Nothing Special   »   [go: up one dir, main page]

JPH05203286A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH05203286A
JPH05203286A JP1096892A JP1096892A JPH05203286A JP H05203286 A JPH05203286 A JP H05203286A JP 1096892 A JP1096892 A JP 1096892A JP 1096892 A JP1096892 A JP 1096892A JP H05203286 A JPH05203286 A JP H05203286A
Authority
JP
Japan
Prior art keywords
flow
heat transfer
heat exchanger
refrigerant
flow distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1096892A
Other languages
Japanese (ja)
Inventor
Kaoru Kato
薫 加藤
Koichi Nakayama
浩一 中山
Hiroaki Kase
広明 加瀬
Teruhiko Taira
輝彦 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP1096892A priority Critical patent/JPH05203286A/en
Publication of JPH05203286A publication Critical patent/JPH05203286A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Abstract

PURPOSE:To provide a heat exchanger which is equipped with a flow divider which divides the flow of refrigerant in a two phase state (vapor and liquid) among a plurality of refrigerant circuit and capable of heat exchanging with high efficiency by dividing the refrigerant among the refrigerant circuits equally in terms of a refrigeration cycle of refrigerator or air conditioner. CONSTITUTION:This heat exchanger comprises a cylinder shaped flow divider 12, a cylinder-shaped flow combiner 13, heat exchanger tubes 14 to the flow divider 12 and the low combiner 13 and a large number of fins 15 installed to the heat exchanger tubes. A turbulent flow promoter 18 is installed inside the flow divider 14. Therefore, this heat exchanger comprises the flow divider and the flow combiner which are cylinder-shaped and sealed on both ends, a plurality of heat exchanger tubes welded to the flow divider and the flow combiner virtually at right angles and the fins installed in great numbers. The turbulent flow promoter is installed inside the flow divider as well. The liquid refrigerant can flow out to the flow divider welded to the heat exchanger tubes substantially equally, thereby carrying out a heat exchange performance with a high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機器や空調機器等
の蒸発器において、ヘッダーパイプ等として用いられる
分流器を有した熱交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger having a flow divider used as a header pipe in an evaporator such as a refrigerating machine or an air conditioner.

【0002】[0002]

【従来の技術】近年、熱交換器の小型高効率化の要請に
伴う伝熱管の細径化,多数回路化に対応するために、ヘ
ッダーパイプ等を分流器として用いている(例えば実開
昭63−173689号公報)。
2. Description of the Related Art In recent years, header pipes and the like have been used as shunts in order to meet the demand for smaller diameter and higher efficiency of heat transfer tubes in response to the demand for miniaturization and high efficiency of heat exchangers (for example, actual shunts) 63-173689).

【0003】以下、図面を参照しながら上述した従来の
熱交換器の一例について説明を行う。図9は従来の熱交
換器の斜視図を示す。1は熱交換器で、両端が封止され
た筒状の分流器2、3には複数の伝熱管4が接合され、
伝熱管4にはフィン5が複数配設されている。分流器2
には入口管6、出口管7が取付けられ、分流器2、3に
は仕切り2a、2b、3aが設けられて、伝熱管4によ
って冷媒回路が構成されている。
An example of the conventional heat exchanger described above will be described below with reference to the drawings. FIG. 9 shows a perspective view of a conventional heat exchanger. Reference numeral 1 is a heat exchanger, and a plurality of heat transfer tubes 4 are joined to cylindrical flow distributors 2 and 3 whose both ends are sealed,
A plurality of fins 5 are arranged in the heat transfer tube 4. Shunt 2
An inlet pipe 6 and an outlet pipe 7 are attached to the heat exchanger, and the flow dividers 2 and 3 are provided with partitions 2a, 2b, and 3a, and the heat transfer pipe 4 constitutes a refrigerant circuit.

【0004】以上のように構成された熱交換器につい
て、以下図面を用いて、蒸発器として用いられた場合の
動作を説明する。
The operation of the heat exchanger configured as described above when used as an evaporator will be described below with reference to the drawings.

【0005】図9において、入口管6から分流器2の区
画2Aに流入した気液二相状態の冷媒Rは、仕切り2a
より下方の複数の伝熱管4にそれぞれ分流されて流出す
る。そして冷媒Rは伝熱管4に多数配設されたフィン5
を介して、熱交換器1の全面より流入する空気Aと熱交
換することで蒸発しながら分流器3の区画3Aへ流入す
る。分流器3で合流した冷媒Rは、分流器3内部を上方
へ向かい、仕切り3aより下方の複数の伝熱管4にそれ
ぞれ分配されて流出する。以下同様に分流器23で合
流、分配を繰り返しながら蒸発し、乾き蒸気となって仕
切り2bより上方の区画2Cで合流した冷媒Rは、分流
器2に取り付けられた出口管7から流出する。
In FIG. 9, the refrigerant R in the gas-liquid two-phase state flowing from the inlet pipe 6 into the compartment 2A of the flow divider 2 is divided into the partition 2a.
The heat is divided into a plurality of lower heat transfer tubes 4 and discharged. The refrigerant R is provided with a large number of fins 5 arranged in the heat transfer tube 4.
Through the heat exchanger 1 and the air A flowing in from the entire surface of the heat exchanger 1 to be evaporated and flow into the compartment 3A of the flow divider 3. The refrigerant R merged in the flow divider 3 flows upward in the flow divider 3 and is distributed to the plurality of heat transfer tubes 4 below the partition 3a and flows out. Similarly, the refrigerant R, which is evaporated while repeating merging and distribution in the flow divider 23, becomes dry vapor and merges in the section 2C above the partition 2b, flows out from the outlet pipe 7 attached to the flow divider 2.

