
ルコースは、グルコースオキシダーゼの反応により過酸
化水素を生成する。この過酸化水素の吸水体中での透過
速度は、測定妨害物質の透過速度より大である。本発明
は、この現象を利用して正確な測定を行うものである。
つまり、グルコースはグルコースオキシダーゼにより過
酸化水素を生成するが、生成した過酸化水素が電極へ到
達し、且つ妨害物質が電極へ到達する前及びその影響が
無視できるレベルである間の出力電流値を測定すること
により測定妨害物質の影響のない、正確な測定を行うも
のである。An example will be described below in which glucose oxidase is mainly immobilized on a water-absorbent layer and mounted on a hydrogen peroxide electrode, and glucose is measured from a sample containing glucose and ascorbic acid which are measurement-interfering substances. .. Glucose produces hydrogen peroxide by the reaction of glucose oxidase. The permeation rate of this hydrogen peroxide in the water absorber is higher than the permeation rate of the measurement-interfering substance. The present invention utilizes this phenomenon to perform accurate measurement.
In other words, glucose produces hydrogen peroxide by glucose oxidase, but the output current value before the produced hydrogen peroxide reaches the electrode and before the interfering substance reaches the electrode and at a level where its influence can be ignored is By performing the measurement, accurate measurement can be performed without the influence of the measurement interfering substance.
【0017】このようなことが可能になるのは過酸化水
素の分子量が約34と小さいため、吸水体中を速やかに
透過できるのに対し、測定妨害物質の分子量が大きいた
め、吸水体中を透過するのが遅いためと推測される。例
えば、過酸化水素のアンペロメトリックな検出法におい
て、測定妨害物質の代表的な物質であるアスコルビン酸
は分子量が約176であり、尿酸は分子量が約168で
あるが、過酸化水素は分子量が約34であるため透過速
度が速いものと推測される。ただし、グルコースの分子
量は約180であるためか透過速度は妨害物質と大差な
い。グルコースのままで吸水体層を透過させるのでは、
妨害物質の影響を除くことはできない。This is possible because the molecular weight of hydrogen peroxide is as small as about 34 so that it can be quickly permeated through the water-absorbing body, while the molecular weight of the measurement-interfering substance is large, so It is speculated that it is slow to penetrate. For example, in an amperometric detection method for hydrogen peroxide, ascorbic acid, which is a typical substance that interferes with measurement, has a molecular weight of about 176, and uric acid has a molecular weight of about 168, but hydrogen peroxide has a molecular weight of about 168. Since it is about 34, it is assumed that the transmission rate is high. However, probably because the molecular weight of glucose is about 180, the permeation rate is not much different from that of the interfering substance. If glucose is allowed to pass through the water absorbent layer,
The effects of interfering substances cannot be excluded.
【0018】従って、吸水体層に試料を導いた直後にグ
ルコースより過酸化水素が生成されるように吸水体層の
作用電極から遠い面(試料供給面)にグルコースオキシ
ダーゼ活性が高くなる様に固定化されることが好まし
い。一方、吸水体層中に酸化還元酵素を固定化または吸
着するに際し、均一に酵素を固定化または吸着すると、
グルコースが吸水体層中の酵素が固定化された箇所まで
透過するのに時間がかかり、過酸化水素が発生して作用
電極に到達するまでには、測定妨害物質も作用電極まで
吸水体層中を透過してしまい、グルコース濃度に比例し
た正確な測定値が得られなくなってしまう。Therefore, the glucose oxidase activity is fixed on the surface (sample supply surface) of the water absorbent layer far from the working electrode so that hydrogen peroxide is generated from glucose immediately after the sample is introduced to the water absorbent layer. Preferably. On the other hand, when the oxidoreductase is immobilized or adsorbed in the water absorbent layer, when the enzyme is uniformly immobilized or adsorbed,
It takes time for glucose to permeate to the location where the enzyme is immobilized in the water-absorbent layer, and until the hydrogen peroxide is generated and reaches the working electrode, measurement-interfering substances also reach the working electrode in the water-absorbing layer. Will pass through, and an accurate measured value proportional to the glucose concentration cannot be obtained.
【0019】つまり、吸水体全体にまんべんなく均一に
酵素が固定化されていると、過酸化水素の生成が基質の
透過速度によって律速され、応答に測定妨害物質との顕
著な差異は見られない。このように酸化還元酵素を吸水
体の片面に高い活性で固定化するためには、吸水体を酵
素液に浸漬したり、希薄な酵素溶液を含浸するのではな
く、片面に塗布することにより達成できる。That is, when the enzyme is uniformly and uniformly immobilized on the entire water-absorbing material, the production of hydrogen peroxide is rate-controlled by the permeation rate of the substrate, and the response shows no significant difference from the measurement-interfering substance. In order to immobilize the oxidoreductase on one surface of the water absorbent body with high activity, it is achieved by applying the water absorbent body on one surface of the water absorbent body instead of dipping it in an enzyme solution or impregnating a dilute enzyme solution. it can.
