Nothing Special   »   [go: up one dir, main page]

JPH0520187B2 - - Google Patents

Info

Publication number
JPH0520187B2
JPH0520187B2 JP61153685A JP15368586A JPH0520187B2 JP H0520187 B2 JPH0520187 B2 JP H0520187B2 JP 61153685 A JP61153685 A JP 61153685A JP 15368586 A JP15368586 A JP 15368586A JP H0520187 B2 JPH0520187 B2 JP H0520187B2
Authority
JP
Japan
Prior art keywords
layer
metal
mold
metals
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61153685A
Other languages
Japanese (ja)
Other versions
JPS6310058A (en
Inventor
Masayoshi Kitagawa
Shigenori Tanabe
Junji Matsunaga
Yoshisada Michiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Iron Works Ltd filed Critical Kurimoto Iron Works Ltd
Priority to JP15368586A priority Critical patent/JPS6310058A/en
Publication of JPS6310058A publication Critical patent/JPS6310058A/en
Publication of JPH0520187B2 publication Critical patent/JPH0520187B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本願発明は金属を溶融し鋳型の空隙に注入充填
して凝固後所望の形状をなす鋳造品を得る鋳造方
法、とくに所望の部位にのみ特定の物性を付与す
る鋳造方法に関するものである。 [従来の技術] 鋳造品のうちその使用態様によつて全体でなく
所望の1部分についてのみ特定の物性を付与した
い場合がある。 たとえば弁箱の弁座、渦巻ポンプについてケー
シングの喉口部、インペラの羽根付根付近などは
摺動による摩耗やキヤビテーシヨンによつて損耗
著しく他の部位は新品同様ながら取替えを余儀な
くされる。 鋳造品の一部特定の箇所に耐摩耗性、耐食性、
耐熱性など特定の物性を付与する方法としては、
鋳造品自体に溶射や、部分焼入(たとえば高周波
焼入)、浸炭、窒化など鋳造後に表面処理を加え
る方法もあるが、設備装置を必要とすることと、
作業工数が確実に増える問題点がある。 そのため鋳造前の鋳型の空隙表面の所望の部位
に、特定の異物質を含む硬化材層などを設けてお
いて、溶融金属を注湯しその熱で該硬化材層など
を溶着させて凝固後に所望の部位に硬化層を形成
しようとする鋳造方法が種々提案されてきた。こ
れらの従来技術はかなり数が多いが、たとえば (1) 「鋳鉄の塗型による表面硬化法」 (特公昭53−18166号公報) (2) 耐摩耗鋳造品の製造方法 (特開昭54−11026号公報) (3) 鋳込硬化用硬化材 (特開昭57−177850号) (4) 鋳鉄とサーメツトとの接合方法 (特開昭60−206557号公報) (5) 複合鋳物の製造法 (特開昭53−66824号公報) などを挙げることができる。 従来の技術第1引例はTe+Cuを主体とする粉
末を黒鉛粉末とともにアルコール液に混合して鋳
型に塗布し、V,Ni含有の鋳鉄溶湯を注入して
鋳造品の表面を硬化する方法で、従来のTe単独
の塗布を改善したものである。 第4引例は炭化物粒子と含クローム鋳鉄を結合
したサーメツトにこの含クローム鋳鉄と同一成分
の溶湯を鋳包む方法で、サーメツトと濡れ性のよ
い接合部を形成するものである。第5引例は摺動
性、耐摩耗性を増強する粒子層を結合材を用いて
鋳型内の表面上に形成し、溶湯後に加圧凝固して
粒子間に金属を含浸させるものである。 [発明が解決しようとする問題点] 従来の技術は鋳型の表面に塗膜や鋳包み体を作
り注入する溶融金属の熱によつて金属または合金
粉末を溶湯中へ溶解、拡散させることが共通する
基本である。 ここに掲げたのは第5引例を除き溶融金属が鋳
鉄に限られ、含有炭素をセメンタイト化して部分
的に白銑組織とするものであるから、目的は硬化
による耐摩耗性の向上であり、添加する硬化材は
白銑化傾向のある特定の物質に限られている。 しかし実現の要求としては鋳造品は鋳鉄に限ら
れず鋳鋼もあれば非鉄金属もあり、部分的に付与
したい物性も硬化による耐摩耗性向上だけに限ら
ず、その他の種類の耐摩耗性の向上、各種の耐食
性、耐キヤビテーシヨン、耐コロージヨンなどの
向上もある。 しかし従来の鋳造技術が塗膜材の溶解拡散を基
本とする以上、溶融点の高い合金粉末や、金属と
非金属との結合体(たとえば炭化物、酸化物、窒
化物、硼化物)の適用は大きな制約があり、また
溶融金属と反応性の乏しい合金粉末を使用して所
望の厚さの合金層を形成することは困難である。 さらに結合材として樹脂などに依存するだけで
は注湯後、ガス発生によるピンホールや巣の発生
が多く、作業性がよくない欠点があつた。 結合材としては有機系と無機系のものがある
が、無機系のものは(例えば水ガラスやエチルシ
リケート等)バインダー効果が大きいのと、燃え
にくいため溶湯に粉末金属が拡散しにくく、又溶
けにくいため表面に求める反応層ができにくい欠
点があった。 また硬化をもたらす物質粉末が溶湯の通過に遭
つて洗い流されて了い、予定外の部位にその物性
変化をもたらしたり、効果が失われたりする。 一般に塗膜だけでは大きな効果を期待できず硬
化層を厚さをコントロールすることが困難である
欠点もあつた。 第4引例は、塗膜の方式ではなく鋳包みを成形
し、かつそれが溶湯と濡れ性のよいものであるた
めに、WCなど超硬度の炭化物を結化成形するた
めの結合材として注湯すべき含クローム鋳鉄と同
一成分を適用している点が異色と言えようが、そ
のために例えばWC粉末を真空中で仮焼結して多
孔スケルトンを成形し、これを真空中で1300℃の
溶融鋳鉄に含浸させて一体化サーメツトを得ると
いう、きわめて煩瑣で高度な工程を経なければな
らない。実際の生産へ移行する上で大きな問題点
であると言わざるを得ない。 また第5引例は特に鋳鉄を母相にするとは限定
していないが、摺動性、耐摩耗性、の良好な被膜
を形成することを目的とし、注湯後の加圧凝固を
要件とするもので、従来までの慣用技術にダイカ
ストの思想を適用したと解することもできる。当
然材料上の制約、形状や寸法上の単一性、設備の
装備などがすべて課題として立ち塞がるから、到
底多種多様な鋳造品の生産に直接適用できる技術
とは言えない。 本願発明は以上の問題点を解決するために、鋳
造品の所望の部位に所望の物性を付与したいと言
う多様な要望に応え得、その層厚も自由に制御で
きる汎用性の高い新規な鋳造方法の提供を目的と
する。 [問題点を解決するための手段] 本願発明に係る鋳造方法は、A鋳造しようとす
る金属に特定の物性(耐摩耗性、耐食性、耐熱性
など)を付与する特定の金属、合金、金属と非金
属との結合耐などの粉末と、B前記Aを構成する
金属より明確に低溶融点を有する金属の粉末と、
C適量の有機系結合材との3者を縛り合せて所定
の厚さの添着層を前記鋳型の鋳肌表面の所望の部
位にあらかじめ設けておき、該空隙へ前記Bを構
成する金属の溶融点より明確に高温度の第三の溶
融金属を注入充填し、まず添着層を構成する低融
点の金属粉末を注入金属の熱によって溶湯して、
三者を液相焼結により相互に一体化し、続いて注
入した第三の金属と層表面を通じて拡散溶着する
が、前記Aを構成する金属自体は変らずに層の主
体を占めたままで、凝固後、該所望の部位に特定
の物性を発現する反応層を形成させる手順を彩る
ことによつて前記の問題点を解決した。 またさらに本件方法を具体的に実施する態様と
して、前記A,B,C3者をスラリー状に混和し
て鋳型表面に塗着する方法や、3者を混練したの
ち薄板状に成形して鋳肌面に添着する態様も示し
て前記問題点の解決をより容易にした。 [作用] 内部に添着層を設けた鋳型に目的の溶融金属を
注入すると、この溶湯の熱のため、添着層を構成
するB金属がその溶融点に達して溶けはじめる。 このときA金属(結合体)は配合された材質に
よつて、溶解する場合と、一部表面近くのみ溶解
する場合と、全く溶解しない場合の三態様が生じ
る。 これはA成分の内容(材質と配合割合)と注入
する溶解金属の湯温とのかね合いで幾通りにも条
