JPH0523409B2 - - Google Patents
Info
- Publication number
- JPH0523409B2 JPH0523409B2 JP60098522A JP9852285A JPH0523409B2 JP H0523409 B2 JPH0523409 B2 JP H0523409B2 JP 60098522 A JP60098522 A JP 60098522A JP 9852285 A JP9852285 A JP 9852285A JP H0523409 B2 JPH0523409 B2 JP H0523409B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- display
- coloring
- potential
- electrochromic display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 12
- 239000012769 display material Substances 0.000 claims description 9
- 238000006479 redox reaction Methods 0.000 claims description 5
- 238000003487 electrochemical reaction Methods 0.000 claims description 4
- 238000005562 fading Methods 0.000 claims description 4
- 238000004040 coloring Methods 0.000 description 29
- 238000004042 decolorization Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は電気化学的酸化還元反応により発消
色することを利用したエレクトロクロミツク表示
体の駆動方法に関し、さらに詳しくは酸化還元反
応電位との関連において適当に設定された2電位
間を交互に変化する波形により発色状態とし、ま
た表示体が有する自然電位を印加して消色状態と
することを繰り返してエレクトロクロミツク表示
体を駆動する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for driving an electrochromic display that utilizes coloring and fading by electrochemical redox reaction, and more specifically relates to a method for driving an electrochromic display that utilizes color development and decolorization by electrochemical redox reaction. The electrochromic display element is driven by repeating the process of bringing it into a colored state using a waveform that alternately changes between two potentials appropriately set in relation to the above, and then bringing it into a colorless state by applying the natural potential of the display element. It is about the method.
電気化学的酸化還元反応を利用したエレクトロ
クロミツク表示体は、そのメモリ作用を有すると
いう特長を生かすべく直流駆動即ちある電位を与
えて発色状態とし、その後端子間を開路状態とし
て発色状態を維持する。又、消色動作は端子間を
閉路状態にして着色時と逆の電位を与えるという
方法が従来とられてきた。この方法によれば、着
色濃度は着色動作の際に与えられた直流的電圧パ
ルスの波および幅により規定され、しかも表示
セグメント間の微妙な面積の差、発色物質の量、
リードとセグメント間のインピーダンスの差など
によりセグメント間の着色濃度に差が出るという
欠点があつた。又、エレクトロクロミツク表示体
の特長であるメモリ作用もメモリ時間が初期書き
込み濃度に依存するだけでなく、各セグメントに
独立して存在する電気化学的電極状態に依存し、
メモリ時間がセグメント間で一定でない。従つ
て、非常に長いメモリを利用する駆動の場合にコ
ントラストむらが生じ、これが大きな欠点となつ
ていた。これらの問題点を解消するために直流に
交流を重畳させた信号でエレクトロクロミツク表
示体を駆動することが例えば特公昭59−41563号
公報などにより提案されている。これによれば、
第4図に示すように、書き込み時には直流電圧7
に、消去時には直流電圧8に、一定または異なる
交流電圧を重畳するようにしている。ここで、書
き込み最電圧1は表示以外の電気化学反応が生
じ始める電圧2よりも低く、消去時の最電圧5
は表示の電気化学的酸化還元反応のしきい値電圧
4を越えない。又、書き込み時の最低電圧3はし
きい値電圧4に対して極度に低くはなくその差の
電圧値は−200mVであるとしている。
Electrochromic displays that utilize electrochemical oxidation-reduction reactions take advantage of their memory function by driving with direct current, that is, by applying a certain potential to create a colored state, and then maintain the colored state by opening the terminals. . Furthermore, in the decoloring operation, a method has conventionally been used in which the terminals are closed and a potential opposite to that used during coloring is applied. According to this method, the coloring density is determined by the wave and width of the DC voltage pulse applied during the coloring operation, and also by the subtle area difference between display segments, the amount of coloring substance,
There was a drawback that the coloring density between the segments varied due to the difference in impedance between the lead and the segment. In addition, the memory effect, which is a feature of electrochromic displays, does not only depend on the initial writing concentration, but also on the electrochemical electrode state that exists independently in each segment.
