Nothing Special   »   [go: up one dir, main page]

JPH05240786A - Temperature coefficient measuring device for refractive index - Google Patents

Temperature coefficient measuring device for refractive index

Info

Publication number
JPH05240786A
JPH05240786A JP7633992A JP7633992A JPH05240786A JP H05240786 A JPH05240786 A JP H05240786A JP 7633992 A JP7633992 A JP 7633992A JP 7633992 A JP7633992 A JP 7633992A JP H05240786 A JPH05240786 A JP H05240786A
Authority
JP
Japan
Prior art keywords
light
measuring device
temperature
sample
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7633992A
Other languages
Japanese (ja)
Other versions
JP2823421B2 (en
Inventor
Hiroshi Yamauchi
洋 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP4076339A priority Critical patent/JP2823421B2/en
Publication of JPH05240786A publication Critical patent/JPH05240786A/en
Application granted granted Critical
Publication of JP2823421B2 publication Critical patent/JP2823421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To improve measurement accuracy and work efficiency by measuring in one-time of heating/cooling process the linear expansion coefficient of a sample to be inspected and simultaneously the temperature coefficient of the refractive index to the light of each wavelength for a light having multiple wavelengths. CONSTITUTION:A temperature coefficient measuring device for a refraction factor is provided with the first polychromatic diffraction grating spectroscope P-1 to collect the light from plural number of spectral light sources 2, 3 and 4 having different wave length values in prescribed slit positions, a collimator which transforms the light from the slit positions into a parallel light flux and converges the reflected light from a Fizeou's interferometer F and the Fizeou's interferometer F having a heating/cooling means for a sample to be inspected, and is also provided with the second polychromatic diffraction grating spectroscope P-2 which divides the light to give Fizeou's interference fringes obtained by a temperature change in the sample to be inspected into respective spectral light and introduces them to the respective prescribed slit positions and a light detecting/measuring device which detects the light from the respective slit positions synchronously and measures those outputs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラや半導体製造用
光学機器等の分野で用いられる光学ガラス、あるいは通
信機器や光学記録媒体用基盤等の分野で用いられる透明
材料について、紫外域、可視域および赤外域の光に対す
る屈折率の温度係数を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical glass used in the field of cameras, optical devices for semiconductor manufacturing, etc., or a transparent material used in the field of communication devices, substrates for optical recording media, etc. The present invention relates to an apparatus for measuring the temperature coefficient of refractive index for light in the infrared and infrared regions.

【0002】[0002]

【従来の技術】従来から、ガラス等の透明材料の屈折率
の温度係数(以下、dn/dTで表す)を測定するに当
たっては、分光計あるいはフィゾー干渉計を用い、複数
の波長(例えば、可視域で5波長、近紫外、近赤外域で
各1波長)の光について各波長ごとに試料を繰り返し加
熱、冷却して測定している。これらの材料は一般に熱伝
導性が悪いため、例えばガラス試料を−50℃から+8
0℃程度の範囲で温度を変化させながら測定しようとす
ると通常1波長当たり約3〜5時間を要し、また測定因
子として、試料の線熱膨張係数の温度変化も別途測定し
なければならないため、1試料当たりのdn/dTの測
定に24〜40時間という長時間を要する。近時、これ
ら材料の利用分野が広がるにつれ、要求される測定温度
範囲も液体窒素温度から数100℃の高温域にまで拡大
し、益々測定に長時間を要するようになっている。ま
た、測定操作全体が非常に繁雑であるうえ、光学系の色
収差などにより各波長に対する測定精度にバラツキを生
じやすい。
2. Description of the Related Art Conventionally, in measuring the temperature coefficient of refractive index (hereinafter, represented by dn / dT) of a transparent material such as glass, a spectrometer or a Fizeau interferometer is used to measure a plurality of wavelengths (for example, visible light). (5 wavelengths in the region, 1 wavelength in the near-ultraviolet and near-infrared regions), and the sample is repeatedly heated and cooled for each wavelength for measurement. Since these materials generally have poor thermal conductivity, for example, a glass sample is tested at −50 ° C. to +8.
Usually, it takes about 3 to 5 hours per wavelength to measure while changing the temperature in the range of 0 ° C, and as a measurement factor, the temperature change of the linear thermal expansion coefficient of the sample must be measured separately. It takes a long time of 24 to 40 hours to measure dn / dT per sample. In recent years, as the fields of use of these materials have expanded, the required measurement temperature range has expanded from the liquid nitrogen temperature to a high temperature range of several hundreds of degrees Celsius, and it takes longer and longer for measurement. In addition, the whole measurement operation is very complicated, and the measurement accuracy for each wavelength is likely to vary due to chromatic aberration of the optical system.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、前記
従来のdn/dT測定技術にみられる諸欠点を改善し、
多数の波長光に対するdn/dTの測定において、操作
が単純であって、測定時間を大幅に短縮することがで
き、かつ測定精度を向上し得るdn/dT測定装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks of the conventional dn / dT measurement technique.
An object of the present invention is to provide a dn / dT measuring device which has a simple operation in measuring dn / dT with respect to a large number of wavelengths of light, can significantly reduce the measuring time, and can improve the measuring accuracy.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成する本
発明の屈折率の温度係数測定装置の構成の特徴は、波長
値の異なる複数のスペクトル光源、上記光源からの光を
所定のスリット位置に集光させる第1のポリクロマティ
ック回折格子分光器、上記スリット位置からの光を平行
光束化し、またフィゾー干渉計からの反射光を収束する
コリメーター、被検試料の加熱・冷却手段を設け、上記
コリメーターからの平行光束を干渉させるフィゾー干渉
計、被検試料の温度変化によって得られるフィゾー干渉
縞を形成する光を上記光源の各スペクトル光にそれぞれ
分光して所定の各スリット位置に導く第2のポリクロマ
ティック回折格子分光器、上記各スリット位置からの光
を同時に検出しその出力を計測する光検出・計測装置を
備えたところにある。
The features of the structure of the temperature coefficient measuring device for the refractive index of the present invention which achieves the above objects are that a plurality of spectral light sources having different wavelength values are provided, and the light from the light sources is provided at predetermined slit positions. A first polychromatic diffraction grating spectroscope for converging the light on the sample, a collimator for collimating the light from the slit position and converging the reflected light from the Fizeau interferometer, and a heating / cooling means for the sample to be tested, A Fizeau interferometer for interfering parallel light beams from the collimator, and light for forming Fizeau interference fringes obtained by the temperature change of the sample to be analyzed is split into each spectrum light of the light source and guided to each predetermined slit position. 2 equipped with a polychromatic diffraction grating spectroscope and a light detection / measurement device that simultaneously detects the light from each slit position and measures the output. .

