Nothing Special   »   [go: up one dir, main page]

JPH05205555A - Manufacture of contact material - Google Patents

Manufacture of contact material

Info

Publication number
JPH05205555A
JPH05205555A JP4032788A JP3278892A JPH05205555A JP H05205555 A JPH05205555 A JP H05205555A JP 4032788 A JP4032788 A JP 4032788A JP 3278892 A JP3278892 A JP 3278892A JP H05205555 A JPH05205555 A JP H05205555A
Authority
JP
Japan
Prior art keywords
powder
metal
contact
sintering
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4032788A
Other languages
Japanese (ja)
Inventor
Yoshinobu Takegawa
禎信 竹川
Isato Inada
勇人 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4032788A priority Critical patent/JPH05205555A/en
Publication of JPH05205555A publication Critical patent/JPH05205555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To provide electric contact material having high degree of sintering easily by using powder, obtained after adding sintering performance improving powder, which makes sintering obstructing material harmless, and processing mechanical alloying, as allay powder. CONSTITUTION:Metal powder for basis material and metal powder for reinforcing contact characteristic are mechanical allaying processed so as to be allay, and the compact of the powder of the allay is sintered so as to obtain contact material formed of sintered body where metal particles for reinforcing the contact characteristic disperse in basis metal. In this case, powder, obtained after adding sintering performance improving powder, which makes sintering obstructing material harmless, to the metal powder for the basis material and the metal powder for reinforcing the contact characteristic, and performing mechanical alloying processing, is used as alloy powder. Powder, for instance titanium powder, tungusten powder, which reacts easily with sintering obstructing material, such as oxygen, carbon, or the like, so as to produce oxide or carbide, as sintering performance improving powder. Thereby contact material having high degree of sintering, where the metal particles are finely dispersed in sufficient quantity, is obtained easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、リレー、コンタク
タ、ブレーカー等の電気接点材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing electric contact materials such as relays, contactors and breakers.

【0002】[0002]

【従来の技術】高導電性の金属素地(例えば、銀素地)
中に(素地金属とは別の)接点特性強化用の金属粒子
(例えば、ニッケル粒子)を分散させることにより金属
素地(マトリックス)を強化して接点特性を高めてい
る。このように金属素地中に他の金属粒子が分散した接
点材料では、分散粒子の転位の移動が妨げられるため強
化される、と一般に言われている(例えば、Orowanの理
論) 。この場合、接点特性強化用の金属粒子(以下、適
宜「強化用の金属粒子」と言う)の間隔が狭いほど強化
効果が高い。強化用の金属粒子の間隔を狭くするには、
その含有量を多くするか、より微細な粒子として分散さ
せるかすればよい。に分散させればよい。
2. Description of the Related Art A highly conductive metal substrate (for example, a silver substrate)
By dispersing metal particles (for example, nickel particles) for strengthening contact characteristics (different from the base metal) therein, the metal base (matrix) is strengthened to improve contact characteristics. It is generally said that the contact material in which other metal particles are dispersed in the metal matrix is strengthened because the movement of dislocations in the dispersed particles is hindered (for example, Orowan's theory). In this case, the narrower the space between the metal particles for strengthening the contact characteristics (hereinafter, appropriately referred to as "metal particles for strengthening"), the higher the strengthening effect. To narrow the spacing between the reinforcing metal particles,
The content may be increased or dispersed as finer particles. It can be dispersed in