Memory time is not constant between segments. Therefore, when driving using a very long memory, contrast unevenness occurs, which has been a major drawback. In order to solve these problems, it has been proposed, for example, in Japanese Patent Publication No. 41563/1983, to drive an electrochromic display with a signal in which alternating current is superimposed on direct current. According to this,
As shown in Figure 4, when writing, the DC voltage is 7
Furthermore, during erasing, a constant or different alternating current voltage is superimposed on the direct current voltage 8. Here, the maximum write voltage 1 is lower than the voltage 2 at which electrochemical reactions other than display start, and the maximum voltage 5 during erasing is lower than the voltage 2 at which electrochemical reactions other than display start.
does not exceed the threshold voltage 4 of the indicated electrochemical redox reaction. Further, the lowest voltage 3 during writing is not extremely lower than the threshold voltage 4, and the voltage difference therebetween is -200 mV.
しかるに、上記のように直流電圧に単に交流電
圧を加える方法では着色物質が安定で連続着色時
間が数時間程度の短かい時間後では容易に消去で
きるが、着色時間が長くなると発消色材料自体の
劣化が進み、エレクトロクロミツク表示体の寿命
に重大な影響を及ぼすことが判明した。又、交流
の振巾が小さく反応のしきい値電圧4に対して書
き込み電圧の最低電愛がい場合には、特に長時
間着色の後発消色材料自体の劣化も顕著であり、
また消色時間が極端に長くなるなどの問題点があ
つた。
However, with the method of simply applying AC voltage to DC voltage as described above, the colored substance is stable and can be easily erased after a short continuous coloring time of several hours, but if the coloring time becomes long, the coloring material itself will disappear. It was found that the deterioration of the electrochromic display material progressed and had a serious effect on the lifespan of the electrochromic display. In addition, when the amplitude of the alternating current is small and the lowest voltage of the writing voltage is lower than the reaction threshold voltage 4, the deterioration of the decoloring material itself after long-term coloring is particularly noticeable.
Further, there were other problems such as an extremely long decoloring time.
この発明は上記した問題点を解決するために成
されたものであり、発消色物質の着色時の経時変
化を抑え、長時間着色後も安定で消色動作への影
響も小さく、安定で長寿命の表示ができるエレク
トロクロミツク表示体の駆動方法を得ることを目
的とする。 This invention was made in order to solve the above-mentioned problems, and it suppresses the change over time during coloring of the coloring and decoloring substance, is stable even after long-term coloring, has little influence on the decoloring operation, and is stable. The object of the present invention is to obtain a method for driving an electrochromic display that can provide a long-life display.
この発明に係る駆動方法は、エレクトロクロミ
ツク表示体の発消色のしきい値電位に対して、こ
の電位の絶対値に対して充分大きくしかも表示以
外の電気化学反応が起こる電圧よりも低い最電
圧と上記絶対値に対して充分小さくその電位では
表示体が消色状態であるような最低電圧との間で
電圧を交互に変化させて印加して表示体を着色さ
せ、消色はその表示体が有する電気化学的自然電
位を直流的に印加することにより行うようにした
ものである。
The driving method according to the present invention provides a minimum threshold potential for color development/decolorization of an electrochromic display body that is sufficiently large with respect to the absolute value of this potential and lower than a voltage at which electrochemical reactions other than display occur. The display is colored by applying a voltage that is alternating between the voltage and the lowest voltage that is sufficiently small compared to the above absolute value and at which the display is in a decolorized state. This is done by applying direct current to the body's natural electrochemical potential.
〔作用〕
この発明における最電圧と最低電圧の交互の
印加による着色状態では、エレクトロクロミツク
表示材料の着色状態での二次構造の変化の進行等
の時間的な変化が抑制され、安定でしかも長い着
色時間の後も消色速度が遅くならない表示を行う
ことができる。[Function] In the colored state obtained by alternately applying the highest voltage and the lowest voltage in the present invention, temporal changes such as progression of changes in the secondary structure in the colored state of the electrochromic display material are suppressed, and the material is stable and stable. It is possible to perform a display in which the decoloring speed does not slow down even after a long coloring time.