【0005】上記本発明の測定装置において、予め被検
試料の線膨張係数が別途の測定により既知であれば、こ
れを用いて同時に多波長の各光に対するdn/dTを測
定することもできる。しかし、このように2つの測定を
別々に行うのは同様に非能率的であるうえ、測定精度の
悪化を招き易い。そこで、本発明の測定装置において
は、同一加熱、冷却過程で、被検試料の線膨張係数測定
とこのデータを用いたdn/dTの測定を行うよう、上
記平行光束を2つの視野に分離する視野絞り、および上
記2つの視野に対応して被検試料の対向平行平面間にd
n/dT測定用光干渉部を設けるとともに被検試料を挟
む2枚の基板により形成される空間に線膨張係数測定用
光干渉部を設けたフィゾー干渉計を備えることが好まし
い。
In the above measuring apparatus of the present invention, if the coefficient of linear expansion of the sample to be tested is previously known by a separate measurement, it is possible to simultaneously measure dn / dT for each light of multiple wavelengths. However, performing the two measurements separately in this way is similarly inefficient and tends to cause deterioration in measurement accuracy. Therefore, in the measuring apparatus of the present invention, the parallel luminous flux is separated into two fields of view so that the linear expansion coefficient of the sample to be measured and the dn / dT using this data are measured in the same heating and cooling process. The field diaphragm and d between the facing parallel planes of the test sample corresponding to the above two fields of view
It is preferable to provide a Fizeau interferometer in which the optical interference part for measuring n / dT is provided and the optical interference part for measuring linear expansion coefficient is provided in the space formed by the two substrates sandwiching the test sample.

【0006】また、フィゾー干渉計によりdn/dT値
を算出する場合、所定温度域(Ti〜Tj)における干
渉縞移動数(ΔN)を予め求めておく必要があるが、従
来、干渉光強度(I)−温度(T)座標軸上に作図され
る干渉縞波形において温度TiおよびTjをそれぞれ含
む1周期分のΔNの温度幅を読み取り、TiおよびTj
における各強度(I)に対し、これらの各温度近傍にお
ける強度の極大値(または極小値)からのズレを加減し
て求めていた。この測定手段は、わずかのデータ点で縞
移動を読み取るため種々の偶然誤差が含まれ、測定精度
の低下を招き易い。この欠点を改善するため、本発明の
測定装置においては、フィゾー干渉光の強度(I)−観
測温度(T)座標上に表される各波長光についての干渉
縞波形を記憶する機能、この干渉縞波形の極大値および
極小値に対応するm個(多数個)の観測温度を読み取っ
て、このデータを干渉縞移動数(N)−温度(T)座標
上にプロットし、これらm個の観測点に対し、最小二乗
法によりm個の高次の観測方程式を求める機能、上記観
測方程式に基づいて、所定の温度域における干渉縞移動
数(ΔN)を求めて屈折率の温度係数を演算する機能を
有する計測装置を設けることが好ましい。
Further, when the dn / dT value is calculated by the Fizeau interferometer, it is necessary to previously obtain the movement number (ΔN) of the interference fringes in the predetermined temperature range (Ti to Tj). I) -The temperature width of ΔN for one cycle including the temperatures Ti and Tj in the interference fringe waveform drawn on the temperature (T) coordinate axis is read, and Ti and Tj are read.
For each intensity (I) in (1), the deviation from the maximum value (or minimum value) of the intensity in the vicinity of each temperature was adjusted. Since this measuring means reads the fringe movement with only a few data points, various accidental errors are included, and the measurement accuracy is likely to deteriorate. In order to improve this drawback, in the measuring apparatus of the present invention, the function of storing the interference fringe waveform for each wavelength light represented on the Fizeau interference light intensity (I) -observation temperature (T) coordinate, this interference Read the m (many) observation temperatures corresponding to the maximum and minimum values of the fringe waveform, plot this data on the interference fringe movement number (N) -temperature (T) coordinate, and observe these m observations. A function of obtaining m high-order observation equations by the least squares method for points, and the interference fringe movement number (ΔN) in a predetermined temperature range is calculated based on the above observation equations to calculate the temperature coefficient of the refractive index. It is preferable to provide a measuring device having a function.