件が異なるが、これらはすべて事前に計算し策定
することができる要素である。 最も重要な作用の特徴は、添着層のすべてがそ
のまま溶湯に溶解拡散して反応層をストレートに
形成するのではなく、低溶融点のB金属がまず溶
湯の熱をうけて溶解し、A成分を強固に抱き込ん
で溶解金属と協力に溶着する、いわゆる液相焼結
を起す点である。 したがつて後の実施例で示されるように、反応
層は物性を支配するA成分を抱き込んでB金属と
溶解金属母材と結合し、A成分はあらかじめ計画
した鋳造方案通り、所定の深度に亘つて母材に強
く拡散接合している。 なお構成要件中C成分は、添着層を形成してい
る時点の鋳型面との結合を保持し、注湯時には、
その流勢に押されて層が離脱しないで凝固が表面
からはじまるので把持する役割を果すものであ
る。 さりに有機系はバインダーが瞬間的に燃え、粉
末金属が溶湯に拡散しやすく、又溶けやすく表面
に求める反応層ができやすい。 有機系のバインダーでも実施例で述べるように
特にセラミツクの製造に使用されるバインダーが
適当である。 [実施例] 第1図は本願出願の効果を確認するために作製
した試験片の鋳型の断面を示し、鋳型1,2は硅
砂の、CO2ガス型である。(なお鋳型には湯口4、
堰5を設ける) 添着層3はA,B,C3種類の混合体を混練し
て、鋳型の表面に成形添着したもので、厚さは約
2mmである。 第1表は本実施例のA,B,C各配合材の成分
と配合比を示したものである。
[Industrial Application Field] The present invention relates to a casting method for obtaining a cast product having a desired shape after solidification by melting metal and injecting it into the voids of a mold, particularly a casting method for imparting specific physical properties only to desired parts. It is related to. [Prior Art] Depending on how the cast product is used, there are cases where it is desired to impart specific physical properties to only a desired portion of the cast product, rather than to the entire cast product. For example, parts such as the valve seat of a valve box, the throat of a casing of a centrifugal pump, and the vicinity of the blade of an impeller are subject to wear and tear due to sliding and cavitation, and must be replaced even though other parts are as good as new. Abrasion resistance, corrosion resistance,
As a method of imparting specific physical properties such as heat resistance,
There are methods of applying surface treatments to the cast product itself after casting, such as thermal spraying, partial hardening (for example, induction hardening), carburizing, and nitriding, but these require equipment and
There is a problem that the number of man-hours will definitely increase. Therefore, a hardening material layer containing a specific foreign substance is provided at a desired location on the cavity surface of the mold before casting, and molten metal is poured and the hardening material layer is welded by the heat. Various casting methods have been proposed to form a hardened layer at a desired location. There are quite a number of these conventional techniques, but examples include (1) "Surface hardening method using cast iron coating molds" (Japanese Patent Publication No. 18166/1983) (2) Method of manufacturing wear-resistant cast products (Japanese Patent Publication No. 18166/1983) 11026) (3) Hardening material for casting (Japanese Patent Application Laid-Open No. 177850/1982) (4) Method for joining cast iron and cermet (Japanese Patent Application Laid-open No. 60-206557) (5) Method for manufacturing composite castings (Japanese Unexamined Patent Publication No. 53-66824). The first cited example of conventional technology is a method in which a powder mainly composed of Te+Cu is mixed with an alcohol solution along with graphite powder, applied to a mold, and molten cast iron containing V and Ni is injected to harden the surface of the cast product. This is an improvement over the application of Te alone. The fourth reference is a method in which molten metal having the same composition as the chromium-containing cast iron is cast into a cermet that combines carbide particles and chromium-containing cast iron, thereby forming a joint with good wettability with the cermet. In the fifth cited example, a particle layer that enhances sliding properties and wear resistance is formed on the surface of the mold using a binder, and after the melt is solidified under pressure, metal is impregnated between the particles. [Problems to be solved by the invention] Conventional techniques commonly involve forming a coating film or cast-in body on the surface of a mold, and melting and dispersing metal or alloy powder into the molten metal using the heat of the injected molten