以下、この発明の実施例を図面とともに説明す
る。第1図a,bは駆動電圧の波形例を示し、1
は書き込み時の最電圧で、表示以外の電圧化学
反応が生じ始める電圧2よりも低く、また3は書
き込み時の最低電圧で、着色時のしきい値電圧4
より充分低く、その差は例えば少くとも200mV
とする。5はエレクトロクロミツク表示体が有す
る電気化学的平衡電極電位に相当する電圧であつ
て、この電圧またはこの電圧よりしきい値から遠
い電圧に表示体端子間を設定することにより消色
を行う。
Embodiments of the present invention will be described below with reference to the drawings. Figures 1a and b show examples of drive voltage waveforms, 1
is the highest voltage during writing, which is lower than the voltage 2 at which voltage chemical reactions other than display begin, and 3 is the lowest voltage during writing, and 4 is the threshold voltage during coloring.
the difference is, for example, at least 200 mV
shall be. Reference numeral 5 denotes a voltage corresponding to the electrochemical equilibrium electrode potential of the electrochromic display, and decoloring is performed by setting the terminals of the display at this voltage or at a voltage farther from the threshold than this voltage.
第2図は本実施例に係るエレクトロクロミツク
表示体を示し、ポリスチレンスルホン酸とテトラ
メチレンビオロゲンの分子錯体に導電性粉体を
加えて成るビオロゲン複合膜をエレクトロクロミ
ツク表示材料9として透明表示電極10に設け
る。透明表示電極10と対向電極12は夫々ガラ
ス基板11上に設けられており、ガラス基板11
間にはスペーサ13を介してセルが構成されてお
り、セル内にはKClを含む電解質溶液14が封入
されている。このセルの自然電極電位は−120m
V、発消色反応のしきい値電圧は−900mVであ
つた。このセルに第3図に示すような書き込み電
圧波形および消色波形を印加し、発消色試験を行
なつた。この例によれば、書き込みの最電圧
(絶体値、以下同じ)は−1250mVで目的とする
発消色反応以外の反応が起きる電圧−1300mVよ
り低い。又、書き込みの最低電圧は−650mVで、
発消色のしきい値電圧−900mVより充分小さい
電圧であり、本来のこの電圧が直流的に印加され
た場合は消色状態であるはずの電圧である。又、
消色電圧は自然電極電位−120mVに合せてある。
この時、書き込み電圧における電圧を交互させる
周波数は、60Hz以下では着色状態に周波数に相当
するチラツキが見られ、また600Hz以上では長時
間の連続着色後の消色応答に影響が見られた。
又、交互周波数を80Hzにして長時間着色を行つた
が、連続100時間着色後の消色反応も〜1secとあ
まり遅くならず、着消色のクーロン量も変化せず
エレクトロクロミツク表示材料9に劣化が起きて
いないことが確認された。同じ周波数でも従来の
直流に小さい振巾の交流を重畳した方法では連続
着色後の応答が数secと直流印加と同程度となり、
着消色のクーロン量にも減少が見られ、エレクト
ロクロミツク表示材料9の劣化も生じた。又、本
実施例で書き込み消去のサイクルを1回/1secで
行なつたところ、107回の発消色繰り返しが確認
され、発消色の寿命にも有効であることが確認さ
れた。本実施例の駆動法によれば、着色時に一定
の周期で消色状態に一部のエレクトロクロミツク
表示材料9が保たれ、結果的にエレクトロクロミ
ツク表示材料9の発色後の二次構造の変化が抑制
され、しかも平均的には発色状態が安定に存在し
て肉眼的には一定の濃度に見える。 FIG. 2 shows an electrochromic display according to this embodiment, in which a viologen composite film made by adding conductive powder to a molecular complex of polystyrene sulfonic acid and tetramethylene viologen is used as an electrochromic display material 9 as a transparent display electrode. 10. The transparent display electrode 10 and the counter electrode 12 are each provided on a glass substrate 11.
A cell is constructed with a spacer 13 interposed therebetween, and an electrolyte solution 14 containing KCl is sealed within the cell. The natural electrode potential of this cell is -120m
V, the threshold voltage for the color development/decolorization reaction was -900 mV. A writing voltage waveform and a color erasing waveform as shown in FIG. 3 were applied to this cell to conduct a color development and erasure test. According to this example, the maximum writing voltage (absolute value, the same applies hereinafter) is -1250 mV, which is lower than the voltage -1300 mV at which reactions other than the intended coloring/decoloring reaction occur. Also, the minimum voltage for writing is -650mV,
This voltage is sufficiently lower than the threshold voltage for color development/decolorization -900 mV, and is the voltage that would normally result in a color decolorization state if this voltage were applied in a direct current manner. or,
The decoloring voltage is set to the natural electrode potential of −120 mV.