【0007】[0007]

【実施例】つぎに、本発明の屈折率の温度係数測定装置
の好適な実施例について、図面に即して説明する。すな
わち、図1は、本実施例の装置全体の光学系および計測
系の配置説明図である。図2は、図1におけるフィゾー
干渉計Fと視野絞り49の位置関係を示す拡大側断面図
であり、また図3は、図2のフィゾー干渉計主要部の平
面図である。図1にみられるとおり、波長値の異なる複
数のスペクトル光源として、近赤外スペクトルレーザ光
源1および可視・紫外スペクトル光源2、3、4がそれ
ぞれ用意されている。これらの光源の近傍に第1のポリ
クロマティック回折格子分光器P−1が設けてあり、こ
の分光器のローランド円27上に16〜22および凹面
回折格子8が配置されている。近赤外スペクトル光源1
からの光は、凹面鏡6で反射し、スリット15を通り、
平面鏡7、凹面回折格子8および平面鏡9を反射する
が、凹面回折格子8は、可視、紫外光用であるため、零
次光としてスリット23に収束する。可視、紫外スペク
トル光源からの各波長の光は、直接または平面鏡10〜
14を反射してそれぞれスリット16〜22を通り、凹
面回折格子8および平面鏡9を反射し、スリット23に
収束する。各光源からの光の焦点位置にあるスリット2
3からの多色光は、半透鏡28で折り曲げられた後、コ
リメーターである凹面鏡29で反射して平行光束とな
り、平面鏡30で垂直上方へ折り曲げられ、視野絞り3
1を通過する。
Next, preferred embodiments of the temperature coefficient measuring device for the refractive index of the present invention will be described with reference to the drawings. That is, FIG. 1 is a layout explanatory diagram of the optical system and the measurement system of the entire apparatus of the present embodiment. 2 is an enlarged side sectional view showing the positional relationship between the Fizeau interferometer F and the field stop 49 in FIG. 1, and FIG. 3 is a plan view of the main part of the Fizeau interferometer of FIG. As shown in FIG. 1, a near-infrared spectrum laser light source 1 and visible / ultraviolet spectrum light sources 2, 3 and 4 are respectively prepared as a plurality of spectrum light sources having different wavelength values. A first polychromatic diffraction grating spectroscope P-1 is provided in the vicinity of these light sources, and 16 to 22 and a concave diffraction grating 8 are arranged on a Rowland circle 27 of this spectroscope. Near infrared spectrum light source 1
The light from is reflected by the concave mirror 6, passes through the slit 15,
The plane mirror 7, the concave diffraction grating 8 and the plane mirror 9 are reflected, but since the concave diffraction grating 8 is for visible light and ultraviolet light, it is converged on the slit 23 as zero-order light. The light of each wavelength from the visible and ultraviolet spectrum light sources is directly or through the plane mirror 10.
14 is reflected, passes through slits 16 to 22, respectively, and is reflected by the concave diffraction grating 8 and the plane mirror 9, and converges on the slit 23. Slit 2 at the focal position of the light from each light source
After being bent by the semi-transparent mirror 28, the polychromatic light from 3 is reflected by the concave mirror 29, which is a collimator, into a parallel light flux, which is bent vertically upward by the plane mirror 30 and then the field stop 3
Pass 1.