metal. This is the basics. Except for the 5th citation, the molten metal listed here is limited to cast iron, and the carbon content is cementitized to partially form a white pig iron structure, so the purpose is to improve wear resistance through hardening. The hardening agents added are limited to specific substances that tend to whiten. However, in terms of realization requirements, cast products are not limited to cast iron, but include cast steel and non-ferrous metals, and the physical properties that are desired to be partially imparted are not limited to improving wear resistance through hardening, but also improving other types of wear resistance, There are also various improvements in corrosion resistance, cavitation resistance, corrosion resistance, etc. However, since conventional casting technology is based on the dissolution and diffusion of coating materials, the application of alloy powders with high melting points and combinations of metals and non-metals (e.g. carbides, oxides, nitrides, borides) is difficult. There are significant limitations, and it is difficult to form an alloy layer of a desired thickness using alloy powder that has poor reactivity with molten metal. Furthermore, relying only on resin as a bonding material has the disadvantage that pinholes and cavities are often generated due to gas generation after pouring, resulting in poor workability. There are organic and inorganic binders, but inorganic binders (such as water glass and ethyl silicate) have a strong binder effect and are less flammable, making it difficult for powdered metal to diffuse into the molten metal. This has the disadvantage that it is difficult to form the required reaction layer on the surface. In addition, the material powder that causes hardening is washed away when the molten metal passes through it, resulting in physical property changes in unexpected areas or loss of effectiveness. Generally, a coating film alone cannot be expected to have a great effect, and it also has the disadvantage that it is difficult to control the thickness of the cured layer. The fourth citation uses a cast-in instead of a coating method, and because it has good wettability with molten metal, it is used as a binder for forming ultra-hard carbides such as WC. It can be said that it is unique in that it uses the same ingredients as the chromium-containing cast iron, but for this purpose, for example, WC powder is pre-sintered in a vacuum to form a porous skeleton, which is then melted at 1300℃ in a vacuum. This requires a very complicated and sophisticated process of impregnating cast iron to obtain an integrated cermet. It must be said that this is a major problem when moving to actual production. In addition, the fifth reference does not specifically limit the use of cast iron as the matrix, but the purpose is to form a film with good sliding properties and wear resistance, and requires pressure solidification after pouring. It can also be interpreted as applying the idea of die casting to conventional technology. Naturally, material constraints, uniformity in shape and dimensions, equipment equipment, etc. all pose problems, so it cannot be said that this is a technology that can be directly applied to the production of a wide variety of cast products. In order to solve the above-mentioned problems, the present invention has developed a highly versatile new casting method that can meet the various demands of imparting desired physical properties to desired parts of a cast product and that can freely control the layer thickness. The purpose is to provide a method. [Means for Solving the Problems] The casting method according to the present invention A uses a specific metal, alloy, or metal that imparts specific physical properties (wear resistance, corrosion resistance, heat resistance, etc.) to the metal to be cast. A powder that is resistant to bonding with nonmetals, and a powder of a metal that has a clearly lower melting point than the metal constituting A.