【0020】吸水体は水が含浸または透過するものであ
ればその種類を問わず、例えば分析用ろ紙などの紙類、
ニトロセルロース等のセルロース誘導体、コラーゲン、
ガーゼ等の布類あるいは不織布類、水に不溶性の素材で
作られたフィルター類等を用いることができる。特にセ
ルロースまたはセルロース誘導体が好ましい。吸水体の
一方の面の近傍に局在する酵素活性量が、他方の表面近
傍に局在する酵素活性量より大となるように固定化する
ためには、吸水体の一方の片側表面より塗布された酵素
溶液がある程度塗布側表面に多く保持される必要がある
ので、特定のろ水時間(濾水時間)を有する吸水体が好
ましい。ろ水時間とは、略10cm幅の方形に切断した
試験片の片端を20℃の蒸留水中に浸漬し、水が吸収さ
れ上昇して、10cmの高さを通過する時間であり、ろ
水時間20秒以上の吸水体が好ましい。ろ水時間はより
好ましくは40〜300秒である。The water absorbing body may be of any type as long as it is impregnated with or permeates with water. For example, paper such as filter paper for analysis,
Cellulose derivatives such as nitrocellulose, collagen,
Cloths such as gauze or non-woven fabrics, filters made of water-insoluble material, and the like can be used. Cellulose or a cellulose derivative is particularly preferable. To immobilize so that the amount of enzyme activity localized near one surface of the water absorber is greater than the amount of enzyme activity localized near the other surface, apply from one surface of one side of the water absorber. Since the enzyme solution thus prepared needs to be retained on the surface of the application side to a certain extent, a water absorber having a specific drainage time (drainage time) is preferable. The freezing time is the time during which one end of a test piece cut into a square with a width of about 10 cm is immersed in distilled water at 20 ° C., water is absorbed and rises, and passes through a height of 10 cm. A water absorbent of 20 seconds or more is preferable. The freezing time is more preferably 40 to 300 seconds.
【0021】本発明では吸水体の片側表面に酸化還元酵
素の活性量が偏在するように固定化し、その表面が被測
定試料と接するように測定セルに装着する。In the present invention, the oxidoreductase is immobilized on one surface of the water-absorbing body so that the activity of the oxidoreductase is unevenly distributed, and the water-absorbing body is attached to the measurement cell so that the surface thereof contacts the sample to be measured.
【0022】これにより、過酸化水素とその他の測定妨
害物質とのあいだに測定電極表面に到達するまでの拡散
速度に差が生じる。そして、過酸化水素への応答開始後
かつ測定妨害物質の応答前の時間域での測定データを処
理すれば、測定妨害物質の影響を低く抑えた測定が可能
となる。This causes a difference in the diffusion rate between hydrogen peroxide and other measurement-interfering substances before reaching the measurement electrode surface. Then, by processing the measurement data in the time range after the start of the response to hydrogen peroxide and before the response of the measurement-interfering substance, the measurement with the influence of the measurement-interfering substance suppressed can be performed.
【0023】上記時間域を求めるためには、吸水体を電
極に装着し過酸化水素を作用させた場合の電流を記録
し、その最大速度が得られる時間域の測定データを用い
ることが一つの目安となる。時間域の設定は用いる吸水
体により、電流変化の速度が異なるため短時間から長時
間へ時間を延ばした場合の信号/雑音比が最良となる点
で決められる。In order to obtain the above-mentioned time range, one of the methods is to record the current when the water absorber is attached to the electrode and to make hydrogen peroxide act, and use the measurement data in the time range where the maximum velocity is obtained. It will be a guide. The setting of the time range is determined in that the signal / noise ratio becomes the best when the time is extended from a short time to a long time because the speed of current change differs depending on the water absorber used.