【0006】図10、図11は分流器2、3の縦断面図
で、冷媒Rが流動する様子を示してり、図中の矢印は冷
媒Rの流れの方向を示している。入口管6より流入した
気液2相状態の冷媒Rは熱交換器1内で蒸発しながら、
順次乾き度を増して分流を繰り返し、乾き蒸気となっ
て、出口管7より流出する。
10 and 11 are vertical cross-sectional views of the flow dividers 2 and 3, showing how the refrigerant R flows, and the arrows in the figures indicate the direction of the refrigerant R flow. The gas-liquid two-phase refrigerant R flowing in from the inlet pipe 6 evaporates in the heat exchanger 1,
The degree of dryness is gradually increased and the split flow is repeated to form dry steam, which flows out from the outlet pipe 7.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、図10、図11に示すように各分流器
2、3内の区画2A〜2C、3A〜3Bで乾き度が増し
ていくために、流動様式がフロス流から環状噴霧流に変
化する。垂直上向気液2相流では乾き度が小さいとフロ
ス流となり、乾き度が増すと、環状噴霧流となる。例え
ば、図12に示す鉛直上向流の流動様式線図(機会工学
便覧 基礎編 A5流体力学 日本機会学会発行(19
86) A5−153頁)によると、冷媒Rを空調用と
して一般的に用いられるフレオンR22(圧力0.7M
Pa)としたときの冷媒Rの流動様式は、乾き度0.2
の時が線L1上の点となり、乾き度0.6の時は線L2
上の点となる。ここで、乾き度0.2は一般的な冷凍サ
イクルの蒸発用熱交換器の入口の冷媒Rの状態であり、
乾き度0.6は出口に至るまでの中間の冷媒の状態であ
る。 点P1とP2は各乾き度の冷媒Rが同一質量流量
時の点であり、冷媒Rが同一質量流量時においても乾き
度が大きいほど、環状噴霧流になりやすいことを示して
いる。この点P1、P2は冷媒Rの質量流量が減少する
ことで冷媒Rの流速が減少し、冷媒Rの気相、液相のみ
かけの流速が減少するに従って線L1、L2上を下方に
移動する。このように、冷媒Rが同一質量流量において
も、乾き度の大きい出口管7近傍の区画3B、2Cで
は、冷媒Rの合流後、環状噴霧流となりやすい。
However, in the above configuration, as shown in FIGS. 10 and 11, the dryness increases in the sections 2A to 2C and 3A to 3B in the flow dividers 2 and 3, respectively. In addition, the flow pattern changes from the froth flow to the annular spray flow. In the vertical upward gas-liquid two-phase flow, when the dryness is small, it becomes a froth flow, and when the dryness increases, it becomes an annular spray flow. For example, the flow pattern of vertical upward flow shown in Fig. 12 (Opportunity Engineering Handbook, Basic Edition, A5 Fluid Dynamics, published by The Japan Opportunity Society (19)
86) According to A5-Page 153), Freon R22 (pressure 0.7M), which is generally used for refrigerant R, is used for air conditioning.
Pa), the flow pattern of the refrigerant R is such that the dryness is 0.2.
Is the point on the line L1, and when the dryness is 0.6, the line L2
It becomes the upper point. Here, the dryness of 0.2 is the state of the refrigerant R at the inlet of the heat exchanger for evaporation of a general refrigeration cycle,
The dryness of 0.6 is the state of the intermediate refrigerant until reaching the outlet. Points P1 and P2 are points when the refrigerant R of each dryness has the same mass flow rate, and even when the refrigerant R has the same mass flow rate, the larger the dryness is, the more likely the annular spray flow is. The points P1 and P2 move downward on the lines L1 and L2 as the flow rate of the refrigerant R decreases due to the decrease in the mass flow rate of the refrigerant R, and the apparent flow rates of the gas phase and liquid phase of the refrigerant R decrease. .. As described above, even if the refrigerant R has the same mass flow rate, in the sections 3B and 2C near the outlet pipe 7 having a high degree of dryness, after the refrigerant R merges, an annular spray flow is likely to occur.

【0008】また、環状噴霧流となった区画3B、2C
では、冷媒Rが上方に流れながら順次伝熱管4に流出す
ることで分流器2、3内の冷媒Rの質量流量が減少し、
冷媒Rの気相、液相のみかけの流速は遅くなり、図12
において、下方に移動し、最終的にはフロス流に移行す
る事になる。
Further, the sections 3B and 2C having an annular spray flow.
Then, the refrigerant R sequentially flows out to the heat transfer tube 4 while flowing upward, so that the mass flow rate of the refrigerant R in the flow dividers 2 and 3 decreases,
The apparent flow velocities of the refrigerant R in the gas phase and the liquid phase become slower, as shown in FIG.
At, it will move downwards and eventually move to the froth flow.

【0009】気液二相流が分流をする場合、その流動様
式が分流比率に大きく影響していることは、例えば、水
平管より垂直分岐管への気液二相流挙動に関する研究
(第1報)(1991−5)第28回日本伝熱シンポジ
ウム講演論文集766頁から768頁に発表され、図1
3に示すように、環状噴霧流域とフロス流域では冷媒R
の分流比率が大きく異なり、かつ、フロス流の方が冷媒
Rの液相が流出しやすいことがわかっている。
In the case where the gas-liquid two-phase flow splits, the fact that the flow mode greatly affects the split flow ratio is, for example, a study on the gas-liquid two-phase flow behavior from the horizontal pipe to the vertical branch pipe (first Report) (1991-5) Proceedings of 28th Japan Heat Transfer Symposium, pp. 766-768, Fig. 1
As shown in Fig. 3, the refrigerant R is present in the annular spray basin and the floss basin.
It is known that the flow ratios of the refrigerant R are largely different and the liquid phase of the refrigerant R is more likely to flow out in the froth flow.

【0010】以上のことから、冷媒Rが熱交換器1に流
入した直後であり、乾き度が小さい為に、全ての領域で
フロス流となりやすい区画2A、3Aでは、冷媒Rの液
相は各伝熱管4に均等に分流する。しかし、冷媒Rが熱
交換器1である程度蒸発した後に流入する区画2B、3
Bでは、乾き度が大きい為に最初は環状噴霧流となりや
すい。しかし、冷媒Rは区画2B、3B内を上方に流れ
ながら順次伝熱管4に流出していく為に、質量流量が減
少し、フロス流に移行していく。
From the above, the liquid phase of the refrigerant R is different in each of the sections 2A and 3A immediately after the refrigerant R flows into the heat exchanger 1 and the degree of dryness is likely to cause a froth flow in all regions. The flow is evenly distributed to the heat transfer tube 4. However, the compartments 2B, 3 into which the refrigerant R flows after evaporating to some extent in the heat exchanger 1
In B, since the dryness is large, an annular spray flow is likely to occur at first. However, the refrigerant R sequentially flows out into the heat transfer tubes 4 while flowing upward in the sections 2B and 3B, so that the mass flow rate decreases and the refrigerant flows to the froth flow.

【0011】そこで、環状噴霧流である下部はフロス流
となる上部より冷媒Rの液相は流出しづらく、この部分
に接合された伝熱管4には、ほとんど冷媒Rの気相が流
入することになり、蒸発がほとんど行われず、熱交換量
も非常に少ない。また、全ての分流器2、3内で冷媒R
をフロス流とする為に、筒状の分流器2、3の直径を十
分に大きくすると、特に乾き度の大きい出口寄りの分流
器2、3の為に、その直径を非常に大きくする必要があ
り、熱交換器1の体積が、直接に熱交換を行わない部分
すなわち分流器2、3の為に非常に大きくなり、熱交換
器1の小型化の要請に応えられないという第一の課題を
有していた。
Therefore, the liquid phase of the refrigerant R is less likely to flow out from the upper part where the lower part which is the annular spray flow becomes the froth flow, and almost the gas phase of the refrigerant R flows into the heat transfer tube 4 joined to this part. And almost no evaporation occurs, and the amount of heat exchange is very small. In addition, the refrigerant R in all the flow dividers 2 and 3
If the diameters of the cylindrical flow distributors 2 and 3 are made sufficiently large in order to make the floss flow, it is necessary to make the diameter very large especially for the flow distributors 2 and 3 near the outlet where the dryness is high. The first problem is that the volume of the heat exchanger 1 becomes very large due to the portions that do not directly perform heat exchange, that is, the flow dividers 2 and 3, and the demand for miniaturization of the heat exchanger 1 cannot be met. Had.

