Nothing Special   »   [go: up one dir, main page]

JPH05235385A - Silicon solar cell - Google Patents

Silicon solar cell

Info

Publication number
JPH05235385A
JPH05235385A JP4035052A JP3505292A JPH05235385A JP H05235385 A JPH05235385 A JP H05235385A JP 4035052 A JP4035052 A JP 4035052A JP 3505292 A JP3505292 A JP 3505292A JP H05235385 A JPH05235385 A JP H05235385A
Authority
JP
Japan
Prior art keywords
oxide film
cell
thickness
diffusion
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4035052A
Other languages
Japanese (ja)
Other versions
JP2994842B2 (en
Inventor
Tadashi Hisamatsu
正 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4035052A priority Critical patent/JP2994842B2/en
Publication of JPH05235385A publication Critical patent/JPH05235385A/en
Application granted granted Critical
Publication of JP2994842B2 publication Critical patent/JP2994842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance efficiency while utilizing the merit of low cost by providing the front of a semiconductor substrate with a photo-receiving plane having a structure of reducing reflection and forming an oxide film in the rear side and by setting the thickness of a cell in a specified range. CONSTITUTION:The thickness of a solar cell is 60-15mum. An N<+> diffusion layer 3 is formed in the front of a P-type silicon substrate 4, and the front shows a texture structure 7. The front is provided with N-type electrodes 2 in suitable parts, and the rear has a laminate of an oxide film 8 and a P-side electrode 6 and is spread with a P<+> diffusion layer 5 by diffusion from a window of the oxide film 8. The front structure is similar, but the P<+> diffusion layer 5 is spread over the whole rear: this is overlaid with the oxide film 8 and the P-side electrode 6, and they can be connected by perforating the oxide film 8 in suitable points. The rear can be a structure that a P<+> layer 5 serving as a BSFR layer is spread not by overlaying, but by P<+> diffusion after the oxide film 8 is locally windowed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン太陽電池セル
の構造の改良に関するもので、人工衛星の電源である宇
宙用太陽電池セルに使用するときは特に有用なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the structure of a silicon solar battery cell, and is particularly useful when used in a space solar battery cell which is a power source for an artificial satellite.

【0002】[0002]

【従来の技術】シリコン太陽電池は、宇宙用太陽電池セ
ルとして最も搭載実績に富み、また他の材料のセルと比
べて経済的にも有利であるため、世界各国の衛星プログ
ラムで採用されている。
2. Description of the Related Art Silicon solar cells are the most widely installed as solar cells for space, and because they are economically advantageous compared to cells made of other materials, they are used in satellite programs around the world. ..

【0003】図6は、従来製造されている宇宙用太陽電
池の代表例であるBSFR型太陽電池セルの一例の斜視
図である。P型シリコン基板4の表面に、N+ 拡散層3
および反射防止膜1を形成し、さらにその表面にたとえ
ば、櫛型のN側電極2を形成する。裏面には、BSFR
層となるP+ 拡散層5およびP側電極6が形成されてい
る。
FIG. 6 is a perspective view of an example of a BSFR solar cell which is a typical example of a conventionally manufactured space solar cell. The N + diffusion layer 3 is formed on the surface of the P-type silicon substrate 4.
Then, the antireflection film 1 is formed, and the comb-shaped N-side electrode 2 is further formed on the surface thereof. BSFR on the back
A P + diffusion layer 5 and a P-side electrode 6 to be a layer are formed.

【0004】表1はその出力特性を示す。Table 1 shows the output characteristics.

【0005】[0005]

【表1】 [Table 1]

【0006】セル厚さが厚いほど、短絡電流ISCおよび
最大出力Pmax は大きくなるが、解放電圧VOCはセル厚
さによらず一定であり、変換効率ηは14〜15%程度
が得られていた。
The thicker the cell thickness, the larger the short-circuit current I SC and the maximum output P max, but the release voltage V OC is constant regardless of the cell thickness, and the conversion efficiency η is about 14 to 15%. It was being done.