At this time, when the frequency of alternating the voltage in the writing voltage was 60 Hz or less, flickering corresponding to the frequency was observed in the colored state, and at 600 Hz or more, an effect was seen on the decoloring response after long-term continuous coloring.
In addition, although coloring was carried out for a long time with the alternating frequency of 80 Hz, the decoloring reaction after continuous coloring for 100 hours was not too slow at ~1 sec, and the amount of coulomb for coloring and decoloring did not change. It was confirmed that no deterioration occurred. Even at the same frequency, with the conventional method of superimposing alternating current with a small amplitude on direct current, the response after continuous coloring is several seconds, which is comparable to applying direct current.
A decrease in the amount of coulombs for coloring/decoloring was also observed, and deterioration of the electrochromic display material 9 also occurred. Furthermore, when writing and erasing cycles were performed at a rate of 1 time/1 sec in this example, it was confirmed that coloring and fading were repeated 10 7 times, and it was confirmed that this was also effective in terms of the lifespan of coloring and fading. According to the driving method of this embodiment, a part of the electrochromic display material 9 is kept in a decolored state at a certain period during coloring, and as a result, the secondary structure of the electrochromic display material 9 after coloring is Changes are suppressed, and on average, the coloring state is stable and appears to be a constant density to the naked eye.
尚、上記実施例ではエレクトロクロミツク表示
材料9として分子ビオロゲン錯体と導電性粉体
の複合膜を用いたが、ビオロゲン溶液材料、Lu
−ジフタロシアニン等の有機蒸着膜、WO3や
Ir2O3などの無機薄膜などをエレクトロクロミツ
ク表示材料9として用いたものにも本発明は適用
できる。 In the above example, a composite film of a molecular viologen complex and conductive powder was used as the electrochromic display material 9, but a viologen solution material, Lu
- Organic vapor deposited films such as diphthalocyanine, WO 3 and
The present invention is also applicable to those using an inorganic thin film such as Ir 2 O 3 as the electrochromic display material 9.
以上のように本発明によれば、エレクトロクロ
ミツク表示体の書き込み波形として充分に着色濃
度を与え得る電圧と充分に消色している電圧との
間で電圧を交互に変化させて印加し、平均的には
定常着色しているような波形を用い、消色電圧に
は表示体の自然電極電位を選ぶようにしており、
長時間着色にも安定で消色応答にも影響せず、安
定で長寿命の表示を行うことができるエレクトロ
クロミツク表示体を得ることができる。
As described above, according to the present invention, a voltage is applied while alternating between a voltage that can provide sufficient coloring density and a voltage that sufficiently erases the color as a writing waveform of an electrochromic display, We use a waveform that is constantly colored on average, and select the natural electrode potential of the display as the decoloring voltage.
It is possible to obtain an electrochromic display body that is stable for long-term coloring, does not affect the decoloring response, and can provide stable and long-life display.
第1図は本発明に用いる駆動電圧の例を示す電
圧波形図、第2図は本発明に係るエレクトロクロ
ミツク表示体の断面図、第3図は本発明に用いる
駆動電圧の具体例を示す電圧波形図、第4図は従
来の駆動波形図である。
1……書き込み時の最電圧、3……書き込み
時の最低電圧、4……発消色のしきい値電圧、5
……消色時の印加電圧。尚、図中同一符号は同一
又は相当部分を示す。
Fig. 1 is a voltage waveform diagram showing an example of the driving voltage used in the present invention, Fig. 2 is a sectional view of an electrochromic display according to the invention, and Fig. 3 is a specific example of the driving voltage used in the invention. Voltage waveform diagram, FIG. 4 is a conventional drive waveform diagram. 1... Maximum voltage during writing, 3... Minimum voltage during writing, 4... Threshold voltage for color development/decolorization, 5
...Applied voltage during decolorization. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
レクトロクロミツク表示体において、該表示体に
その発消色のしきい値電位の絶対値に対して充分
大きくしかも表示以外の電気化学反応が起こる電
圧よりも低い最高電圧と上記絶対値に対して充分
小さくその電位では表示体が消色状態であるよう
な最低電圧との間で電圧を交互に変化させて印加
して発色状態にするとともに、前記表示体が有す
る自然電位を印加して消色状態にすることを特徴
とするエレクトロクロミツク表示体の駆動方法。 2 発色状態を保つための電位が交互に変化する
駆動波形の周波数を60〜600Hzとしたことを特徴
とする特許請求の範囲第1項記載のエレクトロク