【0012】そこで本発明は、蒸発器として用いられた
場合に冷媒を各伝熱管に均等に分配する分流器を有し、
小型で高性能な熱交換器を提供することを目的としてい
る。
Therefore, the present invention has a flow divider that evenly distributes the refrigerant to each heat transfer tube when used as an evaporator,
It is intended to provide a compact and high-performance heat exchanger.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する為に
本発明の熱交換器は、両端が封止された筒状の分流器
と、両端が封止された筒状の合流器と、前記分流器と前
記合流器とに略直角に接合された複数の伝熱管と、前記
伝熱管に多数配設された伝熱フィンとから構成され、前
記分流器の内部に乱流促進体を設けるという構成を備え
たものである。
In order to solve the above problems, a heat exchanger according to the present invention comprises a tubular flow distributor whose both ends are sealed, and a tubular flow combiner whose both ends are sealed. A turbulence promoting body is provided inside the shunt, which is composed of a plurality of heat transfer tubes joined to the shunt and the merger at substantially right angles, and a plurality of heat transfer fins arranged on the heat transfer tube. It has a configuration.

【0014】また、上記課題を解決するために本発明の
熱交換器は、両端が封止された筒状の分流器と、両端が
封止された筒状の合流器と前記分流器と前記合流器に略
直角に接合された複数の伝熱管と、前記伝熱管に多数配
設された伝熱フィンとから構成され、前記分流器の内部
にリボン状の乱流促進体を設けるという構成を備えたも
のである。
In order to solve the above-mentioned problems, the heat exchanger of the present invention is a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, the above-mentioned flow distributor, and the above-mentioned flow divider. A configuration in which a ribbon-shaped turbulence promoting body is provided inside the flow distributor, which is composed of a plurality of heat transfer tubes joined at substantially right angles to the confluencer and a plurality of heat transfer fins arranged in the heat transfer tube. Be prepared.

【0015】また、上記課題を解決するために本発明の
熱交換器は、両端が封止された筒状の分流器と、両端が
封止された筒状の合流器と前記分流器と前記合流器に略
直角に接合された複数の伝熱管と、前記伝熱管に多数配
設された伝熱フィンとから構成され、前記分流器の内部
にリボン状の乱流促進体を分流器の下部から上部まで、
ほぼ全域に設けるという構成を備えたものである。
In order to solve the above-mentioned problems, the heat exchanger of the present invention is a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, the above-mentioned flow distributor and the above-mentioned flow distributor. A plurality of heat transfer tubes joined at substantially right angles to the confluencer, and a plurality of heat transfer fins arranged on the heat transfer tube. A ribbon-shaped turbulence promoting body is provided inside the flow distributor at the bottom of the flow distributor. From to the top,
It has a configuration that it is provided in almost the entire area.

【0016】また、上記課題を解決するために本発明の
熱交換器は、両端が封止された筒状の分流器と、両端が
封止された筒状の合流器と前記分流器と前記合流器に略
直角に接合された複数の伝熱管と、前記伝熱管に多数配
設された伝熱フィンとから構成され、前記分流器の内部
にリボン状の乱流促進体を分流器の下部にのみ設けると
いう構成を備えたものである。
In order to solve the above-mentioned problems, the heat exchanger of the present invention comprises a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, said flow distributor and said A plurality of heat transfer tubes joined at substantially right angles to the confluencer, and a plurality of heat transfer fins arranged on the heat transfer tube. A ribbon-shaped turbulence promoting body is provided inside the flow distributor at the bottom of the flow distributor. It is provided with a configuration that is provided only in.

【0017】また、上記課題を解決するために本発明の
熱交換器は、両端が封止された筒状の分流器と、両端が
封止された筒状の合流器と前記分流器と前記合流器に略
直角に接合された複数の伝熱管と、前記伝熱管に多数配
設された伝熱フィンとから構成され、前記分流器の内部
に小孔を有する乱流促進体を設けるという構成を備えた
ものである。
In order to solve the above-mentioned problems, the heat exchanger of the present invention is a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, the above-mentioned flow distributor and the above-mentioned flow distributor. A structure in which a turbulent flow promoting body having small holes is provided inside the flow distributor, which is composed of a plurality of heat transfer tubes joined at substantially right angles to the confluencer and a plurality of heat transfer fins arranged in the heat transfer tube. It is equipped with.

【0018】[0018]

【作用】本発明は、上記の構成により、乾き度の高い環
状噴霧流の部分で乱流促進体により流動様式がフロス流
に移行し、液冷媒は、分流器に接続された全ての伝熱管
にほぼ均等に液相冷媒が流出し、すべての伝熱管で蒸発
が同様に行われ、効率よく熱交換が行われる。
According to the present invention, with the above-described structure, the flow mode is changed to the froth flow by the turbulence promoting body in the portion of the annular spray flow having a high degree of dryness, and the liquid refrigerant is all heat transfer tubes connected to the flow divider. The liquid-phase refrigerant flows out into the heat transfer tubes almost uniformly, and evaporation is similarly performed in all the heat transfer tubes, so that heat exchange is efficiently performed.

【0019】また、本発明は、上記の構成により、乱流
促進体はリボン状であり、環状噴霧流は、効率よくフロ
ス流に移行し、液冷媒は、分流器に接続された全ての伝
熱管に均等に流出し、蒸発が同様に行われ、効率よく熱
交換が行われる。
Further, according to the present invention, the turbulence promoting body is ribbon-shaped, the annular spray flow is efficiently converted to the froth flow, and the liquid refrigerant is transferred to all the flow distributors connected to the flow divider. It evenly flows out to the heat pipe, evaporation is performed in the same manner, and heat exchange is efficiently performed.

【0020】また、本発明は、上記の構成により、乱流
促進体は分流器の下部から上部まで全域に設けること
で、下部の乾き度の高い環状噴霧流の部分では、流動様
式がフロス流に移行するとともに、上部のフロス流域に
ついても冷媒の混合が促進される。従って、液冷媒は、
分流器に接続された全ての伝熱管に均等に流出し、全伝
熱管で、蒸発が同様に行われ、効率よく熱交換が行われ
る。
Further, according to the present invention, the turbulent flow promoting body is provided in the entire region from the lower part to the upper part of the flow diverter with the above-mentioned constitution, so that the flow mode is the froth flow in the part of the annular spray flow having a high dryness in the lower part. And the mixing of the refrigerant is promoted also in the upper froth flow region. Therefore, the liquid refrigerant is
It evenly flows out to all the heat transfer tubes connected to the flow divider, and evaporation is similarly performed in all the heat transfer tubes to efficiently perform heat exchange.