【0007】近年人工衛星の大型化,大電力化の流れか
ら、シリコン太陽電池の高出力化が要請されつつあり、
変換効率を高める必要がある。
In recent years, due to the trend toward larger satellites and higher power consumption, higher output of silicon solar cells is being demanded.
It is necessary to improve conversion efficiency.

【0008】シリコン太陽電池セル高効率化の一環とし
て、たとえば、図1に示す構造のセルが本発明者らのグ
ループによって試作された。図6と同一の部分には同一
の符号を付してある。表面はテキスチャー構造7とされ
ている。
As a part of increasing the efficiency of silicon solar cells, for example, a cell having the structure shown in FIG. 1 was prototyped by the group of the present inventors. The same parts as those in FIG. 6 are designated by the same reference numerals. The surface has a texture structure 7.

【0009】このテキスチャー構造7は、水酸化ナトリ
ウム等のアルカリをエッチング液として用いたSiの異
方性エッチング面であり、(111)面が現われた微細
なピラミッド形状が密集して形成されている。
The texture structure 7 is an anisotropic etching surface of Si using an alkali such as sodium hydroxide as an etching solution, and is formed by densely forming fine pyramid shapes showing (111) planes. ..

【0010】この構造は、受光面から入射する光の反射
損失を低減し、セル内に吸収する光の量を増加させる効
果がある。
This structure has the effect of reducing the reflection loss of the light incident from the light receiving surface and increasing the amount of light absorbed in the cell.

【0011】裏面は全面にSiO2 の酸化膜8が形成さ
れ、局所的に窓あけされた部分から拡散を行ないP+
散層5を形成している。この酸化膜8を形成すること
で、裏面での反射によって入射光の吸収量を増加させ、
同時に発生した少数キャリアの裏面再結合損失を低減す
るトラッピング効果がある。
An SiO 2 oxide film 8 is formed on the entire back surface, and a P + diffusion layer 5 is formed by diffusing from a locally opened portion. By forming this oxide film 8, the amount of absorption of incident light is increased by reflection on the back surface,
There is a trapping effect that reduces the back surface recombination loss of minority carriers that occur at the same time.

【0012】また、セル表面にも薄い酸化膜を形成し、
セル表面における少数キャリアの表面再結合損失の低減
を図ることも検討された。
Further, a thin oxide film is formed on the cell surface,
It was also investigated to reduce the surface recombination loss of minority carriers on the cell surface.

【0013】ピラミッド状のテキスチャー構造について
は、例えば、Conference Record of19th IEEE Photovol
taic Specialists Conf.1987 p912 〜p917 に、マーチ
ン・グリーンおよびパトリック・キャンベルにより開示
されている。また、テキスチャー構造を有するセルの表
面および裏面に酸化膜を形成した構造は、例えば、19
90年京都におけるインターナショナルPVSEC−5
のテクニカルダイジェストに、マーチン・グリーンによ
り開示されている。
Regarding a pyramid-like texture structure, for example, Conference Record of 19th IEEE Photovol
Taic Specialists Conf. 1987 p912-p917, disclosed by Martin Green and Patrick Campbell. Further, a structure in which an oxide film is formed on the front surface and the back surface of a cell having a texture structure is, for example, 19
90th International PVSEC-5 in Kyoto
Disclosed by Martin Green in its technical digest.

【0014】図7は、2次元シミュレーションで、セル
の厚さWdとISC,VOC,ηの関係が調べられた結果の
一例である(昭和62年度NEDO委託業務成果報告書
/高効率結晶系太陽電池の実用化研究・高効率化技術調
査p66)。
FIG. 7 shows an example of the results of the investigation of the relationship between the cell thickness Wd and I SC , V OC , and η in a two-dimensional simulation (NEDO commissioned work report in 1987 / high-efficiency crystal). Research on practical application of high efficiency solar cells and high efficiency technology research p66).