An adhesion layer of a predetermined thickness is provided in advance at a desired location on the surface of the casting surface of the mold by binding an appropriate amount of an organic binder, and the metal constituting B is melted into the void. A third molten metal with a clearly higher temperature is injected and filled from the point, and the low melting point metal powder that makes up the impregnated layer is melted by the heat of the injected metal.
The three parts are integrated with each other by liquid phase sintering, and then the injected third metal is diffused and welded through the layer surface, but the metal constituting A remains unchanged and occupies the main part of the layer, and solidifies. Subsequently, the above-mentioned problem was solved by modifying the procedure for forming a reaction layer exhibiting specific physical properties at the desired site. In addition, as a specific embodiment of the present method, there is a method in which the three components A, B, and C are mixed in a slurry form and applied to the surface of the mold, or a method in which the three components are kneaded and then formed into a thin plate to form a casting surface. A mode of attaching it to a surface was also shown to make it easier to solve the above problem. [Operation] When a target molten metal is poured into a mold having an impregnated layer inside, metal B forming the impregnated layer reaches its melting point and begins to melt due to the heat of the molten metal. At this time, metal A (bond) can be dissolved in three ways depending on the blended materials: it may dissolve only partially near the surface, or it may not dissolve at all. There are many different conditions for this, depending on the content of component A (material and blending ratio) and the temperature of the molten metal to be injected, but all of these are factors that can be calculated and determined in advance. The most important feature of the action is that all of the impregnated layer does not dissolve and diffuse into the molten metal to form a straight reaction layer, but metal B, which has a low melting point, first receives the heat of the molten metal and melts, forming the A component. This is the point at which so-called liquid phase sintering occurs, where the metal is tightly held and welded to the molten metal. Therefore, as shown in the later examples, the reaction layer embraces the A component that controls physical properties and combines with the B metal and the molten metal matrix, and the A component is deposited at a predetermined depth according to the casting plan planned in advance. It is strongly diffusion bonded to the base material over a period of time. In addition, component C in the constituent requirements maintains the bond with the mold surface at the time of forming the attachment layer, and when pouring,
The layer does not separate due to the force of the flow, and solidification starts from the surface, so it plays a gripping role. On the other hand, with organic binders, the binder burns instantaneously, the powdered metal easily diffuses into the molten metal, and is easily soluble to form the desired reaction layer on the surface. Among organic binders, binders used in the production of ceramics are particularly suitable, as described in the Examples. [Example] Fig. 1 shows a cross section of a mold for a test piece prepared to confirm the effect of the present application, and molds 1 and 2 are silica sand and CO 2 gas molds. (The mold has sprue 4,
(Providing a weir 5) The adhesion layer 3 is a mixture of three types A, B, and C kneaded and attached to the surface of the mold, and has a thickness of about 2 mm. Table 1 shows the components and compounding ratios of each compounding material A, B, and C of this example.