ロミツク表示体の駆動方法。[Scope of Claims] 1. In an electrochromic display body that changes color and fades through an electrochemical redox reaction, the display body has an electrochromic display material that is sufficiently large with respect to the absolute value of its color development/fading threshold potential and that has a potential other than display. Color is developed by applying a voltage that is alternately varied between a maximum voltage that is lower than the voltage at which an electrochemical reaction occurs and a minimum voltage that is sufficiently small compared to the above absolute value that the display body is in a colorless state at that potential. 1. A method for driving an electrochromic display, which comprises: bringing the display into a decolored state, and applying a natural potential of the display to a decolored state. 2. The method of driving an electrochromic display according to claim 1, characterized in that the frequency of the driving waveform in which the potential for maintaining the colored state is alternately changed is 60 to 600 Hz.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9852285A JPS61254935A (en) | 1985-05-07 | 1985-05-07 | Driving method for electrochromic display body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9852285A JPS61254935A (en) | 1985-05-07 | 1985-05-07 | Driving method for electrochromic display body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61254935A JPS61254935A (en) | 1986-11-12 |
JPH0523409B2 true JPH0523409B2 (en) | 1993-04-02 |
Family
ID=14221990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9852285A Granted JPS61254935A (en) | 1985-05-07 | 1985-05-07 | Driving method for electrochromic display body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61254935A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2868850B1 (en) * | 2004-04-09 | 2006-08-25 | Saint Gobain | METHOD FOR SUPPLYING AN ELECTROCOMMANDABLE DEVICE HAVING VARIABLE OPTICAL AND / OR ENERGY PROPERTIES |
US9129751B2 (en) | 2010-03-29 | 2015-09-08 | Northern Illinois University | Highly efficient dye-sensitized solar cells using microtextured electron collecting anode and nanoporous and interdigitated hole collecting cathode and method for making same |
US9405164B2 (en) | 2013-08-21 | 2016-08-02 | Board Of Trustees Of Northern Illinois University | Electrochromic device having three-dimensional electrode |
JP6478041B2 (en) * | 2015-05-25 | 2019-03-06 | 株式会社リコー | Driving method of electrochromic device |
JP6478042B2 (en) * | 2015-05-25 | 2019-03-06 | 株式会社リコー | Driving method of electrochromic device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53144360A (en) * | 1977-05-20 | 1978-12-15 | Matsushita Electric Ind Co Ltd | Driving method of electrochromic display body |
-
1985
- 1985-05-07 JP JP9852285A patent/JPS61254935A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53144360A (en) * | 1977-05-20 | 1978-12-15 | Matsushita Electric Ind Co Ltd | Driving method of electrochromic display body |
Also Published As
Publication number | Publication date |
---|---|
JPS61254935A (en) | 1986-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4205903A (en) | Writing/erasing technique for an electrochromic display cell | |
US4693564A (en) | Electrochromic display device | |
US4219809A (en) | Compensation scheme for electrochromic displays | |
JPS6024479B2 (en) | Display device drive method | |
JPH0523409B2 (en) | ||
JPS5941563B2 (en) | Driving method of electrochromic display | |
Chang et al. | Performance characteristics of electrochromic displays | |
JPS592907B2 (en) | Hiyojisouchinokudouhouhou | |
EP0112037B1 (en) | A method of driving an electrochromic display device | |
JP3227762B2 (en) | Electrochromic display device | |
JPS62299823A (en) | Driving method for electrochromic element | |
JPS5945996B2 (en) | Electrochemical color display device | |
EP0112038B1 (en) | A method of driving an electrochemical display device | |
JPS63286826A (en) | Electrochromic display element | |
JPS62115129A (en) | Electrochromic display element | |
JPS6227115B2 (en) | ||
JPS638888Y2 (en) | ||
JPS6114497B2 (en) | ||
JPS5936247B2 (en) | electrical display device | |
JPH0135326B2 (en) | ||
JPS58184128A (en) | Driving method of electrochromic display | |
JPS6159490B2 (en) | ||
JPS6016601B2 (en) | electrochromic display | |
JPS6023836A (en) | Electrochemical display device | |
JPS62258432A (en) | Production of electrochromic element |