【0015】ここでは、セルの表面および裏面における
光の多重反射と表面および裏面における再結合速度0と
いう理想的な条件を仮定して計算されている。
Here, the calculation is performed under the ideal conditions of multiple reflection of light on the front and back surfaces of the cell and a recombination velocity of 0 on the front and back surfaces.

【0016】これよりVOCは、セル厚さWdが薄いほど
高くなり、ISCはほぼ一定であるから、変換効率ηもセ
ル厚さWdが薄いほど向上することがわかる。
From this, it can be seen that V OC becomes higher as the cell thickness Wd is thinner, and I SC is almost constant, so that the conversion efficiency η is also improved as the cell thickness Wd is thinner.

【0017】このVOCの向上は、Wdが小さくなること
によって、バルク領域におけるSRH再結合損失が低減
し、飽和電流密度I0 が低減するためである。
The improvement of V OC is because the reduction of Wd reduces the SRH recombination loss in the bulk region and the saturation current density I 0 .

【0018】[0018]

【発明が解決しようとする課題】発明者らのグループに
よる実験によると、実際には、セル厚さWdおよびISC
に関する前述のシミュレーションによる理論計算の結果
と異なることがわかった。
According to an experiment by the inventors' group, in practice, the cell thickness Wd and I SC
It was found that the result was different from the theoretical calculation result by the above simulation.

【0019】図8(a)および(b)は図1で示した構
造によるセルの厚さWdを変えた場合の出力特性の実験
結果である。
FIGS. 8A and 8B are experimental results of output characteristics when the cell thickness Wd according to the structure shown in FIG. 1 is changed.

【0020】同図(a)に示されるように、VOCは、W
dが小さくなるほど向上するが、I SCは低下し、同図
(b)に示すように出力Pmax はWdが100μm付近
で最も大きいことがわかった。
As shown in FIG.OCIs W
It is improved as d becomes smaller, but I SCDeclines, the figure
Output P as shown in (b)maxWd is around 100 μm
It turned out to be the largest.

【0021】また、さらに基板の種類,製造条件等につ
いて検討した結果、Pmax の最大値を与えるセル厚さW
dは、公知のシミュレーション結果と異なり、60〜1
50μmであることが実験的に明らかになった。
Further, as a result of further studying the type of substrate, manufacturing conditions, etc., the cell thickness W giving the maximum value of P max is obtained.
d is 60 to 1 unlike the known simulation result.
It was empirically revealed to be 50 μm.

【0022】この相違の原因は、セルの表面および裏面
における光の多重反射による完全な光吸収や、少数キャ
リア再結合なしという条件が、実際には完全には満たさ
れないためであると考えられる。
It is considered that the reason for this difference is that the conditions of complete light absorption due to multiple reflection of light on the front surface and the back surface of the cell and no minority carrier recombination are actually not completely satisfied.

【0023】発明者らは、上記光吸収を完全にするため
の光トラッピング構造や、少数キャリア再結合低減につ
いてさらに検討を重ねてきたが、完全な光トラッピング
構造はセルの温度上昇を招き変換効率を下げること、表
面再結合低減のための酸化膜形成が基板のライフタイム
低下を招き変換効率を下げる可能性があること等の問題
があることがわかった。
The inventors have further studied the optical trapping structure for perfecting the above light absorption and the reduction of minority carrier recombination, but the complete optical trapping structure causes a rise in the temperature of the cell and the conversion efficiency. It has been found that there is a problem in that the conversion efficiency may be lowered by lowering the film thickness and forming an oxide film for reducing the surface recombination, which may reduce the lifetime of the substrate.