【0024】電極系としては作用極・対極より構成され
る2電極系、または作用極・参照電極・対極より構成さ
れる3電極系を例示できる。電極は、例えば測定セル底
面中に導電性物質を埋め込んだり、内壁表面に金属を蒸
着する方法、溶液メッキ法、無電解メッキ法、印刷法等
の方法で形成することができる。本発明による酵素固定
化吸水体は、白金等を基材とした過酸化水素電極と組み
合せて用いることができる。また、白金に限らず通常用
いられる金、カーボン等の電極と組み合せることも可能
である。Examples of the electrode system include a two-electrode system composed of a working electrode and a counter electrode, or a three-electrode system composed of a working electrode, a reference electrode and a counter electrode. The electrode can be formed by, for example, embedding a conductive substance in the bottom surface of the measurement cell or depositing a metal on the inner wall surface, a solution plating method, an electroless plating method, a printing method, or the like. The enzyme-immobilized water absorbent according to the present invention can be used in combination with a hydrogen peroxide electrode based on platinum or the like. It is also possible to combine with not only platinum but also commonly used electrodes such as gold and carbon.
【0025】参照電極を設ける場合は、銀・塩化銀参照
電極、飽和カロメル参照電極等が利用できる。本発明で
開示された酵素固定化吸水体を装着した電気化学測定用
セルを適当な検出装置、検出回路に接続することによ
り、過酸化水素測定装置を構成し、酵素・微生物・抗原
・抗体やそれらの固定化素子と組み合せることにより、
バイオセンサーを構成するこができる。より具体的に
は、過酸化水素を生成する例えばグルコースオキシダー
ゼ、アルコールオキシダーゼ、乳酸オキシダーゼ、ガラ
クトースオキシダーゼ、ウリカーゼ等の酵素を使用する
ことができる。When a reference electrode is provided, a silver / silver chloride reference electrode, a saturated calomel reference electrode or the like can be used. By connecting the electrochemical measurement cell equipped with the enzyme-immobilized water absorbent disclosed in the present invention to a suitable detection device and a detection circuit, a hydrogen peroxide measurement device is configured, and an enzyme, a microorganism, an antigen, an antibody, or By combining these immobilization elements,
A biosensor can be constructed. More specifically, enzymes such as glucose oxidase, alcohol oxidase, lactate oxidase, galactose oxidase, and uricase that generate hydrogen peroxide can be used.
【0026】酵素の固定化または吸着法としては、包括
固定化法、共有結合固定化法、或いは単に吸水体に塗布
して吸着させる方法等が例示できる。酵素を必要ならば
他のタンパク質とともにグルタルアルデヒド、グリオキ
ザール等の多価アルデヒド類により固定化(共有結合)
することが好ましい。このようなタンパク質としてはア
ルブミン、ゼラチン、グロブリン、コラーゲン、カゼイ
ン等が例示でき、これにより酵素の安定化等の効果が得
られる。Examples of the method of immobilizing or adsorbing the enzyme include entrapping immobilization method, covalent bond immobilization method, or a method of simply applying to a water-absorbing body to adsorb. Immobilize enzyme with other proteins, if necessary, with polyhydric aldehydes such as glutaraldehyde and glyoxal (covalent bond)
Preferably. Examples of such a protein include albumin, gelatin, globulin, collagen, casein, etc., whereby the effect of stabilizing the enzyme can be obtained.
【0027】電極を設けるセルの素材はアクリル、フッ
素樹脂、塩化ビニル樹脂、ガラス等の絶縁性素材等を使
用できるが、電極系と絶縁しておけば導電性素材を使用
することもできる。尚、吸水体層を2層構成として、電
極側に酵素を含まない吸水体層を装着することも可能で
あるが、層が厚すぎると測定時間が長くなる。An insulating material such as acrylic, fluororesin, vinyl chloride resin, or glass can be used as the material of the cell in which the electrodes are provided, but a conductive material can also be used if it is insulated from the electrode system. It is also possible to have a two-layered water-absorber layer and attach an enzyme-free water-absorber layer to the electrode side, but if the layer is too thick, the measurement time will be long.
【0028】[0028]
【実施例】以下に実施例を挙げて、本発明の内容をさら
に詳細に説明するが、もちろん本発明はこれらに限定さ
れるものではない。EXAMPLES The contents of the present invention will be described in more detail with reference to the following examples, but of course the present invention is not limited thereto.
【0029】実施例1 図1により説明する。市販のポテンシオスタット装置
(HECS1100型:扶桑製作所製,図に示してな
い)に接続した白金作用電極(2)、銀・塩化銀参照電
極(4)、対極(3)の3電極系を用いて本発明の電気
化学測定用セルを構成し測定を行った。Example 1 will be described with reference to FIG. A three-electrode system consisting of a platinum working electrode (2), a silver / silver chloride reference electrode (4), and a counter electrode (3) connected to a commercially available potentiostat device (HECS1100 type: manufactured by Fuso Seisakusho, not shown) Then, the electrochemical measurement cell of the present invention was constructed and measured.
