Nothing Special   »   [go: up one dir, main page]

JPH05231939A - Step scan fourier transferm infrared spectral apparatus - Google Patents

Step scan fourier transferm infrared spectral apparatus

Info

Publication number
JPH05231939A
JPH05231939A JP3471492A JP3471492A JPH05231939A JP H05231939 A JPH05231939 A JP H05231939A JP 3471492 A JP3471492 A JP 3471492A JP 3471492 A JP3471492 A JP 3471492A JP H05231939 A JPH05231939 A JP H05231939A
Authority
JP
Japan
Prior art keywords
mirror
optical path
path difference
infrared
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3471492A
Other languages
Japanese (ja)
Inventor
Kenji Tochigi
憲治 栃木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3471492A priority Critical patent/JPH05231939A/en
Publication of JPH05231939A publication Critical patent/JPH05231939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To obtain highly-precise equal-interval interferogram data by a method wherein an optical path difference between a fixed mirror and a moving mirror at step stop positions is measured with precision of the wavelength of laser light or below and extrapolation is executed on the basis of the measure optical path difference when intervals of the stop positions are not equal. CONSTITUTION:After modulation by a modulator 2, an infrared light source 1 is passed via a concave mirror 3, a beam splitter 4, a moving mirror 5 and a fixed mirror 6, transmitted through a sample 7, converged by a concave mirror 8 and detected by an infrared detector 9. Only a modulated frequency component of an output of this detector is amplified by a lock-in amplifier 20 and inputted to a data processing device 22 via an A/D converter 21. Meanwhile, a laser light of a frequency stabilization laser 11 is transmitted through an infrared optical path by a mirror 12, made to fall on the splitter 4 and the mirrors 5 and 6, taken out from a mirror 13 via the splitter 4, divided in two by a dividing mirror 14 and then detected by detectors 15 and 16. Outputs of these detectors are amplified by a preamplifier 17, subjected to phase division by a dividing circuit 18 thereafter, interference fringes are counted by a counter 19 and thereby an optical path difference is obtained. An interferogram is obtained from data at each position of movement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフーリエ変換赤外分光装
置に係わり、特に微弱な赤外スペクトルを変調手段で高
感度測定したり、時間分解測定する際S/N比向上に有
効なステップスキャン方式において、固定鏡と移動鏡の
光路差を高精度に測定する事により高い波数精度の赤外
スペクトルを測定可能な分光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fourier transform infrared spectroscope, and particularly to a step scan effective for improving the S / N ratio when highly sensitive measurement of a weak infrared spectrum is performed by a modulation means or when time-resolved measurement is performed. In the method, the present invention relates to a spectroscopic device capable of measuring an infrared spectrum with high wave number accuracy by measuring the optical path difference between a fixed mirror and a moving mirror with high accuracy.

【0002】[0002]

【従来の技術】従来のステップスキャンフーリエ変換赤
外分光計では、アプライド・スペクトロスコピー42巻
4号(1988年)第546頁から第555頁(Applie
d Spectroscopy 42(4),(1988)PP546−5
55)において記載されている様に、赤外光と同軸に透
過させたレーザ光の干渉強度をモニタリングし、移動鏡
を一定距離ステップ状に移動させると共に、移動鏡に同
時に加えた、移動鏡の移動速度より充分高い周波数の微
小振動を用い、レーザ干渉強度がゼロとなる様にフィー
ドバックを掛ける事によって固定鏡と移動鏡の光路差が
レーザ波長の倍数となる位置に移動鏡を保持して高い波
数精度を得ていた。
2. Description of the Related Art In a conventional step-scan Fourier transform infrared spectrometer, Applied Spectroscopy 42, No. 4 (1988), pages 546 to 555 (Applie
d Spectroscopy 42 (4), (1988) PP546-5
55), the interference intensity of the laser light transmitted coaxially with the infrared light is monitored, and the movable mirror is moved in a stepwise manner at a constant distance. By using microvibration with a frequency sufficiently higher than the moving speed and applying feedback so that the laser interference intensity becomes zero, the optical path difference between the fixed mirror and the moving mirror is held high at a position where it is a multiple of the laser wavelength. I was getting wave number accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこの方式
では複雑なフィードバック回路,機構が必要であり、さ
らに微小振動の周波数以上の変調周波数での測定や、微
小振動周波数の逆数で表される時間間隔より短い時間分
解能での測定は不可能な欠点があった。
However, this method requires a complicated feedback circuit and mechanism, and further requires measurement at a modulation frequency equal to or higher than the frequency of microvibration or a time interval represented by the reciprocal of the microvibration frequency. There is a drawback that measurement with short time resolution is impossible.