【0008】図2および図3にみられるとおり、フィゾ
ー干渉計Fにおいて、ガラス基板32、33の対向平面
上の各3点(C、C′)の間で平行平面を有する被検試
料34を挟持する構造になっている。また、視野絞り3
1には、絞り窓AおよびBが設けられており、ガラス基
板32には絞り窓Aからの光を被検試料34に直接導入
する開口部A′があり、開口部A′からの光は被検試料
に設けた光干渉部A″を通り、その内部上面を元の方向
へ反射する。この開口部A′に対応するガラス基板33
の平面は無反射面となっている。被検試料34を挟むガ
ラス基板32、33の空間に光干渉部B′が設けてあ
り、絞り窓Bからの光はガラス基板32と空間B′を通
り、ガラス基板33の下面を元の方向へ反射する。ガラ
ス基板と被検試料は、発熱体35および冷却管36を付
設した金属ケース37中に収められており、被検試料測
温用熱電対38の先端が試料内に嵌入され、温度制御用
熱電対38′が金属ケース37中に埋設されている。こ
れらは図示しない真空・保温槽により囲われている。
尚、図示していないが、ガラス基板と被検試料をより迅
速に均熱化するため、これらの表面には伝熱性ペイント
を適宜塗布してあり、またこのペイント塗布面と金属ケ
ースは多数の可撓銅線で接続してある。
As shown in FIGS. 2 and 3, in the Fizeau interferometer F, the test sample 34 having parallel planes between the three points (C, C ') on the opposing planes of the glass substrates 32, 33 is provided. It has a structure of sandwiching. In addition, the field stop 3
1, the aperture windows A and B are provided, and the glass substrate 32 has an opening A ′ for directly introducing the light from the aperture window A into the test sample 34, and the light from the opening A ′ is The light passes through the optical interference portion A ″ provided on the test sample and reflects the inner upper surface in the original direction. The glass substrate 33 corresponding to this opening portion A ′.
Is a non-reflective surface. A light interference portion B ′ is provided in the space between the glass substrates 32 and 33 sandwiching the sample 34 to be inspected. Reflect to. The glass substrate and the test sample are housed in a metal case 37 provided with a heating element 35 and a cooling pipe 36, and the tip of a thermocouple 38 for measuring the temperature of the test sample is fitted into the sample to provide a thermoelectric control for temperature control. The pair 38 ′ is embedded in the metal case 37. These are surrounded by a vacuum / heat retaining tank (not shown).
Although not shown, a heat conductive paint is appropriately applied to the surfaces of the glass substrate and the test sample in order to heat them more quickly. It is connected with a flexible copper wire.

【0009】フィゾー干渉計F内で生じた干渉縞を与え
る光は、元の光路に戻り、平面鏡30、コリメーター2
9を反射し、半透鏡28を通過する。半透鏡28の背後
には、第2のポリクロマティック回折格子P−2が設け
てあり、この回折格子のローランド円39上にスリット
46〜52および視野絞り42を付帯した凹面回折格子
41が配置されている。半透鏡28を透過した光は、ス
リット40に集光し、このスリット位置を通過した光は
平面鏡43を反射した後、凹面回折格子41により元の
各波長の光に分散する。このとき、視野絞りBからの光
は視野絞り42で除去される。これらの分散光は、それ
ぞれその焦点上に置かれたスリット45、46〜52を
通過後、これらのスリット近傍に設けた平面鏡53〜5
8を反射し、光電子増倍管59〜65に入射して検出さ
れる。近赤外光とすべての他の波長の光は零次光として
スリット45に収束するが、短波長カットフィルター6
6により近赤外光以外は吸収され、近赤外光のみがフォ
トダイオード67により検出される。可視光レーザ光源
5からの光は、ライトガイド68を通り、スリット23
の近くに置かれた小プリズム25で折り曲げられスリッ
ト26を通過した後、上記同様にフィゾー干渉計Fに入
り、干渉縞を与える光を生ずる。この光は、半透鏡28
を透過した後、小プリズム69で折り曲げられてスリッ
ト70に収束する。この収束光の各々半分が半透鏡7
1、平面鏡72および視野絞り73、74を介してそれ
ぞれ光電子増倍管75および76に入り検出される。こ
こで、視野絞りAからの光は、光干渉部A″においてフ
ィゾー干渉縞を与える光を生ずるが、この光は、スリッ
ト40および視野絞り73で制限を受け、検出器75の
みに入り、凹面回折格子41で分離できない波長光につ
いての温度変化による干渉縞移動数(ΔN)の測定に用
いられる。また、視野絞りBからの光は、光干渉部B′
においてフィゾー干渉縞を与える光を生じ、この光は視
野絞り74で制限を受け検出器76のみに入り、線膨張
係数に関する干渉縞移動数(ΔN′)の測定に用いられ
る。
The light that gives the interference fringes generated in the Fizeau interferometer F returns to the original optical path, and is reflected by the plane mirror 30 and the collimator 2.
9 is reflected and it passes through the semi-transparent mirror 28. A second polychromatic diffraction grating P-2 is provided behind the semi-transparent mirror 28, and a concave diffraction grating 41 with slits 46 to 52 and a field stop 42 is arranged on a Rowland circle 39 of this diffraction grating. ing. The light transmitted through the semi-transparent mirror 28 is focused on the slit 40, and the light passing through the slit position is reflected by the plane mirror 43 and then dispersed by the concave diffraction grating 41 into the light of each original wavelength. At this time, the light from the field stop B is removed by the field stop 42. These dispersed lights pass through the slits 45 and 46 to 52 placed on the focal points thereof, respectively, and then the plane mirrors 53 to 5 provided in the vicinity of these slits.
8 is reflected, and it injects into the photomultiplier tubes 59-65, and is detected. The near-infrared light and light of all other wavelengths converge as a zero-order light on the slit 45, but the short-wavelength cut filter 6
Other than near infrared light is absorbed by 6, and only the near infrared light is detected by the photodiode 67. Light from the visible light laser light source 5 passes through the light guide 68 and passes through the slit 23.
After passing through the slit 26 after being bent by the small prism 25 placed in the vicinity of, the light enters the Fizeau interferometer F in the same manner as described above, and light that gives interference fringes is generated. This light is a semi-transparent mirror 28
After passing through, the light is bent by the small prism 69 and converges on the slit 70. Each half of this convergent light is a semi-transparent mirror 7.
1, the light enters the photomultiplier tubes 75 and 76 via the plane mirror 72 and the field diaphragms 73 and 74, respectively, and is detected. Here, the light from the field stop A produces light which gives Fizeau interference fringes in the light interference part A ″, but this light is limited by the slit 40 and the field stop 73, and enters only the detector 75, and the concave surface. It is used to measure the interference fringe movement number (ΔN) due to temperature change for the wavelength light that cannot be separated by the diffraction grating 41. Further, the light from the field stop B is the light interference portion B ′.
At, a light which gives Fizeau interference fringes is generated, and this light is limited by the field stop 74 and enters only the detector 76, and is used for measuring the interference fringe movement number (ΔN ′) related to the linear expansion coefficient.