【表】【table】

【表】 にて希釈混合して添着層を形成する。
次に第2表に示すのは比較のために第1図と同
一構成の鋳型で添着層の構成をA+Cのみとした
従来技術である。
Dilute and mix according to [Table] to form an adhesion layer.
Next, Table 2 shows, for comparison, a conventional technique in which the mold has the same structure as that in FIG. 1, but the structure of the impregnated layer is only A+C.

【表】 第3表は第1表、第2表にそれぞれ示す添着層
を設けた2ケの鋳型に注湯した母材金属(普通鋳
鉄)の成分である。
[Table] Table 3 shows the composition of the base metal (ordinary cast iron) poured into two molds provided with the impregnated layers shown in Tables 1 and 2, respectively.

【表】 鋳込温度は1450℃である。 第2図は、本実施例の組織を示す顕微鏡写真
(×100)であり、第3図は比較のため同一条件で
実施した従来技術の組織を示す顕微鏡写真(×
100)である。 第4図はこの実施例と比較例(従来技術)の表
面より内部へ向けての深度ごとのビツカース硬度
の変化を示したもので、実線が本願、点線が比較
例である。 第1図の試験片によつて別の実施例も試験して
見た。すなわち前例が耐摩耗性の確認であつたの
に対し第二例では耐食性の付加を目的とし、比較
材としてニレジストを選んで確認した。第4表は
添着層3のA,B,C各配合材の成分と配合比を
示したものである。
[Table] The casting temperature is 1450℃. FIG. 2 is a micrograph (×100) showing the structure of this example, and FIG. 3 is a micrograph (×100) showing the structure of the conventional technology carried out under the same conditions for comparison.
100). FIG. 4 shows the change in Vickers hardness at each depth from the surface toward the inside of this example and the comparative example (prior art), with the solid line representing the present invention and the dotted line representing the comparative example. Other examples were also tested using the specimen of FIG. That is, while the previous example was to confirm wear resistance, the second example aimed to add corrosion resistance, and Niresist was selected as a comparative material for confirmation. Table 4 shows the components and compounding ratios of each compounding material A, B, and C of the attachment layer 3.

【表】 比較例1はSS41の切り出し、比較例2〜4は
ASTMでそれぞれ規定するニレジスト1b,2b,
D2に該当する試験片を第1図に示す鋳型によつ
て採取している。 第5表は本願発明の第二実施例と比較例1〜4
を同一条件で耐食性試験を施した結果を示し、条
件は何れも試験温度45℃、試験時間800hr、腐食
試験液としては (a) 3%Nacl −0.1%H2SO4 (b) 3%Nacl −0.3%H2SO4 (c) 3%Nacl −0.5%H2SO4 の3種類とし連続噴霧状に塩浴した。 試験結果の数値としては平均腐食速度M(μ/
年)と最大板厚減小速度R(mm/年)に換算して
表示している。
[Table] Comparative example 1 is cut out of SS41, comparative examples 2 to 4 are
Niresist 1b, 2b, respectively specified by ASTM
A test piece corresponding to D 2 was taken using the mold shown in Figure 1. Table 5 shows the second embodiment of the present invention and comparative examples 1 to 4.
The following shows the results of a corrosion resistance test under the same conditions. The test temperature was 45℃, the test time was 800 hours, and the corrosion test liquid was (a) 3% Nacl - 0.1% H 2 SO 4 (b) 3% Nacl. -0.3% H 2 SO 4 (c) 3% Nacl -0.5% H 2 SO 4 were used in a salt bath in continuous spray form. The numerical value of the test results is the average corrosion rate M (μ/
year) and the maximum plate thickness reduction rate R (mm/year).