【0004】[0004]

【課題を解決するための手段】この欠点は高精度の機械
的な移動鏡送りを用いれば解決出来る。しかし可視レー
ザの波長である0.5 マイクロメータ以下の高精度で機
械的移動鏡送りを実現するのは非常に難しく、加工精度
や送り機構のバックラッシュ等に起因するステップ状送
り位置精度のバラツキが生ずる。フーリエ変換は等間隔
位置でのデータサンプリングを前提にしている為、この
バラツキはスペクトルの横軸となる波数精度を低下さ
せ、またスペクトル強度にも悪影響する。これは各々の
ステップ状停止位置における固定鏡及び移動鏡の光路差
をレーザ光の波長以下の精度で測定し、ステップ状停止
位置間隔が等間隔でない場合には、実測光路差から補外
する事により高精度な等間隔インターフェログラムデー
タを得ることが可能となる。
This drawback can be solved by using a highly precise mechanical moving mirror feed. However, it is very difficult to realize mechanical moving mirror feed with a high precision of 0.5 micrometer or less, which is the wavelength of visible laser, and variations in step feed position precision due to processing precision and feed mechanism backlash. Occurs. Since the Fourier transform is premised on data sampling at equidistant positions, this variation deteriorates the wave number accuracy on the horizontal axis of the spectrum and also adversely affects the spectrum intensity. This is to measure the optical path difference between the fixed mirror and the movable mirror at each step-like stop position with an accuracy of not more than the wavelength of the laser light.If the step-like stop position intervals are not equal, extrapolate from the measured optical path difference. This makes it possible to obtain highly accurate equidistant interferogram data.

【0005】[0005]

【作用】赤外光源から出射された赤外光はビームスプリ
ッタで分割され固定鏡及び移動鏡に入射する。移動鏡は
所定の距離だけステップ状に移動させるための駆動装置
により一定距離移動した後所定時間の間停止する。ビー
ムスプリッタで再び重ね合わされた赤外光は、この停止
位置におけるビームスプリッタと固定鏡及び移動鏡の間
の光路差に応じて干渉し強度が変化する。この赤外光は
試料を透過あるいは反射して試料の固有分子振動に基づ
く波数成分光の吸収を受けた後赤外光検出器に入射す
る。この際赤外光と同軸に周波数安定化レーザを通し、
ビームスプリッタで分割させ、固定鏡,移動鏡に各々入
射,反射させ、再び重ね合わせた後レーザ光を取り出
し、光を二分割して2つの検出器で検出する。2つの検
出器出力を増幅後、分割回路により干渉に基づく正弦波
出力を位相分割しカウンタで干渉縞の数を計数して光路
差を求める。これにより干渉強度が最大または最小にな
らない光路差においても精度良く光路差が決定でき、ス
テップ停止位置における一対の光路差と赤外光干渉強度
を得ることができる。これを必要回数繰り返す事により
所定のインターフェログラムを得ることができる。フー
リエ変換には等間隔データが必要であるので実測の光路
差データが等間隔でない場合には、測定データから補間
することにより等間隔データを得ることができる。
The infrared light emitted from the infrared light source is split by the beam splitter and enters the fixed mirror and the movable mirror. The movable mirror is moved for a predetermined distance by a driving device for moving the movable mirror in a stepwise manner and then stopped for a predetermined time. The infrared lights re-superimposed by the beam splitter interfere with each other according to the optical path difference between the beam splitter and the fixed mirror and the movable mirror at this stop position, and the intensity changes. This infrared light passes through the sample or is reflected to absorb the wave number component light based on the intrinsic molecular vibration of the sample, and then enters the infrared light detector. At this time, a frequency-stabilized laser is passed coaxially with the infrared light,
The beam is split by a beam splitter, made incident on and reflected by a fixed mirror and a movable mirror, respectively, and after overlapping again, laser light is extracted, and the light is split into two and detected by two detectors. After amplifying the outputs of the two detectors, a sine wave output based on interference is phase-divided by a division circuit, and the number of interference fringes is counted by a counter to obtain an optical path difference. As a result, the optical path difference can be accurately determined even in the optical path difference in which the interference intensity does not become maximum or minimum, and the pair of optical path difference and the infrared light interference intensity at the step stop position can be obtained. A predetermined interferogram can be obtained by repeating this for the required number of times. Since the Fourier transform requires equidistant data, if the actually measured optical path difference data are not equidistant, the equidistant data can be obtained by interpolating from the measured data.