【0010】ある波長λと被検試料のdn/dTについ
て、dn/dT=λdn/2LΔT−n・λΔN′/2
LΔT(関係式1)が成立し、またこの関係式の2項に
ついて、n・λΔN′/2LΔT=n・α(関係式2)
であることが知られている。この2項は被検試料の熱膨
張による補正項である。ここで、ΔNおよびΔN′は、
それぞれ干渉部A″およびB′における物体の温度変化
により生じたフィゾー干渉縞の移動数の変化であり、L
は被検試料の厚さである。干渉部A″における光路長は
nL、干渉部B′における光路長は、真空の場合はL、
大気中の場合はna・L(na;空気の屈折率)であ
る。また、αは、被検試料の線膨張係数である。光電子
増倍管59〜65、75およびフォトダイオード67
は、各波長に対する上記関係式1項の測定用検出器であ
り、また光電子増倍管76は上記2項の測定用検出器で
あって、所定の温度域における各波長に対する被検試料
のdn/dTとαを同時に測定することができる。上記
の各検出器からの出力信号を基に屈折率の温度係数を計
測するため、順次、増幅器77、計測装置78およびプ
リンタ79が設けてある。
For a given wavelength λ and dn / dT of the sample to be tested, dn / dT = λdn / 2LΔT-nλΔN '/ 2
LΔT (relational expression 1) is established, and n · λΔN ′ / 2LΔT = n · α (relational expression 2) for the two terms of this relational expression.
Is known to be. The second term is a correction term due to the thermal expansion of the test sample. Where ΔN and ΔN ′ are
The change in the number of movements of the Fizeau interference fringes caused by the temperature change of the object in the interference portions A ″ and B ′, respectively, L
Is the thickness of the test sample. The optical path length in the interference part A ″ is nL, the optical path length in the interference part B ′ is L in the case of vacuum,
In the atmosphere, it is na · L (na; refractive index of air). Further, α is a coefficient of linear expansion of the test sample. Photomultiplier tubes 59 to 65, 75 and photodiode 67
Is the measurement detector of the above-mentioned relational expression 1 for each wavelength, and the photomultiplier tube 76 is the measurement detector of the above-mentioned item 2, and dn of the test sample for each wavelength in a predetermined temperature range. / DT and α can be measured simultaneously. An amplifier 77, a measuring device 78, and a printer 79 are sequentially provided in order to measure the temperature coefficient of the refractive index based on the output signals from the above detectors.