【0030】(1)電気化学計測用測定セルの作成方法 30mm×30mm、厚み3mmのアクリル板(1)に
直径2mmの白金線を2本(2)・(3)、同じく直径
2mmの銀線1本を端面がアクリル板面と同一になるよ
うに略直線に配置し埋め込んでエポキシ樹脂でシールし
た。銀線の端面は0.1M塩酸水溶液中で、対飽和カロ
メル参照電極0.250Vの電位で30分電解し、塩化
銀を析出させることにより銀・塩化銀参照電極(4)と
した。(1) Method for preparing a measuring cell for electrochemical measurement: An acrylic plate (1) having a size of 30 mm × 30 mm and a thickness of 3 mm, and two platinum wires having a diameter of 2 mm (2) and (3), and a silver wire having a diameter of 2 mm. One piece was arranged in a substantially straight line so that the end surface was the same as the acrylic plate surface, embedded, and sealed with an epoxy resin. The end surface of the silver wire was electrolyzed in a 0.1 M hydrochloric acid aqueous solution at a potential of 0.250 V against a saturated calomel reference electrode for 30 minutes to deposit silver chloride, thereby forming a silver / silver chloride reference electrode (4).
【0031】(2)酵素固定化吸水体の作成方法 水が含浸または透過する吸水体として、市販の化学分析
用ろ紙(5Aろ紙、アドバンテック東洋社製、ろ水時間
60秒)を用いた。ろ紙を20mm×20mmに裁断
し、0.2重量%のグルタルアルデヒドを含んだ0.5
重量%のグルコースオキシダーゼ(TypeII:シグ
マ社製)と0.5重量%のウシ血清アルブミン(Fra
ctionV:シグマ社製)の水溶液を片側表面に10
0μl展開し、風乾して酵素固定化吸水体を形成した。
展開の方法は、ろ紙を固定しておき、水溶液を端面に滴
下した直後にガラス棒で塗り広げることにより行なっ
た。(2) Method for preparing enzyme-immobilized water-absorbing material As a water-absorbing material impregnated with or permeated with water, commercially available filter paper for chemical analysis (5A filter paper, manufactured by Advantech Toyo Co., Ltd., filtration time 60 seconds) was used. The filter paper was cut into 20 mm x 20 mm and 0.5 containing 0.2% by weight of glutaraldehyde.
Weight% glucose oxidase (Type II: Sigma) and 0.5 weight% bovine serum albumin (Fra
(action V: manufactured by Sigma) on one side surface
0 μl was developed and air-dried to form an enzyme-immobilized water absorbent.
The developing method was carried out by fixing the filter paper and spreading the aqueous solution on the end face immediately after spreading with a glass rod.
【0032】(3)測定方法 測定用セルの電極面が覆われ酵素固定化面が外側になる
ように酵素固定化吸水体(5)を装着し、その上から1
5mm×15mmの開口部を持ったアクリル製の押え板
(6)を装着しネジ止めした。このセルを、対銀・塩化
銀参照電極0.6Vの電位を白金作用電極に印加してお
き、50mM塩化カリウムを含む100mMリン酸緩衝
液に溶解した0.5mMグルコース溶液中に浸漬し得ら
れる電解電流値を、浸漬直後から180秒間レコーダー
で記録した。同様にして、50mM塩化カリウムを含む
100mMリン酸緩衝液に溶解した0.5mM過酸化水
素溶液中に浸漬し得られる電解電流値を、浸漬直後から
180秒間レコーダーにて記録した。同様にして、50
mM塩化カリウムを含む100mMリン酸緩衝液に溶解
した0.5mMアスコルビン酸水溶液中に浸漬し得られ
る電解電流値を、浸漬直後から180秒間レコーダーに
て記録した。同様にして、50mM塩化カリウムを含む
100mMリン酸緩衝液に溶解した0.5mM尿酸水溶
液中に浸漬し得られる電解電流値を、浸漬直後から18
0秒間レコーダーにて記録した。(3) Measuring method The enzyme-immobilized water-absorbing body (5) was attached so that the electrode surface of the measuring cell was covered and the enzyme-immobilized surface was on the outside, and 1 from the top.