【0006】[0006]

【実施例】以下本発明の実施例を図1により説明する。
図1は赤外光源1からの赤外光を変調器2で変調後凹面
鏡3で平行光とし、ビームスプリッタ4,移動鏡5及び
固定鏡6からなる干渉計で干渉させ、試料7を透過させ
た後凹面鏡8で集光し赤外光検出器9で検出するフーリ
エ変換赤外分光計である。移動鏡5は駆動装置10によ
り所定の距離だけステップ状に移動される。周波数安定
化レーザ11のレーザ光を鏡12により赤外光光路中に
透過させ、赤外光と同様にビームスプリッタ4,移動鏡
5,固定鏡6に入射させ、ビームスプリッタ4からの出
射レーザ光を鏡13で取り出し分割鏡14で2分割後検
出器15,16で検出する。検出器15,16からの出
力はプリアンプ17で増幅後分割回路18で位相分割さ
れカウンタ19で干渉縞の本数を計数することにより移
動鏡と固定鏡の光路差を出力する。赤外検出器9からの
出力はロックイン増幅器20により変調周波数成分のみ
が増幅され、A/D変換器21でディジタルデータに変
換され、データ処理装置22に入力される。この時光路
差のデータも同時にデータ処理装置22に入力される。
移動鏡のステップ移動と光路差データの計測,取り込み
及び赤外検出器出力の取り込みを所定回数だけ繰り返す
事により一対のインターフェログラムを得る事ができ
る。インターフェログラムの横軸となる光路差の値が等
間隔でない場合には測定データから補間により所定間隔
のデータをもとめることによりフーリエ変換可能なイン
ターフェログラムを得る。このインターフェログラムを
フーリエ変換し赤外スペクトルが得られる。
Embodiment An embodiment of the present invention will be described below with reference to FIG.
In FIG. 1, infrared light from an infrared light source 1 is modulated by a modulator 2 and then converted into parallel light by a concave mirror 3, and is made to interfere with an interferometer composed of a beam splitter 4, a moving mirror 5 and a fixed mirror 6, and a sample 7 is transmitted. After that, the Fourier transform infrared spectrometer collects the light with the concave mirror 8 and detects it with the infrared light detector 9. The movable mirror 5 is moved in steps by a predetermined distance by the driving device 10. The laser beam of the frequency stabilizing laser 11 is transmitted through the mirror 12 into the infrared light optical path, is incident on the beam splitter 4, the moving mirror 5, and the fixed mirror 6 in the same manner as the infrared light, and is emitted from the beam splitter 4. Is taken out by the mirror 13 and is detected by the detectors 15 and 16 after being divided by the split mirror 14. The outputs from the detectors 15 and 16 are phase-divided by the preamplifier 17 after amplification by the division circuit 18, and the counter 19 counts the number of interference fringes to output the optical path difference between the movable mirror and the fixed mirror. Only the modulation frequency component of the output from the infrared detector 9 is amplified by the lock-in amplifier 20, converted into digital data by the A / D converter 21, and input to the data processing device 22. At this time, the data of the optical path difference is also input to the data processing device 22 at the same time.
A pair of interferograms can be obtained by repeating the step movement of the movable mirror, measurement and acquisition of optical path difference data, and acquisition of infrared detector output for a predetermined number of times. When the values of the optical path difference on the horizontal axis of the interferogram are not evenly spaced, the Fourier transformable interferogram is obtained by obtaining data at predetermined intervals by interpolation from the measurement data. An infrared spectrum is obtained by Fourier transforming this interferogram.