【0003】しかしながら、強化用の金属粒子の含有量
を多くする前者の場合には、金属粒子の間隔は狭くなっ
ても電気特性が悪化する。つまり、金属粒子の含有量を
多くすると電気抵抗が高くなり、必要な電気伝導度を維
持できないという問題が出てくるのである。一方、分散
微細化を図る後者の場合には技術的な困難が伴う。従
来、上記接点材料は、いわゆる粉末冶金法で作られてい
る。すなわち、素地用の金属が銀であるとすると、銀粉
末と銀と二相分離する金属粉末を混合・成形し焼成して
得た焼結体が接点材料なのであるが、粉末冶金法では二
相分離する金属の分散微細化の程度は基本的に金属粉末
の粒径に支配されており、微細分散化を進めることが難
しいのである。最近、金属を真空中で蒸発させて作る超
微粒子があり、これを使えば分散微細化が簡単に実現で
きそうであるが、実際はうまくいかない。この超微粒子
は、一次粒径は小さくとも、使用段階では凝集し大きな
二次粒径の粒子としてふるまうため、結局、微細分散化
を進められないからである。
However, in the former case where the content of the reinforcing metal particles is increased, the electrical characteristics are deteriorated even if the interval between the metal particles is narrowed. That is, when the content of the metal particles is increased, the electric resistance becomes high, and there arises a problem that the necessary electric conductivity cannot be maintained. On the other hand, the latter case, which is aimed at dispersion miniaturization, involves technical difficulties. Conventionally, the above-mentioned contact material is made by a so-called powder metallurgy method. That is, assuming that the metal for the base material is silver, the contact material is a sintered body obtained by mixing and molding silver powder and a metal powder that separates silver into two phases, and firing. The degree of dispersion and refinement of the separated metal is basically governed by the particle size of the metal powder, and it is difficult to proceed with the fine dispersion. Recently, there are ultrafine particles made by evaporating metal in vacuum, and it seems that it is possible to easily realize fine dispersion by using them, but it does not actually work. This is because, even if the ultrafine particles have a small primary particle size, they coagulate and behave as particles having a large secondary particle size at the stage of use, so that eventually they cannot be finely dispersed.

【0004】上記ふたつの方法の他、二相分離する金属
の固溶限が増加する高温まで加熱し強制かく拌してか
ら、急激に冷却する(超急冷)ことにより微細分散化を
進展させるようにすることも考えられるが、微細分散化
は図れても、固溶限度が低くて十分な強化用の金属粒子
の量が確保できず、結果として、十分と言えるほどの強
化させることができない。
In addition to the above two methods, fine dispersion is promoted by heating to a high temperature where the solid solubility limit of the two-phase separated metal increases, forcibly stirring, and then rapidly cooling (ultra-quenching). However, even if fine dispersion can be achieved, the solid solution limit is low and a sufficient amount of metal particles for strengthening cannot be secured, and as a result, sufficient strengthening cannot be achieved.

【0005】そこで、発明者らは、最近になって開発さ
れたメカニカルアロイング処理による合金粉末に着目し
た。この合金粉末の場合、異なる2種以上の金属粉末を
ボールミル(振動ミル、アトライター、遊星ボールミル
等を含む)で混合する方法で従来法では得られなかった
合金粉末を得ることができる。この方法を使えば、溶解
法における固溶限度を越えた範囲で金属が固溶類似状態
となった合金粉末を得ることができる。
Therefore, the inventors have paid attention to the alloy powder which has been recently developed by the mechanical alloying treatment. In the case of this alloy powder, an alloy powder which cannot be obtained by the conventional method can be obtained by mixing two or more kinds of different metal powders in a ball mill (including a vibration mill, an attritor, a planetary ball mill, etc.). By using this method, it is possible to obtain an alloy powder in which the metal is in a solid solution-like state in a range exceeding the solid solution limit in the melting method.

【0006】例えば、銀粉末、ニッケル粉末、鉄粉末の
金属粉末をメカニカルアロイング処理すれば、銀素地中
に多量のニッケルや鉄を固溶類似状態で含む粉末が得ら
れるのである。この粉末を使えば、銀素地中に十分な量
のニッケル粒子や鉄粒子が微細に分散した接点材料を得
ることが可能となる。
For example, by mechanically alloying a metal powder such as a silver powder, a nickel powder, or an iron powder, a powder containing a large amount of nickel or iron in a solid solution state in a silver base can be obtained. By using this powder, it becomes possible to obtain a contact material in which a sufficient amount of nickel particles and iron particles are finely dispersed in the silver base.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、メカニ
カルアロイング処理で作製した合金粉末は焼結性がよく
ない。メカニカルアロイング処理中に混入した不純物
(例えば、酸素,炭素など)が焼成中にガスとなって焼
結を阻むのである。微細分散化が達成できていたとして
も、焼結が十分でない場合、得られた接点材料において
は十分な硬度上昇が認められず、しかも、電気伝導度が
低下してしまうという問題が出てくる。熱間静水圧プレ
ス法や熱間プレス法などにより、焼成中に発生するガス
を取り除くようにしても十分に焼結させることは困難で
ある。
However, the alloy powder produced by the mechanical alloying process has poor sinterability. Impurities (for example, oxygen, carbon, etc.) mixed during the mechanical alloying process become a gas during firing and prevent sintering. Even if fine dispersion can be achieved, if the sintering is not sufficient, a sufficient increase in hardness will not be observed in the obtained contact material, and there will be a problem that the electrical conductivity will decrease. .. Even if the gas generated during firing is removed by a hot isostatic pressing method, a hot pressing method, or the like, it is difficult to sufficiently sinter.