【0011】図4は、フィゾー干渉縞の温度に対する強
度変化を記録した例であり、縦軸は干渉縞の光の強度
(I)であり、横軸は温度(T)を示している。図4の
変化曲線は、正弦波となることを示しており、温度T1
における最小強度(Imin)からT2における最大強
度(Imax)を経てT3におけるIminに至る1周
期の変化は、上記1項における縞数の変化(ΔN)=1
に相当する。図1において、増幅器77は、検出器から
の各波長光(視野絞りAを通過する光の波長をλ1、λ2
…とし、視野絞りBを通過する光の波長をλ′とする)
についての出力信号を増幅する。増幅器77の後部に設
けた計測装置78は、図6の系統図にみられるとおり、
上記各波長光に対応するデータ1、2…、データαおよ
び測定温度に対するデータOを基に図4にみられる干渉
光強度(I)−温度(T)座標上の干渉縞波形を記憶す
る機能を有している。また、この波形を平滑化処理した
後、この波形の極大値および極小値を読み取り、このデ
ータを、図5にみられるとおり、干渉縞移動数(N)−
温度(T)座標上にプロットし、これらm個の観測点に
対し、最小二乗法によりm個の高次の観測方程式N
(T)(例えば3次の場合、N(T)=aT3+bT2
cT+d(a、b、c、dは係数))を求める機能、こ
の観測方程式に基づいて、所定の温度域における干渉縞
移動数ΔNおよびΔN′を求める機能、干渉縞移動数
(ΔN′)から被検試料のαを演算する機能および前記
関係式1および2から被検試料のdn/dTを演算する
機能を有している。プリンタ79には上記の干渉縞波
形、観測方程式N(T)曲線および演算結果が表示され
る。
FIG. 4 is an example in which the intensity change of Fizeau interference fringes with respect to temperature is recorded. The vertical axis shows the light intensity (I) of the interference fringes, and the horizontal axis shows the temperature (T). The change curve of FIG. 4 shows that it becomes a sine wave, and the temperature T 1
The change of one cycle from the minimum intensity (Imin) at T 2 to the maximum intensity (Imax) at T 2 to Imin at T 3 is the change in the number of stripes (ΔN) = 1 in the above item 1.
Equivalent to. In FIG. 1, the amplifier 77 includes light of each wavelength from the detector (wavelengths of light passing through the field stop A are λ 1 and λ 2
... and the wavelength of the light passing through the field stop B is λ ')
Amplifies the output signal for. As shown in the system diagram of FIG. 6, the measuring device 78 provided at the rear of the amplifier 77 is
A function of storing the interference fringe waveform on the interference light intensity (I) -temperature (T) coordinate shown in FIG. 4 based on the data 1, 2, ... have. After smoothing this waveform, the maximum value and the minimum value of this waveform are read, and this data is converted into the interference fringe movement number (N) − as shown in FIG.
Plotted on the temperature (T) coordinates, and for these m observation points, m high-order observation equations N by the least square method.
(T) (for example, in the case of the third order, N (T) = aT 3 + bT 2 +
cT + d (a, b, c, d are coefficients)), a function to obtain the interference fringe movement numbers ΔN and ΔN 'in a predetermined temperature range based on this observation equation, from the interference fringe movement number (ΔN') It has a function of calculating α of the test sample and a function of calculating dn / dT of the test sample from the relational expressions 1 and 2. The interference fringe waveform, the observation equation N (T) curve and the calculation result are displayed on the printer 79.

【0012】本実施例の装置は、上述の構成であるた
め、所要のすべての波長光に対するdn/dTを同一試
料を用いて、同一の加熱、冷却条件下で同時に測定する
ことができ、また試料の線熱膨張係数の測定も同時に行
い得る。従って、測定誤差の介入を防止できるので、従
来技術によるよりも測定作業の能率を向上させつつ、測
定精度を格段に向上させることができる。さらに実施例
の装置では、光学系にレンズを一切備えていず、ミラー
系で構成されているので、各波長に対する収差の違いが
なく、すべての波長光に対して、同一精度の測定を行い
得る利点がある。
Since the apparatus of the present embodiment has the above-mentioned configuration, it is possible to simultaneously measure dn / dT for all required wavelengths of light using the same sample under the same heating and cooling conditions. The linear thermal expansion coefficient of the sample can be measured at the same time. Therefore, it is possible to prevent the intervention of the measurement error, so that it is possible to significantly improve the measurement accuracy while improving the efficiency of the measurement work as compared with the conventional technique. Further, in the apparatus of the embodiment, since the optical system does not include any lens and is configured by the mirror system, there is no difference in aberration for each wavelength, and it is possible to perform measurement with the same accuracy for all wavelength light. There are advantages.

【0013】[0013]

【発明の効果】以上述べたとおり、本発明の屈折率の温
度係数測定装置は、複数のスペクトル光源、第一のポリ
クロマティック回折格子分光器、コリメーター、フィゾ
ー干渉計、第2のポリクロマティック回折格子分光器お
よび光検出・計測装置を備えているため、多波長の光の
各波長光について、同一加熱、冷却過程で同期的に屈折
率の温度係数を測定することができる。従って、測定作
業効率のみならず、測定精度を格段に向上することがで
きる。また、フィゾー干渉計に被検試料の線膨張係数を
測定するための干渉部を付設し、あるいは干渉強度検出
データーを基に多数個の高次の観測方程式を求めこれか
ら干渉縞移動数を求めて、dn/dTを演算する機能を
有する計測装置を設けることにより、さらに測定値の信
号/雑音比を改善して精度を向上させることができる。
As described above, the temperature coefficient measuring device for the refractive index of the present invention comprises a plurality of spectral light sources, a first polychromatic diffraction grating spectroscope, a collimator, a Fizeau interferometer, and a second polychromatic diffraction. Since the grating spectroscope and the light detecting / measuring device are provided, the temperature coefficient of the refractive index can be measured synchronously in the same heating and cooling process for each wavelength light of multi-wavelength light. Therefore, not only the measurement work efficiency but also the measurement accuracy can be significantly improved. In addition, the Fizeau interferometer is equipped with an interferometer for measuring the linear expansion coefficient of the sample to be tested, or a number of higher-order observation equations are obtained based on the interference intensity detection data, and the number of movements of the interference fringes is obtained from this. , Dn / dT is provided, it is possible to further improve the signal / noise ratio of the measured value and improve the accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の屈折率の温度係数測定装置にかかる一
実施例の全体説明図である。
FIG. 1 is an overall explanatory view of an embodiment of a temperature coefficient measuring device for refractive index of the present invention.