【0007】[0007]

【発明の効果】本発明によれば位置再現性が悪い移動鏡
駆動機構を用いても精度の高い測定が可能となり、また
スペクトルのS/Nが向上し、高感度の定性,定量が可
能となる。
EFFECTS OF THE INVENTION According to the present invention, even if a moving mirror driving mechanism having poor position reproducibility is used, highly accurate measurement is possible, the S / N ratio of the spectrum is improved, and highly sensitive qualitative and quantitative determination is possible. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…赤外光源、2…変調器、3…凹面鏡、4…ビームス
プリタ、5…移動鏡、6…固定鏡、7…試料、8…凹面
鏡、9…赤外検出器、10…移動鏡駆動装置、11…周
波数安定化レーザ、12,13…鏡、14…分割鏡、1
5,16…レーザ光検出器、17…プリアンプ、18…
分割回路、19…カウンタ、20…ロックイン増幅器、
21…A/D変換器、22…データ処理装置。
DESCRIPTION OF SYMBOLS 1 ... Infrared light source, 2 ... Modulator, 3 ... Concave mirror, 4 ... Beam splitter, 5 ... Moving mirror, 6 ... Fixed mirror, 7 ... Sample, 8 ... Concave mirror, 9 ... Infrared detector, 10 ... Moving mirror drive Device, 11 ... Frequency stabilizing laser, 12, 13 ... Mirror, 14 ... Split mirror, 1
5, 16 ... Laser light detector, 17 ... Preamplifier, 18 ...
Dividing circuit, 19 ... Counter, 20 ... Lock-in amplifier,
21 ... A / D converter, 22 ... Data processing device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】赤外光源とビームスプリッタ,固定鏡及び
移動鏡から成り、移動鏡を所定の距離だけステップ状に
移動,停止させながら、各々の停止位置において赤外光
源から放射されビームスプリッタ,固定鏡及び移動鏡を
透過,干渉する赤外光強度を検出器により測定しインタ
ーフェログラムを得るステップスキャン型フーリエ変換
赤外分光装置において、移動鏡の各々の停止位置検出器
を設け、前記検出器の検出値により固定鏡と移動鏡の光
路差を求め、各々の停止位置の光路差及び赤外光強度の
値から任意の等間隔光路差におけるインターフェログラ
ムを補間することを特徴とするステップスキャンフーリ
エ変換赤外分光装置。
1. An infrared light source, a beam splitter, a fixed mirror, and a movable mirror. The movable mirror is moved in a stepwise manner by a predetermined distance and is stopped, and the beam splitter is radiated from the infrared light source at each stop position. In a step-scan type Fourier transform infrared spectroscopic device that obtains an interferogram by measuring the intensity of infrared light that passes through and interferes with a fixed mirror and a movable mirror, a stop position detector for each of the movable mirrors is provided and the detection is performed. The optical path difference between the fixed mirror and the movable mirror is obtained from the detection value of the optical device, and the interferogram at any equal-interval optical path difference is interpolated from the optical path difference at each stop position and the infrared light intensity value. Scan Fourier Transform Infrared Spectrometer.
【請求項2】請求項1において、周波数安定化レーザを
光源に用いたレーザ干渉測長器を固定鏡と移動鏡の光路
差計測手段として用いる事を特徴とするステップスキャ
ンフーリエ変換赤外分光装置。
2. A step-scan Fourier transform infrared spectroscopic apparatus according to claim 1, wherein a laser interferometer using a frequency-stabilized laser as a light source is used as an optical path difference measuring means between a fixed mirror and a movable mirror. .
JP3471492A 1992-02-21 1992-02-21 Step scan fourier transferm infrared spectral apparatus Pending JPH05231939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3471492A JPH05231939A (en) 1992-02-21 1992-02-21 Step scan fourier transferm infrared spectral apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3471492A JPH05231939A (en) 1992-02-21 1992-02-21 Step scan fourier transferm infrared spectral apparatus

Publications (1)

Publication Number Publication Date
JPH05231939A true JPH05231939A (en) 1993-09-07

Family

ID=12422009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3471492A Pending JPH05231939A (en) 1992-02-21 1992-02-21 Step scan fourier transferm infrared spectral apparatus

Country Status (1)