【0024】よって、上記理論計算で前提となっている
セルの表面および裏面における光の多重反射による完全
な光吸収や、少数キャリア再結合なしの条件は、シリコ
ン太陽電池セルの経済的な有利性を生かすことも考慮す
れば、容易に達成できない条件であり、実際の太陽電池
セル製造においては、セルの厚さを適当な範囲に選定す
ることが最も有利に高効率な太陽電池セルを得ることが
できる条件であるとの結論に至った。
Therefore, the conditions for complete light absorption due to multiple reflection of light on the front and back surfaces of the cell and the condition without recombination of minority carriers, which are the premise of the above theoretical calculation, are economical advantages of the silicon solar cell. It is a condition that can not be easily achieved in consideration of making use of the above, and in actual solar cell manufacturing, it is most advantageous to select the cell thickness in an appropriate range to obtain a highly efficient solar cell. We came to the conclusion that the conditions are such that

【0025】[0025]

【課題を解決するための手段】本発明の太陽電池におい
ては、半導体基板の表面に反射を低減させる構造を有す
る受光面を設け、裏面に酸化膜を形成し、セルの厚さを
60〜150μmとした。
In the solar cell of the present invention, a light receiving surface having a structure for reducing reflection is provided on the surface of a semiconductor substrate, an oxide film is formed on the back surface, and the cell thickness is 60 to 150 μm. And

【0026】[0026]

【作用】太陽電池素子のセルの厚さを60〜150μm
とすることにより、経済的に効率の高い太陽電池を得る
ことができる。
[Function] The thickness of the solar cell element is 60 to 150 μm.
By so doing, it is possible to obtain a solar cell that is economically highly efficient.

【0027】[0027]

【実施例】図1〜5は、本発明による太陽電池素子の実
施例の斜視図であり、セル厚さは各々60〜150μm
である。いずれも表面の反射防止膜は省略してある。
1 to 5 are perspective views of an embodiment of a solar cell element according to the present invention, in which the cell thickness is 60 to 150 μm, respectively.
Is. In both cases, the antireflection film on the surface is omitted.

【0028】図1において、P型シリコン基板4の表面
にはN+ 拡散層3が形成され表面はテキスチャー構造7
となっている。表面の適宜の部分にN側電極2を設けて
ある。裏面には厚さ約0.2μmの酸化膜8およびP側
電極6を積層し、酸化膜8の窓あけした部分から拡散に
よりP+ 拡散層5が形成されている。
In FIG. 1, an N + diffusion layer 3 is formed on the surface of a P-type silicon substrate 4, and a texture structure 7 is formed on the surface.
Has become. The N-side electrode 2 is provided on an appropriate portion of the surface. An oxide film 8 and a P-side electrode 6 having a thickness of about 0.2 μm are laminated on the back surface, and a P + diffusion layer 5 is formed by diffusion from the windowed portion of the oxide film 8.

【0029】図2は、表面の構造は図1と同様である
が、図2の構造においてはP+ 拡散層5を裏面全面に形
成し、これに厚さ約0.2μmの厚さの酸化膜8および
P側電極6を積層し、P+ 拡散層5とP側電極6とを適
宜の箇所で酸化膜8に穴をあけ接続したものである。
In FIG. 2, the surface structure is the same as that of FIG. 1, but in the structure of FIG. 2, a P + diffusion layer 5 is formed on the entire back surface and is oxidized to a thickness of about 0.2 μm. The film 8 and the P-side electrode 6 are laminated, and the P + diffusion layer 5 and the P-side electrode 6 are connected by making holes in the oxide film 8 at appropriate places.

【0030】図3は、図2の構造の表面に格子状のパタ
ーン9を設け、アルカリエッチングによって逆型のピラ
ミッド構造を形成し、裏面は図2と同様の構造とした例
である。
FIG. 3 is an example in which a lattice-shaped pattern 9 is provided on the surface of the structure of FIG. 2, an inverted pyramid structure is formed by alkali etching, and the back surface has the same structure as that of FIG.