An acrylic holding plate (6) having an opening of 5 mm × 15 mm was attached and screwed. This cell can be obtained by applying a potential of 0.6 V to a silver / silver chloride reference electrode to a platinum working electrode and immersing it in a 0.5 mM glucose solution dissolved in a 100 mM phosphate buffer containing 50 mM potassium chloride. The electrolytic current value was recorded with a recorder for 180 seconds immediately after the immersion. Similarly, the electrolytic current value obtained by immersion in a 0.5 mM hydrogen peroxide solution dissolved in 100 mM phosphate buffer containing 50 mM potassium chloride was recorded by a recorder for 180 seconds immediately after immersion. Similarly, 50
The electrolytic current value obtained by immersion in a 0.5 mM ascorbic acid aqueous solution dissolved in 100 mM phosphate buffer containing mM potassium chloride was recorded by a recorder for 180 seconds immediately after immersion. Similarly, the electrolytic current value obtained by immersing in a 0.5 mM uric acid aqueous solution dissolved in 100 mM phosphate buffer containing 50 mM potassium chloride was 18
It was recorded with a recorder for 0 seconds.
【0033】(4)結果 得られた電解電流値の変化の様子を電流値増加速度にな
おすと図2のようになった。グルコースに対する電解電
流(破線及び符号2で示す)は浸漬後6秒後より観測で
き、27秒後に1.85nA/秒の最高速度に達した。
過酸化水素に対する電解電流(実線及び符号1で示す)
は浸漬後3秒後より観測でき、19秒後に7.19nA
/秒の最高速度に達した。アスコルビン酸に対する電解
電流(点線及び符号3で示す)は浸漬後15秒後より観
測でき、48秒後に1.2nA/秒の最高速度に達し
た。尿酸に対する電解電流(一点鎖線及び符号4で示
す)は浸漬後19秒後より観測でき、69秒後に0.7
nA/秒の最高速度に達した。この結果よりグルコース
に対する応答速度がアスコルビン酸や尿酸よりも速くな
っていることがわかる。(4) Results When the changing state of the obtained electrolytic current value is corrected to the current value increasing rate, the result is as shown in FIG. The electrolytic current for glucose (indicated by a broken line and reference numeral 2) can be observed 6 seconds after the immersion, and reached a maximum rate of 1.85 nA / second 27 seconds later.
Electrolytic current for hydrogen peroxide (shown by solid line and symbol 1)
Can be observed 3 seconds after immersion, and 7.19nA after 19 seconds
Reached the maximum speed of / sec. The electrolysis current for ascorbic acid (indicated by the dotted line and reference numeral 3) can be observed 15 seconds after the immersion, and reached a maximum rate of 1.2 nA / second after 48 seconds. The electrolytic current for uric acid (indicated by the alternate long and short dash line and symbol 4) can be observed 19 seconds after the immersion and 0.7 seconds after 69 seconds.
The maximum speed of nA / sec was reached. This result shows that the response speed to glucose is faster than that of ascorbic acid or uric acid.
【0034】15秒ではグルコースによる電解電流は充
分であり、尿酸の影響が無く、アスコルビン酸の影響は
殆ど無い。25秒ではグルコースによる電解電流が充分
であり、尿酸やアスコルビン酸の影響はグルコースによ
る電解電流増加速度に比べ極めて小さい。従って、15
秒から25秒の間で測定すれば、妨害物質の影響が無い
か、殆ど無視できる。さらに、電解電流値の浸漬後15
秒から25秒の間での平均変化速度(15秒〜25秒の
間の測定データを直線近似してその勾配を速度として表
したもの)と濃度の検量線は図3のようになる。グルコ
ースに対する応答を100%とした場合の他の物質への
応答は、過酸化水素454%、アスコルビン酸8.6
%、尿酸0%であった。At 15 seconds, the electrolysis current due to glucose is sufficient, there is no effect of uric acid, and there is almost no effect of ascorbic acid. At 25 seconds, the electrolysis current due to glucose is sufficient, and the influence of uric acid and ascorbic acid is extremely small compared to the rate of increase of electrolysis current due to glucose. Therefore, 15
If measured from 2 seconds to 25 seconds, there is no influence of interfering substances or it can be almost ignored. Furthermore, after immersion of the electrolysis current value 15
FIG. 3 shows the calibration curve of the average change rate (second measured data for 15 seconds to 25 seconds is linearly approximated and the gradient is expressed as a speed) and the concentration from second to 25 seconds. Assuming that the response to glucose is 100%, the response to other substances is hydrogen peroxide 454% and ascorbic acid 8.6.
%, And uric acid was 0%.
【0035】比較例1 (1)電気化学計測用測定セルの作成方法 実施例1と同様のセルを作成して用いた。Comparative Example 1 (1) Method for preparing measurement cell for electrochemical measurement The same cell as in Example 1 was prepared and used.