【0021】また、本発明は、上記の構成により、乾き
度の高い環状噴霧流の部分となっている下部にのみリボ
ン状の乱流促進体が設けられており、材料を有効に活用
して環状噴霧流の部分がフロス流に移行し、液冷媒は、
分流器に接続された全ての伝熱管に均等に流出し、全伝
熱管で、蒸発が同様に行われ、効率よく熱交換が行われ
る。
Further, according to the present invention, the ribbon-like turbulence promoting body is provided only in the lower portion, which is the portion of the annular spray flow having a high degree of dryness, by the above-mentioned constitution, and the material is effectively utilized. The part of the annular spray flow moves to the floss flow, and the liquid refrigerant
It evenly flows out to all the heat transfer tubes connected to the flow divider, and evaporation is similarly performed in all the heat transfer tubes to efficiently perform heat exchange.

【0022】さらに、本発明は、上記の構成により、分
流器内には、小孔を有する乱流促進体が設けられてお
り、環状噴霧流の部分がフロス流に移行するとともに、
小孔を通過する冷媒と小孔を通過しない冷媒が混合さ
れ、液冷媒は、分流器に接続された全ての伝熱管に均等
に流出し、効率よく熱交換が行われる。
Further, according to the present invention, the turbulent flow promoting body having the small holes is provided in the flow distributor with the above-mentioned configuration, and the portion of the annular spray flow is transferred to the floss flow.
The refrigerant that passes through the small holes and the refrigerant that does not pass through the small holes are mixed, and the liquid refrigerant evenly flows out to all the heat transfer tubes connected to the flow divider, so that heat exchange is efficiently performed.

【0023】[0023]

【実施例】以下、本発明の一実施例を図面を参照しなが
ら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0024】図1は、本発明の第一の実施例の熱交換器
の斜視図である。11は熱交換器で、両端が封止された
筒状の分流器12には、複数の伝熱管13が1列に接合
されている。また、並列した合流器14にも複数の伝熱
管13が1列に接合され、伝熱管13は2列に設置され
て、フィン15が多数配設されている。分流器12に接
合された伝熱管13は、適宜U字状に連結され、冷媒R
1の回路を形成している。分流器12には、入口管16
が接合され、合流器14には出口管17が接合されてい
る。分流器12には、内部に図2に示すようなリボン状
の乱流促進体18が分流器12の上部から下部までほぼ
全域に設けられている。
FIG. 1 is a perspective view of a heat exchanger according to the first embodiment of the present invention. Reference numeral 11 denotes a heat exchanger, and a plurality of heat transfer tubes 13 are joined in a row to a tubular flow distributor 12 whose both ends are sealed. Further, a plurality of heat transfer tubes 13 are joined in one row also to the confluencers 14 arranged in parallel, the heat transfer tubes 13 are installed in two rows, and a large number of fins 15 are arranged. The heat transfer tube 13 joined to the flow divider 12 is appropriately connected in a U shape, and the refrigerant R
1 circuit is formed. The flow divider 12 has an inlet pipe 16
And the outlet pipe 17 is joined to the confluencer 14. A ribbon-shaped turbulence promoting body 18 as shown in FIG. 2 is provided inside the flow distributor 12 in almost the entire region from the upper part to the lower part of the flow distributor 12.

【0025】以上のように構成された熱交換器11につ
いて以下図1、図3を用いてその動作を説明する。
The operation of the heat exchanger 11 configured as described above will be described below with reference to FIGS. 1 and 3.

【0026】乾き度の小さい気液二相流の冷媒R1が入
口管16から分流器12へ流入する分流器12内を上方
に流れながら、伝熱管13に順次流出していく。適宜U
字状に連結された伝熱管13に配設されたフィン15を
介して分流器12側の全面より流れ込む空気A1と熱交
換しながら蒸発し、熱交換器11の後面側の伝熱管13
で乾き蒸気となった後、合流器14に至り合流し、出口
管17から流出する。
The gas-liquid two-phase refrigerant R1 having a low degree of dryness sequentially flows out to the heat transfer tube 13 while flowing upward in the flow divider 12 flowing into the flow divider 12 from the inlet pipe 16. U as appropriate
The heat transfer tube 13 on the rear surface side of the heat exchanger 11 evaporates while exchanging heat with the air A1 flowing from the entire surface on the side of the flow divider 12 via the fins 15 arranged on the heat transfer tube 13 connected in a letter shape.
After it becomes dry steam, it reaches the confluencer 14, merges, and flows out from the outlet pipe 17.

【0027】図3は、分流器12内部の冷媒R1の状態
を示す断面図で、この時冷媒R1はリボン状の乱流促進
体18により、流動様式が分流器12の入口部分からほ
ぼ全域に渡ってフロス流に移行する。
FIG. 3 is a cross-sectional view showing the state of the refrigerant R1 inside the flow divider 12, in which the flow pattern of the refrigerant R1 is almost all over from the inlet portion of the flow divider 12 by the ribbon-shaped turbulence promoting body 18. Cross over to the floss style.

【0028】従って、冷媒R1は各伝熱管13に均等に
流出して同等に蒸発する。分流器12で分流した冷媒R
1は再度合流することなくU字状に連結された伝熱管1
3内で蒸発して合流器14に至る。このときの分流器1
2より流出する冷媒R1の液相質量流量の比率を図3に
矢印の長さで示す。
Therefore, the refrigerant R1 equally flows out to each heat transfer tube 13 and evaporates equally. Refrigerant R split in the flow divider 12
1 is a heat transfer tube 1 connected in a U shape without joining again
It vaporizes in 3 and reaches the confluencer 14. Shunt 1 at this time
The ratio of the liquid phase mass flow rate of the refrigerant R1 flowing out from the No. 2 is shown by the length of the arrow in FIG.

【0029】また、分流器12と合流器14を並列に設
置することで、熱交換器11を通過する全ての空気A1
は、上流側の伝熱管13の列で、蒸発初期の冷媒R1と
熱交換することとなり、全ての空気A1が冷却されて熱
交換器11を通過する為に熱交換器11の全面で空気A
1が同等に冷却、除湿されるため、熱交換効率が良い以
上のように本実施例によれば、分流器12と合流器14
と多数のフィン15が配設された伝熱管13とから構成
され、分流器12の内部には、リボン状の乱流促進体1
8を設けることで、分流器12内の気液二相流の冷媒R
1をフロス流にして分流器12に接合された伝熱管13
に均等に分流させ、分流器12と合流器14を並列に設
置することで熱交換器11の全面で効率良く熱交換を行
うことが可能となり小型高性能な熱交換器が実現でき
る。
Further, by installing the flow divider 12 and the flow combiner 14 in parallel, all the air A1 passing through the heat exchanger 11 can be obtained.
In the row of the heat transfer tubes 13 on the upstream side, heat is exchanged with the refrigerant R1 in the initial stage of evaporation, and all the air A1 is cooled and passes through the heat exchanger 11.
Since 1 is equally cooled and dehumidified, the heat exchange efficiency is good. As described above, according to the present embodiment, the flow divider 12 and the confluencer 14 are provided.
And a heat transfer tube 13 in which a large number of fins 15 are arranged. Inside the flow divider 12, a ribbon-shaped turbulence promoting body 1 is provided.
8 is provided, the gas-liquid two-phase flow refrigerant R in the flow divider 12 is provided.
Heat transfer tube 13 joined to shunt 12 with 1 as floss flow
The heat can be efficiently exchanged over the entire surface of the heat exchanger 11 by diverting the water evenly and arranging the flow distributor 12 and the confluent device 14 in parallel, and a small-sized and high-performance heat exchanger can be realized.