【0031】図4は、表面に溝状のパターン10を設
け、アルカリエッチングによって複数のグルーブを形成
し、裏面は図2と同様の構造としたものである。
In FIG. 4, a groove-shaped pattern 10 is provided on the front surface, a plurality of grooves are formed by alkali etching, and the back surface has the same structure as in FIG.

【0032】図5は、図1の表面のテキスチャーを図3
の逆ピラミッド状にしたものである。裏面は図1と同様
の構造としたものである。
FIG. 5 shows the surface texture of FIG.
It is an inverted pyramid shape. The back surface has the same structure as in FIG.

【0033】裏面については図1および図5に示すよう
に、BSFR層となるP+ 層5を全面に形成せず、酸化
膜8に局所的に窓あけしてから、P+ 拡散を施すことに
よって形成される部分的なBSF構造であってもよい。
As for the back surface, as shown in FIGS. 1 and 5, the P + layer 5 to be the BSFR layer is not formed on the entire surface, but the oxide film 8 is locally opened and then P + diffusion is performed. It may be a partial BSF structure formed by

【0034】また、表面に厚さ50〜200Å程度の薄
い酸化膜(SiO2 )が形成されていてもよい。
Further, a thin oxide film (SiO 2 ) having a thickness of about 50 to 200 Å may be formed on the surface.

【0035】以上、本発明の説明は主に宇宙用太陽電池
について述べてきたが、本発明が地上用太陽電池につい
ても適用できることはいうまでもない。
Although the description of the present invention has been mainly made up of the solar cells for space, it goes without saying that the present invention can be applied to solar cells for terrestrial use.

【0036】[0036]

【発明の効果】本発明によれば、現状の太陽電池の製造
プロセスを大幅に変更する必要がないので、シリコン太
陽電池セルの低価格であるというメリットを生かしつ
つ、太陽電池セルの高効率化を図ることができる。
EFFECTS OF THE INVENTION According to the present invention, since it is not necessary to drastically change the current manufacturing process of solar cells, the efficiency of solar cells can be improved while taking advantage of the low price of silicon solar cells. Can be planned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の斜視図である。FIG. 1 is a perspective view of an embodiment of the present invention.

【図2】本発明の一実施例の斜視図である。FIG. 2 is a perspective view of an embodiment of the present invention.

【図3】本発明の一実施例の斜視図である。FIG. 3 is a perspective view of an embodiment of the present invention.

【図4】本発明の一実施例の斜視図である。FIG. 4 is a perspective view of an embodiment of the present invention.

【図5】本発明の一実施例の斜視図である。FIG. 5 is a perspective view of an embodiment of the present invention.

【図6】従来の一例の斜視図である。FIG. 6 is a perspective view of a conventional example.

【図7】セルの厚さと出力特性のシミュレーションによ
る計算結果のグラフである。
FIG. 7 is a graph of calculation results by simulation of cell thickness and output characteristics.

【図8】(a)はWdとVOCおよびISCとの関係を示す
グラフであり、(b)はWdとPmax との関係を示すグ
ラフである。
FIG. 8A is a graph showing a relationship between Wd and V OC and I SC, and FIG. 8B is a graph showing a relationship between Wd and P max .

【符号の説明】[Explanation of symbols]

2 N側電極 3 N+ 拡散層 4 P型シリコン基板 5 P+ 拡散層 6 P側電極 7 テキスチャー構造 8 酸化膜2 N-side electrode 3 N + diffusion layer 4 P-type silicon substrate 5 P + diffusion layer 6 P-side electrode 7 texture structure 8 oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面に反射を低減させる構
造を有する受光面を設け、半導体基板の裏面に酸化膜を
形成し、セルの厚さを60μm以上でかつ150μm以
下としたことを特徴とするシリコン太陽電池素子。
1. A light receiving surface having a structure for reducing reflection is provided on a front surface of a semiconductor substrate, an oxide film is formed on a back surface of the semiconductor substrate, and a cell thickness is set to 60 μm or more and 150 μm or less. Silicon solar cell element that does.
JP4035052A 1992-02-21 1992-02-21 Silicon solar cell element Expired - Lifetime JP2994842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035052A JP2994842B2 (en) 1992-02-21 1992-02-21 Silicon solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035052A JP2994842B2 (en) 1992-02-21 1992-02-21 Silicon solar cell element