【表】 ここで明らかなように本願第二実施例では耐食
性において普通炭素鋼のレベルを格段に抜き、対
海水などの耐食材料として定評のあるニレジスト
の域に致していることを立証した。 第7図は第5表の結果を図表にプロツトして顕
著な効果の程度を視覚化したものである。 なお、有機系の結合材としては次に挙げる材質
のものの内から選択すれば好い結果が得られる。 結合材 セルロースアセテートブチレート、ニトロセル
ロース、石油レジン、ポリエチレン、ポリアクリ
ル酸エステル、ポリメタルメタクリレート、ポリ
ビニルアルコール、ポリビニルブチラール、塩化
ビニル、ポリメタクリル酸エステル、エチルセル
ロース、アビエチン酸レジン、また、前記Aの金
属系粉末としては、この他に金属の炭化物、窒化
物、硼化物、たとえばWC,TiC,TiNなど超硬
材料として周知の材料を適用してもよい。 第5図は実際の鋳造品としての適用例を示し、
第5図Aはポンプのインペラの正面図で特に羽根
の付根(ハツチング箇所)附近は激しい摩耗に瀑
されるので従来は全体を高耐摩耗性材質(たとえ
ば27%クローム鋳鉄)で製造していた。 第5図Bは本願実施例で主型1に中子型2をは
めこみ、中子型の羽根付根に相当する空隙部分に
厚さ4mmの薄板状に成形した本願添着層3を貼り
出した。 6は湯道である。 第6図はポンプのケーシング鋳型の例で主型1
にはめこむ中子型2のうち、ケーシングの喉口部
に相当する表面にスラリー状に混和した本願A,
B,C3成分を塗型して本願添着層3を厚さ2mm
に亘つて形成した。 [発明の効果] 本願発明の効果の一例を第2図と第3図の顕微
鏡写真による組織から見比べると、表面からある
深度に亘つて形成される炭化クロームを主とする
反応層(本例では硬化層)をみれば、本願(第2
図)の方が明らかに従来の技術(第3図)に比べ
て深く発現しており、同じ硬化材(Fe−Cr)を
使用しても硬化目的をより有効に果している。 結局硬化材の把握がより有効であると言うこと
ができる。 この差は硬度変化を示す第4図からもうかがえ
る。 また第5図Aに示すインペラの場合、はげしい
摩耗に瀑される部分をさらに耐摩耗性を増強する
効果もあるが、一般に耐摩耗材料は反面典型的な
難削材料でもあるから、インペラボスの加工など
に著しい加工費の高騰をもたらす。 したがつて第5図Bの空隙部へ注入充填する溶
解金属をいままでのような高耐摩耗性(超難切削
性)の材質より、大幅にレベルダウンした低耐摩
耗材でも十分に従来と同様の耐用期間を得ること
ができるという別の効果もある。 また第6図の実施例でも同じ効果が期待できる
上、手順が簡単で実施が容易という本実施例特有
の効果がある。 また結合材として特に有機系のものに限定した
ので、表面に求める反応層の形成を確実に実現す
る効果が得られる。
[Table] As is clear here, in the second example of the present application, it has been proven that the corrosion resistance is far superior to that of ordinary carbon steel, and is in the range of Niresist, which has a reputation as a corrosion resistant material against seawater and the like. Figure 7 plots the results of Table 5 on a chart to visualize the degree of remarkable effect. Note that good results can be obtained by selecting the organic binder from among the materials listed below. Binding materials Cellulose acetate butyrate, nitrocellulose, petroleum resin, polyethylene, polyacrylic acid ester, polymetal methacrylate, polyvinyl alcohol, polyvinyl butyral, vinyl chloride, polymethacrylic acid ester, ethyl cellulose, abietic acid resin, and the metal A above In addition to the above, materials known as superhard materials such as metal carbides, nitrides, and borides, such as WC, TiC, and TiN, may be used as the system powder. Figure 5 shows an example of application as an actual cast product.
Figure 5A is a front view of a pump impeller.The area around the blade root (hatching area) is subject to severe wear, so conventionally the entire part was made of highly wear-resistant material (for example, 27% chrome cast iron). . FIG. 5B shows an embodiment of the present invention in which a core mold 2 is fitted into a main mold 1, and an adhesive layer 3 of the present invention formed into a thin plate having a thickness of 4 mm is pasted into the gap corresponding to the blade root of the core mold. 6 is a hot water path. Figure 6 is an example of a pump casing mold, main mold 1.
Of the core mold 2 to be fitted, the present application A mixed in a slurry form on the surface corresponding to the throat part of the casing;
Apply the B and C3 components to form the attachment layer 3 with a thickness of 2 mm.
It was formed over a period of time. [Effects of the Invention] Comparing an example of the effects of the present invention from the microscopic micrographs of the microstructures in FIGS. If you look at the hardened layer), you will see that the present application (second hardened layer)
It is clear that the method shown in Fig. 3 is more deeply expressed than the conventional technology (Fig. 3), and even if the same hardening material (Fe-Cr) is used, it achieves the purpose of hardening more effectively. In the end, it can be said that grasping the hardening material is more effective. This difference can also be seen from Figure 4, which shows changes in hardness. In addition, in the case of the impeller shown in Figure 5A, it has the effect of further increasing the wear resistance of the parts that are subject to severe wear, but in general wear-resistant materials are also typically difficult-to-cut materials, so machining of the impeller boss This results in a significant rise in processing costs. Therefore, the molten metal to be injected and filled into the void shown in Figure 5B can be made of a low wear-resistant material that is significantly lower than the conventional high wear-resistant (ultra-difficult-to-cut) material. Another effect is that it is possible to obtain a service life of . In addition, the embodiment shown in FIG. 6 can be expected to have the same effect, and has the advantage that this embodiment has a simple procedure and is easy to implement. Moreover, since the binder is limited to an organic type, the effect of reliably realizing the formation of the desired reaction layer on the surface can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願実施例を示す鋳型の正面断面図、
第2図は本願実施例の金属組織を示す顕微鏡写
真、第3図は従来技術例の金属組織を示す顕微鏡
写真、第4図は、第2図、第3図に示す例の硬化
層と硬度と表面からの深度を示すグラフ、第5図
A,Bは実際の鋳造品(正面図)と本願実施例を
示す鋳型(平面断面図)、第6図は別の実施例を
示す平面断面図。第7図は本願第二実施例の効果
を例示するグラフ。 1,2……鋳型、3……添着層。
FIG. 1 is a front sectional view of a mold showing an embodiment of the present application;
Fig. 2 is a micrograph showing the metal structure of the example of the present application, Fig. 3 is a photomicrograph showing the metal structure of the prior art example, and Fig. 4 is the hardened layer and hardness of the example shown in Figs. 2 and 3. and a graph showing the depth from the surface, Figures 5A and B are an actual cast product (front view) and a mold (plane sectional view) showing the embodiment of the present application, and Figure 6 is a plane sectional view showing another embodiment. . FIG. 7 is a graph illustrating the effect of the second embodiment of the present application. 1, 2...mold, 3...adhesive layer.