【0008】この発明は、上記事情に鑑み、接点強化用
の金属粒子が十分な量で微細に分散した高い焼結度の電
気接点材料を容易に得ることのできる方法を提供するこ
とを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a method capable of easily obtaining an electric contact material having a high degree of sintering, in which a sufficient amount of metal particles for strengthening a contact are finely dispersed. To do.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するた
め、この発明では、金属素地中に接点特性強化用の金属
粒子が分散している焼結体からなる接点材料を得るにあ
たり、素地用の金属粉末と接点特性強化用の金属粉末を
メカニカルアロイング処理により合金化した合金粉末の
成形体を焼成することにより前記焼結体を得るようにす
る接点材料の製造方法において、前記合金粉末として、
前記両金属粉末に焼結妨害物質を無害化する焼結性向上
用粉末を加えてメカニカルアロイング処理して得た粉末
を用いるようにしている。
In order to solve the above-mentioned problems, the present invention provides a contact material comprising a sintered body in which metal particles for enhancing contact characteristics are dispersed in a metal base. In the method for producing a contact material, wherein a sintered body is obtained by firing a molded body of an alloy powder alloyed by mechanical alloying with a metal powder and a metal powder for strengthening contact characteristics, as the alloy powder,
A powder obtained by mechanically alloying with a sinterability improving powder that renders a sintering-inhibiting substance harmless to both metal powders is used.

【0010】素地用の金属粉末としては、高導電性の銀
粉末が適当であり、接点特性強化用の金属粉末として
は、ニッケル粉末および/または鉄粉末が適当である。
焼結性向上用粉末は酸素や炭素など焼結妨害物質と容易
に反応(酸化反応や炭化反応)し酸化物や炭化物を生成
するものであるが、チタン粉末、タングステン粉末など
の反応性に富む金属粉末が適当である。その他、アルミ
ニウム粉末やアルカリ金属の粉末、アルカリ土類金属な
ども挙げられる。カルシウム粉末、バリウム粉末、リン
粉末などが利用可能なのである。焼結性向上用の粉末
は、非金属であってもよい。したがって、この発明で使
われる合金粉末は、若干の非金属を含む場合もあること
になる。
Highly conductive silver powder is suitable as the metal powder for the base material, and nickel powder and / or iron powder is suitable as the metal powder for strengthening the contact characteristics.
The sinterability improving powder easily reacts (oxidizes or carbonizes) with sintering interfering substances such as oxygen and carbon to form oxides and carbides, but it is highly reactive with titanium powder, tungsten powder, etc. Metal powders are suitable. Other examples include aluminum powder, alkali metal powder, and alkaline earth metal. Calcium powder, barium powder, phosphorus powder, etc. can be used. The powder for improving sinterability may be a nonmetal. Therefore, the alloy powder used in the present invention may contain some non-metal.

【0011】一方、焼結妨害物質としては、酸素の他
に、炭素や炭素を含む有機物などが挙げられる。この発
明におけるメカニカルアロイング処理は、例えば、異な
る種類の粉末をボールミル(振動ミル、アトライター、
遊星ボールミル)を用いて常温・不活性ガス雰囲気下で
粉砕・混合して合金化するという方法である。通常、混
合する粉末の合計重量の50〜200倍の量でボールを
使用するのがよい。
On the other hand, examples of the sintering-inhibiting substance include carbon and organic substances containing carbon in addition to oxygen. The mechanical alloying process in the present invention includes, for example, ball milling (vibrating mill, attritor,
It is a method of pulverizing and mixing at room temperature in an inert gas atmosphere to alloy them using a planetary ball mill. Generally, it is preferable to use the balls in an amount of 50 to 200 times the total weight of the powders to be mixed.

【0012】このように、焼結妨害物質を無害化する物
質を添加するにしても、焼結妨害物質の混入を極力避け
るように注意する越したことはない。ボールミルに原料
粉末を投入する場合は不活性ガス雰囲気(無酸素雰囲
気)で行ったり、出来た合金粉末を取り出す時にも極力
空気に触れさせないようすにするのがよいが、余り完全
を期す必要はない。完全を期したとしてもボールミルの
ポット材料などから酸素や炭素が混入することを回避す
ることは無理だし、完全を目指すに伴い製造コストが大
幅に上昇してしまうからである。
As described above, even if a substance that renders the sintering-inhibiting substance harmless is added, it is always possible to avoid mixing the sintering-inhibiting substance as much as possible. It is recommended to put the raw material powder in the ball mill in an inert gas atmosphere (oxygen-free atmosphere) and to prevent the alloy powder from coming into contact with the air even when taking out the produced alloy powder, but it is not necessary to complete it. .. Even if it is perfect, it is impossible to avoid mixing oxygen and carbon from the pot material of the ball mill, etc., and the manufacturing cost will increase drastically with the aim of perfection.