【0036】(2)酵素固定化体の作成方法 実施例1と同様の市販ろ紙を用いた。ただし、実施例1
で用いた酵素溶液に浸漬後風乾し、吸水体全体に均一に
酵素を固定化した。 (3)測定方法 実施例1と同様の測定を行った。(2) Method for preparing enzyme-immobilized body The same commercially available filter paper as in Example 1 was used. However, Example 1
After being dipped in the enzyme solution used in 1. and dried in air, the enzyme was uniformly immobilized on the entire water-absorbing body. (3) Measurement method The same measurement as in Example 1 was performed.
【0037】(4)結果 得られた電解電流値の変化の様子を電流値増加速度にな
おすと図4のようになった。グルコースに対する電解電
流(破線,符号2)は浸漬後13秒後より観測でき、4
4秒後に1.68nA/秒の最高速度に達した。過酸化
水素に対する電解電流は浸漬後9秒後より観測でき、2
7秒後に6.85nA/秒の最高速度に達した。アスコ
ルビン酸に対する電解電流(点線,符号3)は浸漬後1
8秒後より観測でき、52秒後に1.0nA/秒の最高
速度に達した。尿酸に対する電解電流は浸漬後20秒後
より観測でき、85秒後に0.7nA/秒の最高速度に
達した。図4よりグルコースの出力開始と、アスコルビ
ン酸の出力開始には時間差が少なく、アスコルビン酸の
影響を除けないことが判る。(4) Results When the state of change of the obtained electrolytic current value was corrected to the current value increasing rate, the result was as shown in FIG. The electrolysis current for glucose (dashed line, symbol 2) can be observed 13 seconds after immersion, and
A maximum rate of 1.68 nA / sec was reached after 4 seconds. The electrolytic current for hydrogen peroxide can be observed 9 seconds after immersion, and
A maximum rate of 6.85 nA / sec was reached after 7 seconds. Electrolysis current for ascorbic acid (dotted line, code 3) is 1 after immersion
It was observed after 8 seconds and reached the maximum speed of 1.0 nA / sec after 52 seconds. The electrolytic current for uric acid was observed 20 seconds after the immersion, and reached the maximum rate of 0.7 nA / second after 85 seconds. It can be seen from FIG. 4 that there is little time difference between the start of glucose output and the start of ascorbic acid, and the effect of ascorbic acid cannot be eliminated.
【0038】さらに、電解電流値の浸漬後15秒から2
5秒の間での平均変化速度と濃度の検量線は図5のよう
になる。グルコースに対する応答を100%とした場合
の他の物質への応答は、過酸化水素522%、アスコル
ビン酸83%、尿酸33%であった。比較例1に比べ
て、実施例1が出力値の選択比が良く、グルコースを正
確に測定できることは明らかである。Furthermore, 15 seconds to 2 after immersion in the electrolytic current value
The calibration curve of the average rate of change and the concentration during 5 seconds is as shown in FIG. When the response to glucose was set to 100%, the response to other substances was hydrogen peroxide 522%, ascorbic acid 83%, and uric acid 33%. As compared with Comparative Example 1, it is clear that Example 1 has a better output value selection ratio and can accurately measure glucose.
【0039】[0039]
【発明の効果】本発明により、測定妨害物質の影響を抑
えた正確な測定が可能な固定化酵素体を構成することが
可能となった。Industrial Applicability According to the present invention, it becomes possible to construct an immobilized enzyme body capable of performing accurate measurement while suppressing the influence of a substance which interferes with the measurement.
【図1】図1は実施例1において用いた電気化学測定用
セルの構成図の1例である。FIG. 1 is an example of a configuration diagram of an electrochemical measurement cell used in Example 1.
【図2】図2は実施例1において得られたグルコース、
過酸化水素溶液、アスコルビン酸、尿酸溶液の電解電流
値増加速度曲線である。図中の実線(符号1)は過酸化
水素、破線(符号2)はグルコース、点線(符号3)は
アスコルビン酸、1点鎖線(符号4)は尿酸に対する応
答を示す。縦軸は電解電流値の増加速度(nA/秒)、
横軸は電極を浸漬してからの経過時間(秒)を示してい
る。FIG. 2 is the glucose obtained in Example 1,
It is an electrolytic current value increase rate curve of a hydrogen peroxide solution, an ascorbic acid, and a uric acid solution. In the figure, a solid line (reference numeral 1) shows a response to hydrogen peroxide, a broken line (reference numeral 2) shows glucose, a dotted line (reference numeral 3) shows ascorbic acid, and a chain line (reference numeral 4) shows a response to uric acid. The vertical axis represents the rate of increase in electrolytic current value (nA / sec),
The horizontal axis represents the elapsed time (seconds) after the electrode was immersed.