【0030】以下、本発明の第二の実施例を図面を参照
しながら説明する。図4は、本発明の第二の実施例の熱
交換器の全体を示すもので、21は熱交換器で両端が封
止された筒上の分流器22には、複数の伝熱管23が接
合されている。
A second embodiment of the present invention will be described below with reference to the drawings. FIG. 4 shows the entire heat exchanger of the second embodiment of the present invention, in which a plurality of heat transfer tubes 23 are provided in a cylindrical flow distributor 22 having both ends sealed by a heat exchanger. It is joined.

【0031】また、並列した合流器24にも多数のフィ
ン25が配設された複数の伝熱管13が2列に設置、接
合されている。分流器22に接合された伝熱管23は適
宜U字上に連結され、冷媒R2の回路を構成している。
分流器22には入口管26が接合され、合流器23には
出口管27が接合されている。分流器22の内部には下
部にのみ図2に示すリボン状の乱流促進体18が設けて
ある。
Further, a plurality of heat transfer tubes 13 provided with a large number of fins 25 are also installed and joined in two rows in the confluence unit 24 arranged in parallel. The heat transfer tube 23 joined to the flow distributor 22 is appropriately connected in a U shape to form a circuit of the refrigerant R2.
An inlet pipe 26 is joined to the flow distributor 22 and an outlet pipe 27 is joined to the combiner 23. A ribbon-shaped turbulence promoting body 18 shown in FIG. 2 is provided only in the lower part inside the flow distributor 22.

【0032】以上のように構成された熱交換器21につ
いて以下図4、図5を用いてその動作を説明する。
The operation of the heat exchanger 21 configured as described above will be described below with reference to FIGS. 4 and 5.

【0033】乾き度の小さい気液二相流の冷媒R2が入
口管26から分流器22へ流入する分流器22内を上方
に流れながら、伝熱管23に順次流出していく。適宜U
字状に連結された伝熱管23に配設されたフィン25を
介して分流器22側の全面より流れ込む空気A2と熱交
換しながら蒸発し、熱交換器21の後面側の伝熱管23
で乾き蒸気となった後、合流器24に至り合流し、出口
管27から流出する。
The refrigerant R2 of a gas-liquid two-phase flow having a low degree of dryness sequentially flows out to the heat transfer pipe 23 while flowing upward in the flow divider 22 flowing into the flow divider 22 from the inlet pipe 26. U as appropriate
The heat transfer tube 23 on the rear surface side of the heat exchanger 21 evaporates while exchanging heat with the air A2 flowing from the entire surface on the side of the flow distributor 22 via the fins 25 arranged on the heat transfer tube 23 connected in a letter shape.
After it becomes dry steam, it reaches the merger 24, merges, and flows out from the outlet pipe 27.

【0034】図5は、分流器22内部の冷媒R2の状態
を示す断面図で、この時冷媒R2はリボン状の乱流促進
体18により、分流器22の下部の流動様式が環状噴霧
流からフロス流に移行し、分流器22内はほぼ全域に渡
ってフロス流に移行する。
FIG. 5 is a cross-sectional view showing the state of the refrigerant R2 inside the flow divider 22. At this time, the refrigerant R2 is caused by the ribbon-like turbulence promoting member 18 so that the flow pattern in the lower portion of the flow divider 22 changes from the annular spray flow. It shifts to the floss flow, and shifts to the floss flow over almost the entire area of the flow divider 22.

【0035】従って、冷媒R2は各伝熱管23に均等に
流出して同等に蒸発する。分流器22で分流した冷媒R
2は再度合流することなくU字状に連結された伝熱管2
3内で蒸発して合流器24に至る。このときの分流器2
2より流出する冷媒R2の液相質量流量の比率を図6に
矢印の長さで示す。
Therefore, the refrigerant R2 equally flows out to each heat transfer pipe 23 and evaporates equally. Refrigerant R split in the flow divider 22
2 is a heat transfer tube 2 connected in a U shape without joining again
It vaporizes in 3 and reaches the confluencer 24. Shunt 2 at this time
The ratio of the liquid phase mass flow rate of the refrigerant R2 flowing out from the No. 2 is shown by the length of the arrow in FIG.

【0036】また、分流器22と合流器24を並列に設
置することで、熱交換器21を通過する全ての空気A2
は、上流側の伝熱管23の列で、蒸発初期の冷媒R2と
熱交換することとなり、全ての空気A2が冷却されて熱
交換器21を通過する為に熱交換器21の全面で空気A
2が同等に冷却、除湿されるため、熱交換効率が良い本
実施例では、リボン状の乱流促進体18をその効果が最
も顕著に現れる分流器22の下部にのみ設けてありコス
トパーフォーマンスを大幅に向上させることができる。
Further, by installing the flow divider 22 and the combiner 24 in parallel, all the air A2 passing through the heat exchanger 21 can be obtained.
In the row of the heat transfer tubes 23 on the upstream side, heat is exchanged with the refrigerant R2 in the initial stage of evaporation, and all the air A2 is cooled and passes through the heat exchanger 21, so that the air A on the entire surface of the heat exchanger 21 is cooled.
Since 2 is equally cooled and dehumidified, the ribbon-shaped turbulence promoting body 18 is provided only in the lower part of the flow divider 22 where the effect is most prominent in this embodiment, which has good heat exchange efficiency, and the cost performance is improved. Can be significantly improved.

【0037】以上のように本実施例によれば、分流器2
2と合流器24と多数のフィン25が配設された伝熱管
23とから構成され、分流器22の内部には、リボン状
の乱流促進体18を下部にのみ設けることで、分流器2
2内の気液二相流の冷媒R2をフロス流にして分流器2
2に接合された伝熱管23に均等に分流させ、分流器2
2と合流器24を並列に設置することで熱交換器21の
全面で効率良く熱交換を行うことが可能となり小型高性
能な熱交換器が実現できる。
As described above, according to this embodiment, the shunt 2
2, a confluence device 24, and a heat transfer tube 23 in which a large number of fins 25 are arranged. Inside the flow distributor 22, a ribbon-shaped turbulence promoting body 18 is provided only in the lower portion, so that the flow distributor 2
The gas-liquid two-phase refrigerant R2 in 2 is turned into a froth flow and the flow divider 2
The heat transfer tube 23 joined to the 2 is divided evenly, and the flow divider 2
By arranging 2 and the confluencer 24 in parallel, heat can be efficiently exchanged over the entire surface of the heat exchanger 21, and a compact and high-performance heat exchanger can be realized.