Claims (1)

【特許請求の範囲】 1 鋳型空隙部に溶融金属を注入充填し、凝固後
所望の形状をなす鋳造品を得る鋳造方法におい
て、A前記金属に特定の物性を付与する特定の金
属および/又は複数種類の金属による合金材およ
び/又は金属と非金属との結合体よりなる粉末
と、B前記Aを構成する金属より明確に低溶融点
を有する金属の粉末と、C適量の有機係結合材と
の三者を練り合わせて所定の厚さの添着層を前記
鋳型の鋳肌表面の所望の部位にあらかじめ設けて
おき、該空隙へ前記Bを構成する金属の溶融点よ
りは明確に高温度の第三の溶融金属を注入充填
し、まず添着層を構成する低溶融点の金属粉末を
注入金属の保有熱によつて溶解し、三者を液相焼
結によつて相互に一体化し、続いて注入した第三
の金属と層表面を通じて拡散溶着するが、前記A
を構成する金属自体は変わらず層の主体を占めた
ままで、凝固後、該所望の部位に特定の物性を発
現する反応層を形成させることを特徴とする鋳造
方法。 2 添着層が前記A,B,C三者をスラリー状に
混和して、鋳型表面の所望の部位に所望の厚さだ
け添着する特許請求の範囲第1項記載の鋳造方
法。 3 添着層が前記A,B,C三者を混練したのち
薄板状に成形し、鋳型鋳肌表面の所望の部位に倣
つて所望の厚さの薄板として添着する特許請求の
範囲第1項記載の鋳造方法。
[Scope of Claims] 1. A casting method in which a mold cavity is injected and filled with molten metal to obtain a cast product having a desired shape after solidification, which includes: A a specific metal and/or a plurality of metals that impart specific physical properties to the metal; A powder made of an alloy material of various types of metals and/or a combination of metals and non-metals; An impregnating layer of a predetermined thickness is prepared in advance at a desired location on the surface of the casting surface of the mold by kneading together the three materials, and an impregnating layer having a temperature clearly higher than the melting point of the metal constituting B is added to the void. The three molten metals are injected and filled, first the low melting point metal powder that makes up the impregnated layer is melted by the heat possessed by the injected metal, the three are mutually integrated by liquid phase sintering, and then The injected third metal is diffused and welded through the layer surface, but the A
A casting method characterized in that the metal itself that constitutes the layer remains the main part of the layer, and after solidification, a reaction layer that exhibits specific physical properties is formed at the desired location. 2. The casting method according to claim 1, wherein the attachment layer is a mixture of the three materials A, B, and C in the form of a slurry and is attached to a desired portion of the mold surface to a desired thickness. 3. The attachment layer is formed into a thin plate after kneading the three materials A, B, and C, and is attached as a thin plate of a desired thickness by following the desired area on the surface of the casting surface of the mold. casting method.
JP15368586A 1986-06-30 1986-06-30 Casting method Granted JPS6310058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15368586A JPS6310058A (en) 1986-06-30 1986-06-30 Casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15368586A JPS6310058A (en) 1986-06-30 1986-06-30 Casting method