Publications (2)

Publication Number Publication Date
JPH05235385A true JPH05235385A (en) 1993-09-10
JP2994842B2 JP2994842B2 (en) 1999-12-27

Family

ID=12431270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035052A Expired - Lifetime JP2994842B2 (en) 1992-02-21 1992-02-21 Silicon solar cell element

Country Status (1)

Country Link
JP (1) JP2994842B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725006A (en) * 1995-01-31 1998-03-10 Mitsubishi Denki Kabushiki Kaisha Solar battery cell, a solar battery module, and a solar battery module group
JP2002246625A (en) * 2001-02-21 2002-08-30 Sharp Corp Method of manufacturing solar cell
JP2005327871A (en) * 2004-05-13 2005-11-24 Shin Etsu Handotai Co Ltd Solar battery and its manufacturing method
WO2014075060A1 (en) * 2012-11-12 2014-05-15 The Board Of Trustees Of The Leland Stanford Junior Univerisity Nanostructured window layer in solar cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161849U (en) * 1984-09-26 1986-04-25
JPH02244681A (en) * 1989-03-15 1990-09-28 Mitsubishi Electric Corp Solar cell
JPH0334582A (en) * 1989-06-30 1991-02-14 Sharp Corp Solar cell fitted with cover glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161849U (en) * 1984-09-26 1986-04-25
JPH02244681A (en) * 1989-03-15 1990-09-28 Mitsubishi Electric Corp Solar cell
JPH0334582A (en) * 1989-06-30 1991-02-14 Sharp Corp Solar cell fitted with cover glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725006A (en) * 1995-01-31 1998-03-10 Mitsubishi Denki Kabushiki Kaisha Solar battery cell, a solar battery module, and a solar battery module group
JP2002246625A (en) * 2001-02-21 2002-08-30 Sharp Corp Method of manufacturing solar cell
JP2005327871A (en) * 2004-05-13 2005-11-24 Shin Etsu Handotai Co Ltd Solar battery and its manufacturing method
WO2014075060A1 (en) * 2012-11-12 2014-05-15 The Board Of Trustees Of The Leland Stanford Junior Univerisity Nanostructured window layer in solar cells

Also Published As

Publication number Publication date
JP2994842B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US8035028B2 (en) Pyramidal three-dimensional thin-film solar cells
JPH03173481A (en) Solar battery and its manufacture
JP2007266262A (en) Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
US4931412A (en) Method of producing a thin film solar cell having a n-i-p structure
JPS60239067A (en) Solar cell element
KR101023144B1 (en) Solar cell using layer transfer process and fabrication method thereof
JPH05235385A (en) Silicon solar cell
JPH11330517A (en) Solar battery and solar battery module
CN210956694U (en) Back passivation solar cell structure
JPH09283781A (en) Photovoltaic device
CN113013293A (en) Preparation method of heterojunction battery
JP2000332279A (en) Manufacture of solar battery
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JPS63234566A (en) Solar cell
JP2010538455A (en) High efficiency hybrid solar cell
JPH11266029A (en) Solar cell, manufacture and connection thereof
JP3107923B2 (en) Power generation device using sunlight
JPS6321880A (en) Photovoltaic device
JPS5996777A (en) Photovoltaic element
JPH0448660A (en) Solar battery module
JP2931451B2 (en) Solar cell element
CN219419041U (en) Solar cell and battery
CN211700302U (en) Low series resistance photovoltaic module
KR100322709B1 (en) Self-voltage applying solar cell and module using the same
KR100408527B1 (en) Solar cell and method for manufacturing thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13