【図3】図3は実施例1において得られたグルコース、
過酸化水素溶液、アスコルビン酸、尿酸溶液の浸漬後1
5秒から25秒までの間での電解電流値の平均変化速度
と濃度から求めた各物質の検量線である。図中の実線
(符号1)は過酸化水素、破線(符号2)はグルコー
ス、点線(符号3)はアスコルビン酸、1点鎖線(符号
4)は尿酸に対する応答を示す。縦軸は電解電流値の平
均増加速度(nA/秒)、横軸は各物質の濃度(mM)
を示している。FIG. 3 shows glucose obtained in Example 1,
After immersion in hydrogen peroxide solution, ascorbic acid, uric acid solution 1
It is a calibration curve of each substance obtained from the average change speed and concentration of the electrolysis current value from 5 seconds to 25 seconds. In the figure, a solid line (reference numeral 1) shows a response to hydrogen peroxide, a broken line (reference numeral 2) shows glucose, a dotted line (reference numeral 3) shows ascorbic acid, and a chain line (reference numeral 4) shows a response to uric acid. The vertical axis represents the average rate of increase of the electrolysis current value (nA / sec), and the horizontal axis represents the concentration of each substance (mM).
Is shown.
【図4】図4は比較例1において得られたグルコース、
過酸化水素溶液、アスコルビン酸、尿酸溶液の電解電流
値増加速度曲線である。図中の実線は過酸化水素、破線
はグルコース、点線はアスコルビン酸、1点鎖線は尿酸
に対する応答を示す。縦軸は電解電流値の増加速度(n
A/秒)、横軸は電極を浸漬してからの経過時間(秒)
を示している。FIG. 4 shows glucose obtained in Comparative Example 1,
It is an electrolytic current value increase rate curve of a hydrogen peroxide solution, an ascorbic acid, and a uric acid solution. In the figure, the solid line shows hydrogen peroxide, the broken line shows glucose, the dotted line shows ascorbic acid, and the one-dot chain line shows the response to uric acid. The vertical axis represents the increasing rate of the electrolysis current value (n
(A / sec), the horizontal axis is the elapsed time (seconds) after dipping the electrode
Is shown.
【図5】図5は比較例1において得られたグルコース、
過酸化水素溶液、アスコルビン酸、尿酸溶液の浸漬後1
5秒から25秒までの間での電解電流値の平均変化速度
と濃度から求めた各物質の検量線である。図中の実線は
過酸化水素、破線はグルコース、点線はアスコルビン
酸、1点鎖線は尿酸に対する応答を示す。縦軸は電解電
流値の平均変化速度(nA/秒)、横軸は各物質の濃度
(mM)を示している。FIG. 5 shows glucose obtained in Comparative Example 1,
After immersion in hydrogen peroxide solution, ascorbic acid, uric acid solution 1
It is a calibration curve of each substance obtained from the average change speed and concentration of the electrolysis current value from 5 seconds to 25 seconds. In the figure, the solid line shows hydrogen peroxide, the broken line shows glucose, the dotted line shows ascorbic acid, and the one-dot chain line shows the response to uric acid. The vertical axis represents the average rate of change in electrolytic current value (nA / sec), and the horizontal axis represents the concentration (mM) of each substance.
1 セル底面 2 作用電極 3 対極 4 銀・塩化銀参照電極 5 酸化還元酵素固定化吸水体 6 アクリル製押え板 1 Cell bottom 2 Working electrode 3 Counter electrode 4 Silver / silver chloride reference electrode 5 Redox enzyme-immobilized water absorber 6 Acrylic holding plate
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7235−2J G01N 27/46 338 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7235-2J G01N 27/46 338
Claims (2)
と、過酸化水素を生成する反応を触媒する酸化還元酵素
を吸着または固定化してなる吸水体層を有する電気化学
測定電極であり、前記吸水体層が作用電極を覆い、且つ
前記吸水体層の作用電極に近い面側の酵素活性より、作
用電極から遠い面側の酵素活性が大である電気化学測定
電極。1. An electrochemical measurement electrode having an electrode system including at least a working electrode and a counter electrode, and a water absorbent layer formed by adsorbing or immobilizing an oxidoreductase which catalyzes a reaction for producing hydrogen peroxide. An electrochemical measurement electrode in which the body layer covers the working electrode, and the enzyme activity on the surface side far from the working electrode is greater than the enzyme activity on the surface side near the working electrode of the water absorbing body layer.