Publications (2)

Publication Number Publication Date
JPS6310058A JPS6310058A (en) 1988-01-16
JPH0520187B2 true JPH0520187B2 (en) 1993-03-18

Family

ID=15567914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15368586A Granted JPS6310058A (en) 1986-06-30 1986-06-30 Casting method

Country Status (1)

Country Link
JP (1) JPS6310058A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08626B2 (en) * 1988-06-03 1996-01-10 川崎製鉄株式会社 Cutting amount control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52730A (en) * 1976-06-17 1977-01-06 Uss Eng & Consult Closing mechanism of sliding gate controlling flow of molten metal
JPS5326565A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Fluorescent face exposure unit for color braun tube
JPS5366824A (en) * 1976-11-26 1978-06-14 Hitachi Ltd Preparation of complex casting
JPS57100838A (en) * 1980-12-15 1982-06-23 Mitsubishi Heavy Ind Ltd Hardening material for hardening of casting
JPS60206557A (en) * 1984-03-30 1985-10-18 Koubukuro Kosakusho:Kk Joining method of cast iron and cermet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52730A (en) * 1976-06-17 1977-01-06 Uss Eng & Consult Closing mechanism of sliding gate controlling flow of molten metal
JPS5326565A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Fluorescent face exposure unit for color braun tube
JPS5366824A (en) * 1976-11-26 1978-06-14 Hitachi Ltd Preparation of complex casting
JPS57100838A (en) * 1980-12-15 1982-06-23 Mitsubishi Heavy Ind Ltd Hardening material for hardening of casting
JPS60206557A (en) * 1984-03-30 1985-10-18 Koubukuro Kosakusho:Kk Joining method of cast iron and cermet

Also Published As

Publication number Publication date
JPS6310058A (en) 1988-01-16

Similar Documents

Publication Publication Date Title
US5052464A (en) Method of casting a member having an improved surface layer
CN101837444B (en) High manganese steel Sic ceramic particles composite preparation method
US3450189A (en) Process of coating metal castings
CN107398544B (en) A kind of lost-foam casting method of three-dimensional network ceramics-iron base composite material
DE102007059771A1 (en) Cylinder bush or cylinder liner made of gray iron- or aluminum alloy for casting in a light metal alloy on the basis of aluminum or aluminum/magnesium, comprises a conditioning coating for casting
CA3133871A1 (en) Composite material based on alloys, manufactured in situ, reinforced with tungsten carbide and methods of its production
KR20090095652A (en) Method of reinforcing low melting temperature cast metal parts
CN105964919A (en) Lost-foam casting method of liquid-liquid composite aluminum-magnesium bimetal casting
JPH0520187B2 (en)
JPH0524993B2 (en)
CN1256207C (en) Copper and copper alloy surface casting and penetrating process
US1981403A (en) Surface coating castings
JPS59147769A (en) Production of composite casting
JPS59199165A (en) Joining method of chromium cast iron and sintered hard alloy
JPS5838219B2 (en) Method for manufacturing cast steel parts with wear resistance on the surface layer
JPH04262851A (en) Casting method
JP3828600B2 (en) Method for surface modification of cast products
JPS62187560A (en) Metal cladding and casting method
JP3151556B2 (en) Composite casting method
JP2003225755A (en) Method of reforming casting surface
JPS60206557A (en) Joining method of cast iron and cermet
JP3077084B2 (en) Composite casting method
JPS583746A (en) Alloying material for surface layer of casting
JP2008246551A (en) Sleeve for die casting machine, and its manufacturing method
JPH10272547A (en) Complex centrifugal casting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term