Country Link
JP (1) JPH05231939A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506982A (en) * 1996-10-30 2000-06-06 アプライド スペクトラル イメージング リミテッド Moving object, interferometer based spectral imaging method
DE10159721A1 (en) * 2001-12-05 2003-06-26 Bruker Optik Gmbh Digital FTIR spectrometer
JP2007101370A (en) * 2005-10-05 2007-04-19 Tochigi Nikon Corp Terahertz spectral device
WO2011074452A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Interferometer and fourier spectrometer using same
JP2012184962A (en) * 2011-03-03 2012-09-27 Kagawa Univ Spectral characteristic measuring apparatus and spectral characteristic measuring method
CN103201603A (en) * 2010-10-28 2013-07-10 柯尼卡美能达株式会社 Interferometer and fourier-transform spectroscopic analyzer
JP2014523517A (en) * 2011-05-02 2014-09-11 フォス アナリティカル アグシャセルスガーッブ Spectrometer
CN109552043A (en) * 2018-12-26 2019-04-02 华北理工大学 Using the automobile anti-drunken driving device and drunk-driving prevention method of the detection of near infrared light alcohol

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506982A (en) * 1996-10-30 2000-06-06 アプライド スペクトラル イメージング リミテッド Moving object, interferometer based spectral imaging method
DE10159721A1 (en) * 2001-12-05 2003-06-26 Bruker Optik Gmbh Digital FTIR spectrometer
DE10159721B4 (en) * 2001-12-05 2004-07-22 Bruker Optik Gmbh Digital FTIR spectrometer
US7034944B2 (en) 2001-12-05 2006-04-25 Bruker Optik Gmbh Digital FTIR spectrometer
JP2007101370A (en) * 2005-10-05 2007-04-19 Tochigi Nikon Corp Terahertz spectral device
WO2011074452A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Interferometer and fourier spectrometer using same
US9025156B2 (en) 2009-12-14 2015-05-05 Konica Minolta Holdings, Inc. Interferometer and fourier spectrometer using same
EP2515092A4 (en) * 2009-12-14 2015-09-09 Konica Minolta Holdings Inc Interferometer and fourier spectrometer using same
CN103201603A (en) * 2010-10-28 2013-07-10 柯尼卡美能达株式会社 Interferometer and fourier-transform spectroscopic analyzer
JP2012184962A (en) * 2011-03-03 2012-09-27 Kagawa Univ Spectral characteristic measuring apparatus and spectral characteristic measuring method
JP2014523517A (en) * 2011-05-02 2014-09-11 フォス アナリティカル アグシャセルスガーッブ Spectrometer
CN109552043A (en) * 2018-12-26 2019-04-02 华北理工大学 Using the automobile anti-drunken driving device and drunk-driving prevention method of the detection of near infrared light alcohol

Similar Documents

Publication Publication Date Title
US4711573A (en) Dynamic mirror alignment control
US3753619A (en) Interference spectroscopy
US5285261A (en) Dual interferometer spectroscopic imaging system
US3286582A (en) Interference technique and apparatus for spectrum analysis
JPH05231939A (en) Step scan fourier transferm infrared spectral apparatus
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
US5406377A (en) Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer
US5757488A (en) Optical frequency stability controller
JPH03202728A (en) Interference spectrophotometer
US4449823A (en) Device for measurement of the spectral width of nearly monochromatic sources of radiant energy
US6816264B1 (en) Systems and methods for amplified optical metrology
JP2001021415A (en) Optical wavelength detecting method and optical wavelength detecting device
JPS61501340A (en) Mirror scan speed control device
WO1984003560A1 (en) Dynamic mirror alignment control
JPS61501876A (en) Sample signal generator and method for interferogram
CN114993941B (en) Calibration-free vibration-resistant absorption spectrum measurement method and system
JPS603609B2 (en) Interferometry spectrometer
JPH02276928A (en) Polarization modulating infrared spectroscopic device
JP2642767B2 (en) A method for measuring the spectral responsivity of infrared detectors using white interference light
JP3914617B2 (en) Coherence analysis method of semiconductor laser
JPH0634439A (en) High-resolution spectroscope
JPH0346523A (en) Signal processor for fourier-transformation type spectroscope
JPH0742084Y2 (en) Surface shape measuring instrument
JPH063189A (en) Method for correcting fluctuation in sampling optical path difference of fourier-transform spectrometer
USRE27947E (en) Interference technique and apparatus for spectrum analysis