【0038】図6は、本発明の第三の実施例の熱交換器
の全体を示すもので、31は熱交換器で、両端が封止さ
れた筒上の分流器32には、複数の伝熱管33が接合さ
れている。また、並列した合流器34にも多数のフィン
35が配設された複数の伝熱管33が2列に設置、接合
されている。分流器32に接合された伝熱管33は適宜
U字上に連結され、冷媒R3の回路を構成している。分
流器32には入口管36が接合され、合流器33には出
口管37が接合されている。分流器32の内部には、図
7に示す小孔を有するリボン状の乱流促進体38が設け
てある。
FIG. 6 shows the entire heat exchanger according to the third embodiment of the present invention. Reference numeral 31 is a heat exchanger, and a plurality of heat exchangers are provided in a cylindrical flow divider 32 whose both ends are sealed. The heat transfer tube 33 is joined. Further, a plurality of heat transfer tubes 33 having a large number of fins 35 are also installed and joined in two rows in the confluence unit 34 arranged in parallel. The heat transfer tube 33 joined to the flow divider 32 is appropriately connected in a U shape to form a circuit of the refrigerant R3. An inlet pipe 36 is joined to the flow distributor 32, and an outlet pipe 37 is joined to the combiner 33. Inside the flow distributor 32, a ribbon-shaped turbulence promoting body 38 having small holes shown in FIG. 7 is provided.

【0039】以上のように構成された熱交換器31につ
いて以下図6、図8を用いてその動作を説明する。
The operation of the heat exchanger 31 configured as described above will be described below with reference to FIGS. 6 and 8.

【0040】乾き度の小さい気液二相流の冷媒R3が入
口管36から分流器32へ流入する分流器32内を上方
に流れながら、伝熱管33に順次流出していく。適宜U
字状に連結された伝熱管33に配設されたフィン35を
介して分流器32側の全面より流れ込む空気A3と熱交
換しながら蒸発し、熱交換器31の後面側の伝熱管33
で乾き蒸気となった後、合流器34に至り合流し、出口
管37から流出する。
The gas-liquid two-phase refrigerant R3 having a low degree of dryness sequentially flows out to the heat transfer tube 33 while flowing upward in the flow distributor 32 flowing into the flow distributor 32 from the inlet pipe 36. U as appropriate
The heat transfer tube 33 on the rear surface side of the heat exchanger 31 evaporates while exchanging heat with the air A3 flowing in from the entire surface on the side of the flow divider 32 via the fins 35 arranged on the heat transfer tube 33 connected in a letter shape.
After it becomes dry steam, it reaches the merger 34, merges, and flows out from the outlet pipe 37.

【0041】図8は、分流器32内部の冷媒R3の状態
を示す断面図で、この時冷媒R3はリボン状の乱流促進
体38により、分流器32の下部の流動様式が環状噴霧
流からフロス流に移行し、分流器32内はほぼ全域に渡
ってフロス流に移行する。この時、小孔39を通過する
冷媒R3と通過しない冷媒R3がうまく混合される。
FIG. 8 is a cross-sectional view showing the state of the refrigerant R3 inside the flow divider 32. At this time, the refrigerant R3 is caused by the ribbon-shaped turbulence promoting body 38 so that the flow pattern of the lower portion of the flow divider 32 is changed from the annular spray flow. It shifts to the floss flow, and shifts to the froth flow almost all over the inside of the flow divider 32. At this time, the refrigerant R3 that passes through the small holes 39 and the refrigerant R3 that does not pass through are mixed well.

【0042】従って、冷媒R3は各伝熱管33に均等に
流出して同等に蒸発する。分流器32で分流した冷媒R
3は再度合流することなくU字状に連結された伝熱管3
3内で蒸発して合流器34に至る。このときの分流器2
3より流出する冷媒R2の液相質量流量の比率を図8に
矢印の長さで示す。
Therefore, the refrigerant R3 uniformly flows out to each heat transfer tube 33 and evaporates equally. Refrigerant R split in the flow divider 32
3 is a heat transfer tube 3 connected in a U shape without joining again
It vaporizes in 3 and reaches the confluencer 34. Shunt 2 at this time
The ratio of the liquid phase mass flow rate of the refrigerant R2 flowing out from the No. 3 is shown by the length of the arrow in FIG.

【0043】また、分流器32と合流器34を並列に設
置することで、熱交換器31を通過する全ての空気32
は、上流側の伝熱管33の列で、蒸発初期の冷媒R3と
熱交換することとなり、全ての空気32が冷却されて熱
交換器31を通過する為に熱交換器31の全面で空気A
3が同等に冷却、除湿されるため、熱交換効率が良い本
実施例では、リボン状の乱流促進体38に小孔39が設
けてあるため、冷媒の混合効果と管内の圧力損失の低減
が図れ、性能を大幅に向上することができる。
Further, by installing the flow divider 32 and the combiner 34 in parallel, all the air 32 passing through the heat exchanger 31 can be obtained.
In the row of the heat transfer tubes 33 on the upstream side, heat is exchanged with the refrigerant R3 in the initial stage of evaporation, and all the air 32 is cooled and passes through the heat exchanger 31.
Since 3 is equally cooled and dehumidified, in this embodiment, which has good heat exchange efficiency, the ribbon-like turbulence promoting body 38 is provided with the small holes 39, so that the mixing effect of the refrigerant and the pressure loss in the pipe are reduced. The performance can be significantly improved.

【0044】以上のように本実施例によれば、分流器3
2と合流器34と多数のフィン35が配設された伝熱管
33とから構成され、分流器32の内部には、小孔39
を有するリボン状の乱流促進体38を設けることで、分
流器32内の気液二相流の冷媒R3を均等に混合、フロ
ス流にして、管内の圧力損失を低く保ち流器32に接合
された伝熱管33に均等に分流させ、分流器32と合流
器34を並列に設置することで熱交換器31の全面で効
率良く熱交換を行うことが可能となり、小型高性能な熱
交換器が実現できる。
As described above, according to this embodiment, the flow divider 3
2, a confluence device 34, and a heat transfer tube 33 having a large number of fins 35 arranged therein.
By providing the ribbon-like turbulent flow promoting body 38 having the above, the gas-liquid two-phase flow of the refrigerant R3 in the flow divider 32 is evenly mixed and made into a floss flow, and the pressure loss in the pipe is kept low and bonded to the flow device 32. It is possible to efficiently perform heat exchange on the entire surface of the heat exchanger 31 by distributing the heat evenly to the heat transfer tube 33, and installing the flow distributor 32 and the combiner 34 in parallel. Can be realized.