体層の作用電極から遠い面側より酸化還元酵素の基質を
含む試料を供給し、基質に由来する過酸化水素を検出す
る測定方法であり、前記過酸化水素が吸水体層を透過し
て作用電極に到達した後で、且つ試料中の電極活性を有
する測定妨害物質が吸水体層を透過して作用電極に到達
し前記過酸化水素の検出値に誤差を生じさせる前の出力
値に基づいて、基質の定量を行う測定方法。2. A method for measuring, wherein a sample containing a substrate of oxidoreductase is supplied from a surface side of a water absorbent layer of the electrochemical measurement electrode according to claim 1 which is remote from the working electrode, and hydrogen peroxide derived from the substrate is detected. After the hydrogen peroxide permeates the water-absorber layer and reaches the working electrode, and the measurement-interfering substance having an electrode activity in the sample permeates the water-absorber layer and reaches the working electrode, the peroxidation occurs. A measurement method that quantifies the substrate based on the output value before the error in the detected hydrogen value is generated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4044207A JPH05240828A (en) | 1992-03-02 | 1992-03-02 | Electrode and measuring method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4044207A JPH05240828A (en) | 1992-03-02 | 1992-03-02 | Electrode and measuring method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05240828A true JPH05240828A (en) | 1993-09-21 |
Family
ID=12685116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4044207A Pending JPH05240828A (en) | 1992-03-02 | 1992-03-02 | Electrode and measuring method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05240828A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0984069A2 (en) * | 1998-08-26 | 2000-03-08 | Matsushita Electric Industrial Co., Ltd. | Biosensor with an interferant detecting electrode |
EP0995803A2 (en) * | 1998-10-20 | 2000-04-26 | Matsushita Electric Industrial Co., Ltd. | Sample treating kit and sample treating method using the same for analysis with a biosensor |
CN110568045A (en) * | 2019-09-12 | 2019-12-13 | 浙江大学山东工业技术研究院 | A Rapid Detection Electrochemical Biosensor |
-
1992
- 1992-03-02 JP JP4044207A patent/JPH05240828A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0984069A2 (en) * | 1998-08-26 | 2000-03-08 | Matsushita Electric Industrial Co., Ltd. | Biosensor with an interferant detecting electrode |
EP0984069A3 (en) * | 1998-08-26 | 2001-08-08 | Matsushita Electric Industrial Co., Ltd. | Biosensor with an interferant detecting electrode |
EP0995803A2 (en) * | 1998-10-20 | 2000-04-26 | Matsushita Electric Industrial Co., Ltd. | Sample treating kit and sample treating method using the same for analysis with a biosensor |
EP0995803A3 (en) * | 1998-10-20 | 2001-11-07 | Matsushita Electric Industrial Co., Ltd. | Sample treating kit and sample treating method using the same for analysis with a biosensor |
US6867002B2 (en) | 1998-10-20 | 2005-03-15 | Matsushita Electric Industrial Co., Ltd. | Sample treating kit and sample treating method using the same for analysis with a biosensor |
CN110568045A (en) * | 2019-09-12 | 2019-12-13 | 浙江大学山东工业技术研究院 | A Rapid Detection Electrochemical Biosensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4795707A (en) | Electrochemical sensor having three layer membrane containing immobilized enzymes | |
US5437973A (en) | Enzyme-electrode sensor | |
US5746898A (en) | Electrochemical-enzymatic sensor | |
Chen et al. | A biocompatible needle-type glucose sensor based on platinum-electroplated carbon electrode | |
JPH0136063B2 (en) | ||
JPS6239900B2 (en) | ||
WO1994002842A1 (en) | Analytical method for the detection and measurement of paracetamol | |
Pariente et al. | Enzyme support systems for biosensor applications based on gold-coated nylon meshes | |
Yao et al. | Amperometric flow-injection determination of glucose, urate and cholesterol and blood serum by using some immobilized enzyme reactors and a poly (1, 2-diaminobenzene)-coated platinum electrode | |
GB2265718A (en) | Assay system employing enzymes and electrochemical detection | |
JPH05240828A (en) | Electrode and measuring method using the same | |
JPH06507479A (en) | sensor device | |
JPH043500B2 (en) | ||
Gülce et al. | A novel two-enzyme amperometric electrode for lactose determination | |
Palleschi et al. | Amperometric probe for 3-hydroxybutyrate with immobilized 3-hydroxybutyrate dehydrogenase | |
JPH0618472A (en) | Electrode for electrochemical measurement | |
JPS63101743A (en) | Functional electrode | |
JPS60211350A (en) | Biosensor | |
JP2590803B2 (en) | Biosensor | |
JPH05149910A (en) | Cell for electrochemical measurement | |
JPS585642A (en) | Enzyme electrode | |
JPS6257942B2 (en) | ||
JPH1038844A (en) | Online biosensor | |
JPH04326054A (en) | Glucose sensor | |
JP2821634B2 (en) | Sample addition type quantification method using biosensor |