【図2】図1におけるフィゾー干渉計の縦断面図であ
る。
FIG. 2 is a vertical sectional view of the Fizeau interferometer in FIG.

【図3】図2のフィゾー干渉計主要部の平面図である。FIG. 3 is a plan view of a main part of the Fizeau interferometer of FIG.

【図4】干渉光強度(I)−観測温度(T)座標におけ
る干渉縞検出波形説明図である。
FIG. 4 is an explanatory diagram of an interference fringe detection waveform at an interference light intensity (I) -observed temperature (T) coordinate.

【図5】干渉縞移動数(N)−観測温度(T)座標にお
ける干渉縞波形の極大値、極小値の打点図である。
FIG. 5 is a dot plot of the maximum and minimum values of the interference fringe waveform in the interference fringe movement number (N) -observed temperature (T) coordinate.

【図6】図1における計測装置の機能系統図である。FIG. 6 is a functional system diagram of the measuring device in FIG.

【符号の説明】[Explanation of symbols]

1〜5 …光源 27,39 …ローランド円 6,7,9,10〜14,30,43,44,53〜5
8,72…平面鏡 28,71 …半透鏡 8,41 …凹面回折格子 15,16〜22,23,26,40,45,46〜5
2,70…スリット 31,42,73,74 …視野絞り 66 …短波長カットフィルター 59〜65,75,76 …光電子増倍管 67 …フォトダイオード 32,33 …基板ガラス 34 …被検体試料 38,38′ …熱電対 F …フィゾー干渉計 A,B …絞り窓 A″,B′ …光干渉部 C,C′ …被検体試料支持部
1-5 ... Light source 27,39 ... Roland circle 6,7,9,10-14,30,43,44,53-5
8, 72 ... Planar mirror 28, 71 ... Semi-transparent mirror 8, 41 ... Concave diffraction grating 15, 16-22, 23, 26, 40, 45, 46-5
2, 70 ... Slit 31, 42, 73, 74 ... Field stop 66 ... Short wavelength cut filter 59-65, 75, 76 ... Photomultiplier tube 67 ... Photodiode 32, 33 ... Substrate glass 34 ... Specimen sample 38, 38 '... Thermocouple F ... Fizeau interferometer A, B ... Aperture window A ", B' ... Optical interference part C, C '... Subject sample support part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波長値の異なる複数のスペクトル光源、
上記光源からの光を所定のスリット位置に集光させる第
1のポリクロマティック回折格子分光器、上記スリット
位置からの光を平行光束化し、またフィゾー干渉計から
の反射光を収束するコリメーター、被検試料の加熱・冷
却手段を有するフィゾー干渉計、被検試料の温度変化に
よって得られるフィゾー干渉縞の変化を与える光を上記
光源の持つ各スペクトル光に分光して所定の各スリット
位置に導く第2のポリクロマティック回折格子分光器、
上記各スリット位置からの光を同時に検出しその出力を
計測する光検出・計測装置を備えたことを特徴とする屈
折率の温度係数測定装置。
1. A plurality of spectral light sources having different wavelength values,
A first polychromatic diffraction grating spectroscope for converging light from the light source at a predetermined slit position, a collimator for collimating the light from the slit position into a parallel beam, and converging the reflected light from the Fizeau interferometer, A Fizeau interferometer having a heating / cooling means for the test sample, a light which gives a change in Fizeau interference fringes obtained by a temperature change of the test sample is split into each spectrum light of the light source and is guided to each predetermined slit position. 2 polychromatic grating spectrometer,
A temperature coefficient measuring device for a refractive index, comprising a light detecting / measuring device for simultaneously detecting light from each of the slit positions and measuring the output thereof.
【請求項2】 平行光束を2つの視野に分離する視野絞
り、および上記2つの視野に対応して、被検試料の平行
2面間と被検試料を挟む2枚の基板により形成される空
間にそれぞれ光干渉部を設けたフィゾー干渉計を備えた
ことを特徴とする請求項1に記載の屈折率の温度係数測
定装置。
2. A field stop for separating a parallel light flux into two fields of view, and a space formed between two parallel planes of a sample to be tested and two substrates sandwiching the sample to be tested corresponding to the two fields of view. The temperature coefficient measuring device for the refractive index according to claim 1, further comprising a Fizeau interferometer each provided with an optical interference section.
【請求項3】 フィゾー干渉光の強度(I)−観測温度
(T)座標上に表される各波長光についての干渉縞波形
を記憶する機能、上記干渉縞波形の極大値および極小値
に対応する多数個(m個)の観測温度を読み取って干渉
縞移動数(N)−温度(T)座標上にプロットし、これ
らm個の観測点に対し、最小二乗法によりm個の高次の
観測方程式を求める機能および上記観測方程式に基づい
て、所定の温度域における干渉縞移動数を求めて屈折率
の温度係数を演算する機能を有する計測装置を設けたこ
とを特徴とする請求項1および請求項2に記載の屈折率
の温度係数測定装置。
3. A function of storing an interference fringe waveform for each wavelength light represented on the Fizeau interference light intensity (I) -observation temperature (T) coordinate, corresponding to the maximum value and the minimum value of the interference fringe waveform. The observation temperature of a large number (m) is read and plotted on the interference fringe movement number (N) -temperature (T) coordinate, and for these m observation points, the m higher order 2. A measuring device having a function of obtaining an observation equation and a function of obtaining a movement number of interference fringes in a predetermined temperature range and calculating a temperature coefficient of a refractive index based on the observation equation. The refractive index temperature coefficient measuring device according to claim 2.
JP4076339A 1992-02-27 1992-02-27 Temperature coefficient measuring device for refractive index Expired - Lifetime JP2823421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076339A JP2823421B2 (en) 1992-02-27 1992-02-27 Temperature coefficient measuring device for refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076339A JP2823421B2 (en) 1992-02-27 1992-02-27 Temperature coefficient measuring device for refractive index