【0045】[0045]

【発明の効果】以上のように本発明は、両端が封止され
た筒状の分流器と、両端が封止された筒状の流器と、前
記分流器と前記合流器とに略直角に接合された複数の伝
熱管と前記伝熱管に多数配設された伝熱フィンとから構
成され、前記分流器の内部に乱流促進体を設けるという
構成を備えており、液冷媒は分流器に接続された伝熱管
にほぼ均等に流出し、効率よく熱交換が行われる。
As described above, according to the present invention, a tubular flow distributor whose both ends are sealed, a tubular flow distributor whose both ends are sealed, and a substantially right angle to the flow distributor and the merger. And a plurality of heat transfer fins disposed on the heat transfer tube, and a turbulence promoting body is provided inside the flow divider, and the liquid refrigerant is a flow divider. It flows out almost evenly into the heat transfer pipes connected to and heat is exchanged efficiently.

【0046】また、本発明は、両端が封止された筒状の
分流器と、両端が封止された筒状の合流器と前記分流器
と前記合流器に略直角に接合された複数の伝熱管と、前
記伝熱管に多数配設された伝熱フィンとから構成され、
前記分流器の内部にリボン状の乱流促進体を設けるとい
う構成を備えており、乱流促進体はリボン状であり、環
状噴霧流が効率よくフロス流に移行し液冷媒は分流器に
接続された全ての伝熱管にほぼ均等に流出し、効率よく
熱交換が行われる。
Further, according to the present invention, a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, a plurality of the flow distributors, and a plurality of the flow joiners which are joined at substantially right angles to the flow combiner. A heat transfer tube and a plurality of heat transfer fins arranged on the heat transfer tube,
The flow distributor has a structure in which a ribbon-shaped turbulence promoting body is provided, and the turbulent flow promoting body has a ribbon shape, and the annular spray flow efficiently transfers to the froth flow and the liquid refrigerant is connected to the flow distributor. It flows out almost uniformly to all the heat transfer tubes, and heat exchange is efficiently performed.

【0047】また、本発明は、両端が封止された筒状の
分流器と、両端が封止された筒状の合流器と前記分流器
と前記合流器に略直角に接合された複数の伝熱管と、前
記伝熱管に多数配設された伝熱フィンとから構成され、
前記分流器の内部にリボン状の乱流促進体を分流器の下
部から上部まで、ほぼ全域に設けるという構成を備えて
おり、分流器の下部では、流動様式がフロス流に移行
し、上部のフロス流域についても冷媒の混合が促進さ
れ、液冷媒は分流器に接続された全ての伝熱管にほぼ均
等に流出し、効率よく熱交換が行われる。
Further, according to the present invention, a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, a plurality of the flow distributors and a plurality of the flow joiners which are joined at substantially right angles to the flow combiner. A heat transfer tube and a plurality of heat transfer fins arranged on the heat transfer tube,
The inside of the flow distributor is provided with a ribbon-shaped turbulence promoting body provided in almost the entire area from the lower part to the upper part of the flow distributor. Mixing of the refrigerant is promoted also in the floss flow region, and the liquid refrigerant flows out to all the heat transfer pipes connected to the flow distributor almost evenly, and heat exchange is efficiently performed.

【0048】また、本発明は、両端が封止された筒状の
分流器と、両端が封止された筒状の合流器と前記分流器
と前記合流器に略直角に接合された複数の伝熱管と、前
記伝熱管に多数配設された伝熱フィンとから構成され、
前記分流器の内部にリボン状の乱流促進体を分流器の下
部にのみ設けるという構成を備えており、材料を有効に
活用して環状噴霧流の部分がフロス流に移行し、液冷媒
は、分流器に接続された全ての伝熱管に均等に流出し、
全伝熱管で、蒸発が同様に行われ、効率よく熱交換が行
われる。
Further, according to the present invention, a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, and a plurality of the flow distributors and a plurality of the flow joiners which are joined at substantially right angles to the flow combiner. A heat transfer tube and a plurality of heat transfer fins arranged on the heat transfer tube,
It is provided with a structure in which a ribbon-shaped turbulence promoting body is provided only inside the flow distributor inside the flow distributor, and the portion of the annular spray flow is effectively transferred to the floss flow, and the liquid refrigerant is , Evenly flows out to all heat transfer tubes connected to the shunt,
In all the heat transfer tubes, evaporation is similarly performed, and heat exchange is efficiently performed.

【0049】また、本発明は、両端が封止された筒状の
分流器と、両端が封止された筒状の合流器と前記分流器
と前記合流器に略直角に接合された複数の伝熱管と、前
記伝熱管に多数配設された伝熱フィンとから構成され、
前記分流器の内部に小孔を有する乱流促進体を設けると
いう構成を備えており、環状噴霧流の部分がフロス流に
移行するとともに、小孔を通過する冷媒と小孔を通過し
ない冷媒が混合され、液冷媒は、分流器に接続された全
ての伝熱管に均等に流出するとともに管内の圧力損失の
低減が図れ、性能を大幅に向上することができる。
Further, according to the present invention, a tubular flow distributor whose both ends are sealed, a tubular flow combiner whose both ends are sealed, and a plurality of the flow distributors and a plurality of the flow joiners which are joined at substantially right angles to the flow combiner. A heat transfer tube and a plurality of heat transfer fins arranged on the heat transfer tube,
It is provided with a structure in which a turbulent flow promoting body having a small hole is provided inside the flow divider, and a portion of the annular spray flow moves to a froth flow, and a refrigerant passing through the small hole and a refrigerant not passing through the small hole are provided. The liquid refrigerant mixed and uniformly flows out to all the heat transfer tubes connected to the flow divider, the pressure loss in the tubes can be reduced, and the performance can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の熱交換器の斜視図FIG. 1 is a perspective view of a heat exchanger according to a first embodiment of the present invention.

【図2】同熱交換器の乱流促進体の斜視図FIG. 2 is a perspective view of a turbulent flow promoting body of the heat exchanger.

【図3】同熱交換器の要部断面図FIG. 3 is a sectional view of a main part of the heat exchanger.

【図4】本発明の第二の実施例の熱交換器の斜視図FIG. 4 is a perspective view of a heat exchanger according to a second embodiment of the present invention.

【図5】同熱交換器の要部断面図FIG. 5 is a cross-sectional view of the main parts of the heat exchanger.

【図6】本発明の第三の実施例の熱交換器の斜視図FIG. 6 is a perspective view of a heat exchanger according to a third embodiment of the present invention.

【図7】同熱交換器の乱流促進体の斜視図FIG. 7 is a perspective view of a turbulent flow promoting body of the heat exchanger.

【図8】同熱交換器の要部断面図FIG. 8 is a sectional view of the main part of the heat exchanger.

【図9】従来の熱交換器の斜視図FIG. 9 is a perspective view of a conventional heat exchanger.

【図10】同熱交換器の要部断面図FIG. 10 is a sectional view of a main part of the heat exchanger.

【図11】同熱交換器の要部断面図FIG. 11 is a sectional view of a main part of the heat exchanger.