Publications (2)

Publication Number Publication Date
JPH05240786A true JPH05240786A (en) 1993-09-17
JP2823421B2 JP2823421B2 (en) 1998-11-11

Family

ID=13602607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076339A Expired - Lifetime JP2823421B2 (en) 1992-02-27 1992-02-27 Temperature coefficient measuring device for refractive index

Country Status (1)

Country Link
JP (1) JP2823421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825010A (en) * 2022-11-30 2023-03-21 中国科学院上海光学精密机械研究所 Method for measuring temperature coefficient of refractive index of optical transparent block material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242795A (en) * 1975-10-01 1977-04-02 Hitachi Ltd Device for simultaneous analysis of multiple elements using magneto_op tic effect
JPS60235042A (en) * 1984-04-14 1985-11-21 カール・ツアイス‐スチフツング Device for measuring spectral transition of refractive indexof liquid or gas
JPS6114546A (en) * 1984-06-30 1986-01-22 Shin Meiwa Ind Co Ltd Discriminating device for kind of oil
JPS6365342A (en) * 1986-09-08 1988-03-23 Nippon Hoso Kyokai <Nhk> Method for measuring variation in refractive index
JPH03257353A (en) * 1990-03-08 1991-11-15 Yokogawa Electric Corp Apparatus for measuring refractive index of air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242795A (en) * 1975-10-01 1977-04-02 Hitachi Ltd Device for simultaneous analysis of multiple elements using magneto_op tic effect
JPS60235042A (en) * 1984-04-14 1985-11-21 カール・ツアイス‐スチフツング Device for measuring spectral transition of refractive indexof liquid or gas
JPS6114546A (en) * 1984-06-30 1986-01-22 Shin Meiwa Ind Co Ltd Discriminating device for kind of oil
JPS6365342A (en) * 1986-09-08 1988-03-23 Nippon Hoso Kyokai <Nhk> Method for measuring variation in refractive index
JPH03257353A (en) * 1990-03-08 1991-11-15 Yokogawa Electric Corp Apparatus for measuring refractive index of air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825010A (en) * 2022-11-30 2023-03-21 中国科学院上海光学精密机械研究所 Method for measuring temperature coefficient of refractive index of optical transparent block material
CN115825010B (en) * 2022-11-30 2024-04-12 中国科学院上海光学精密机械研究所 Method for measuring refractive index temperature coefficient of optically transparent bulk material

Also Published As

Publication number Publication date
JP2823421B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
US11415460B2 (en) Fabry-Perot Fourier transform spectrometer
US5777736A (en) High etendue imaging fourier transform spectrometer
US7495762B2 (en) High-density channels detecting device
RU2400715C2 (en) Spectrometre calibration method
US4081215A (en) Stable two-channel, single-filter spectrometer
CN104215176B (en) High accuracy optical interval measurement device and method
JPS60235042A (en) Device for measuring spectral transition of refractive indexof liquid or gas
US11248904B2 (en) Systems and methods for real time measurement of surface curvature and thermal expansion of small samples
US5285261A (en) Dual interferometer spectroscopic imaging system
CN105737733A (en) Air refractive index correction method in large-range absolute distance measurement
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
US5406377A (en) Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer
JPH03225259A (en) Method for measuring refractive index distribution and transmitted wave front and measuring instrument used for the method
US20030046024A1 (en) Apparatus and method for volumetric dilatometry
JPH05240786A (en) Temperature coefficient measuring device for refractive index
CN105115940B (en) Optical material refractive index curve measuring method and device
CN108398098B (en) Non-contact measuring device and method for optical surface spacing
JPH0627020A (en) Gas refractometer
AU2019204993A1 (en) Fabry-Perot Fourier transform spectrometer
US6816264B1 (en) Systems and methods for amplified optical metrology
JP3795976B2 (en) Non-contact temperature measuring device
EP3757533B1 (en) Back-to-back spectrometer arrangement
EP0228702B1 (en) Interferometer including stationary, electrically alterable, optical masking device
CN115629094A (en) Method for measuring thermal load deformation of synchrotron radiation spectroscopic crystal
JPH06341809A (en) Mechelson interferometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090904

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100904

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110904

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110904

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110904

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120904

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120904