【図12】鉛直上向流の流動様式線図[Fig. 12] Flow pattern diagram of vertical upward flow

【図13】流動様式の説明した特性図FIG. 13 is a characteristic diagram explaining the flow pattern.

【符号の説明】[Explanation of symbols]

11,21,31 熱交換器 12,22,32 分流器 13,23,33 伝熱管 14,24,34 合流器 15,25,35 フィン 18,38 乱流促進体 39 小孔 11,21,31 Heat exchanger 12,22,32 Flow divider 13,23,33 Heat transfer tube 14,24,34 Combiner 15,25,35 Fin 18,38 Turbulence accelerator 39 Small hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平 輝彦 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruhiko Hira 3-22 Takada Hon-dori, Higashi-Osaka City, Osaka Prefecture Matsushita Cold Machinery Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 両端が封止された筒状の分流器と、両端
が封止された筒状の合流器と、前記分流器と前記合流器
とに略直角に接合された複数の伝熱管と、前記伝熱管に
多数配設された伝熱フィンとから構成され、前記分流器
の内部に乱流促進体を設けた熱交換器。
1. A tubular flow distributor with both ends sealed, a tubular combiner with both ends sealed, and a plurality of heat transfer tubes joined to the flow distributor and the combiner at substantially right angles. And a plurality of heat transfer fins arranged in the heat transfer tube, wherein a turbulent flow promoting body is provided inside the flow distributor.
【請求項2】 両端が封止された筒状の分流器と、両端
が封止された筒状の合流器と前記分流器と前記合流器に
略直角に接合された複数の伝熱管と、前記伝熱管に多数
配設された伝熱フィンとから構成され、前記分流器の内
部にリボン状の乱流促進体を設けた熱交換器。
2. A tubular flow distributor with both ends sealed, a tubular combiner with both ends sealed, the flow distributor, and a plurality of heat transfer tubes joined to the combiner at substantially right angles. A heat exchanger comprising a large number of heat transfer fins arranged in the heat transfer tube, wherein a ribbon-shaped turbulence promoting body is provided inside the flow distributor.
【請求項3】 両端が封止された筒状の分流器と、両端
が封止された筒状の合流器と前記分流器と前記合流器に
略直角に接合された複数の伝熱管と、前記伝熱管に多数
配設された伝熱フィンとから構成され、前記分流器の内
部にリボン状の乱流促進体を分流器の下部から上部ま
で、ほぼ全域に設けた熱交換器。
3. A tubular flow distributor whose both ends are sealed, a tubular combiner whose both ends are sealed, and a plurality of heat transfer tubes which are joined to said flow distributor and said combiner at substantially right angles. A heat exchanger comprising a large number of heat transfer fins arranged in the heat transfer tube, wherein a ribbon-shaped turbulence promoting body is provided inside the flow distributor over substantially the entire area from the lower part to the upper part of the flow distributor.
【請求項4】 両端が封止された筒状の分流器と、両端
が封止された筒状の合流器と前記分流器と前記合流器に
略直角に接合された複数の伝熱管と、前記伝熱管に多数
配設された伝熱フィンとから構成され、前記分流器の内
部にリボン状の乱流促進体を分流器の下部にのみ設けた
熱交換器。
4. A tubular flow distributor whose both ends are sealed, a tubular merger whose both ends are sealed, and a plurality of heat transfer tubes which are joined to said flow distributor and said merger at substantially right angles. A heat exchanger comprising a large number of heat transfer fins arranged in the heat transfer tube, wherein a ribbon-shaped turbulent flow promoting body is provided inside the flow distributor only below the flow distributor.
【請求項5】 両端が封止された筒状の分流器と、両端
が封止された筒状の合流器と前記分流器と前記合流器に
略直角に接合された複数の伝熱管と、前記伝熱管に多数
配設された伝熱フィンとから構成され、前記分流器の内
部に小孔を有する乱流促進体を設けた熱交換器。
5. A tubular flow distributor whose both ends are sealed, a tubular merger whose both ends are sealed, and a plurality of heat transfer tubes which are joined to said flow distributor and said merger at substantially right angles. A heat exchanger comprising a large number of heat transfer fins arranged in the heat transfer tube, wherein a turbulent flow promoting body having small holes is provided inside the flow distributor.
JP1096892A 1992-01-24 1992-01-24 Heat exchanger Pending JPH05203286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096892A JPH05203286A (en) 1992-01-24 1992-01-24 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096892A JPH05203286A (en) 1992-01-24 1992-01-24 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH05203286A true JPH05203286A (en) 1993-08-10

Family

ID=11764969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096892A Pending JPH05203286A (en) 1992-01-24 1992-01-24 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH05203286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040037685A (en) * 2002-10-29 2004-05-07 엘지전자 주식회사 Refrigerant uniform division device for regenerator
US20100218924A1 (en) * 2004-11-12 2010-09-02 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
WO2015002086A1 (en) 2013-07-02 2015-01-08 三菱電機株式会社 Refrigerant circuit and air conditioning device
CN104534747A (en) * 2015-01-07 2015-04-22 烟台冰轮股份有限公司 Evaporating calandria bank for refrigerating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040037685A (en) * 2002-10-29 2004-05-07 엘지전자 주식회사 Refrigerant uniform division device for regenerator
US20100218924A1 (en) * 2004-11-12 2010-09-02 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
US8302673B2 (en) 2004-11-12 2012-11-06 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
WO2015002086A1 (en) 2013-07-02 2015-01-08 三菱電機株式会社 Refrigerant circuit and air conditioning device
US10429109B2 (en) 2013-07-02 2019-10-01 Mitsubishi Electric Corporation Refrigerant circuit and air-conditioning apparatus
CN104534747A (en) * 2015-01-07 2015-04-22 烟台冰轮股份有限公司 Evaporating calandria bank for refrigerating system

Similar Documents

Publication Publication Date Title
USRE35502E (en) Evaporator
JP3358250B2 (en) Refrigerant evaporator
US3866439A (en) Evaporator with intertwined circuits
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
JP2008286488A (en) Refrigerant distributor
JP2002130866A (en) Condenser for air conditioning
Hrnjak Flow Distribution Issues in Parallel Flow Heat Exchangers.
JPH04295599A (en) Heat exchanger
JP3210062B2 (en) Refrigerant flow divider
JPH05203286A (en) Heat exchanger
JP2000257989A (en) Heat exchanger
JPH05203285A (en) Heat exchanger
JPH085195A (en) Heat exchanger
JP3735983B2 (en) Stacked evaporator
JPH06300477A (en) Heat exchanger
JPH06194001A (en) Refrigerant evaporator
JP2820428B2 (en) Refrigerant flow divider
JPH08200886A (en) Heat exchanger air conditioning
JPH06194003A (en) Air conditioner
JP2574488B2 (en) Heat exchanger
JP2927045B2 (en) Heat exchanger
JP3133897B2 (en) Heat exchanger
JPH0626733A (en) Heat exchanger
JP2000356495A (en) Heat exchanger
JPH074882A (en) Heat exchanger