【0013】メカニカルアロイング法で得た合金粉末に
おいては、素地用の金属と接点特性強化用の金属や焼結
性向上用物質が固溶類似状態となっていることが好まし
い。例えば、銀とニッケルや鉄、さらには、チタン、タ
ングステンが固溶類似状態となっていれば、X線回折分
析を行った場合、ニッケル、鉄、チタン、タングステン
が銀に固溶していない時に特定の位置で出るピークが殆
ど消えてしまうことにより確認できる。
In the alloy powder obtained by the mechanical alloying method, it is preferable that the metal for the base material, the metal for enhancing the contact characteristics and the sinterability improving substance are in a solid solution similar state. For example, if silver and nickel or iron, and further titanium and tungsten are in a solid solution similar state, when X-ray diffraction analysis is performed, when nickel, iron, titanium, and tungsten are not in solid solution with silver, This can be confirmed by the disappearance of the peaks appearing at specific positions.

【0014】メカニカルアロイング処理の際に混合する
各粉末の好ましい配合割合は以下の通りである。素地用
の金属粉末(銀粉末など)、接点特性強化用の金属粉末
(ニッケル粉末、鉄粉末など)および焼結性向上用粉末
(チタン粉末、タングステン粉末など)の合計量100
wt%のうち、接点特性強化用の金属粉末が1〜20wt%
であって、焼結性向上用粉末が0.1〜5wt%であり、
残部が素地用の金属粉末である配合が適当である。接点
特性強化用の金属粉末が1wt%未満では添加効果は薄
く、20wt%を越すと却って接点特性が悪化する傾向が
出てくる。焼結性向上用粉末についても、0.1wt%未
満では添加効果が薄く、5wt%を越すと却って接点特性
が悪化する傾向が出てくる。
The preferred blending ratio of each powder to be mixed in the mechanical alloying treatment is as follows. Total amount of metal powder for base material (silver powder, etc.), metal powder for strengthening contact characteristics (nickel powder, iron powder, etc.) and sinterability improving powder (titanium powder, tungsten powder, etc.) 100
1 wt% to 20 wt% of metal powder for strengthening contact characteristics out of wt%
And the sinterability improving powder is 0.1 to 5 wt%,
A formulation in which the balance is metal powder for the base is suitable. If the metal powder for strengthening the contact characteristics is less than 1 wt%, the effect of addition is weak, and if it exceeds 20 wt%, the contact characteristics tend to deteriorate rather. With respect to the powder for improving sinterability, too, if less than 0.1 wt%, the effect of addition is small, and if it exceeds 5 wt%, the contact characteristics tend to deteriorate rather.

【0015】なお、焼結性向上用の粉末の具体的な添加
量は、この粉末を添加せずにメカニカルアロイング処理
して得た合金粉末における酸素、炭素含有量を測定し、
この測定結果に合わせた量とすればよい。
The specific amount of the powder for improving the sinterability is determined by measuring the oxygen and carbon contents in the alloy powder obtained by mechanical alloying without adding this powder,
The amount may be set according to this measurement result.

【0016】[0016]

【作用】この発明の接点材料の製造方法の場合、素地用
の金属粉末と接点特性強化用の金属粉末をメカニカルア
ロイング処理により合金化した粉末を用いるため、接点
特性強化用の金属粒子を十分な量で微細分散させられ
る。それに、この発明の場合、焼結性向上用粉末を添加
してメカニカルアロイング処理を行っていて、混入した
焼結妨害物質は造粒段階や焼成段階で焼結性向上用粉末
と反応し焼結性を阻害しない酸化物や炭化物に変わって
おり、その結果、焼成段階でのガス発生現象を回避で
き、十分に焼結された接点材料が得られるようになる。
また、反応で生じた酸化物や炭化物は焼結体中に微細分
散した状態で残留するが、何ら問題ではなくて却って接
点特性の向上に寄与する。
In the method of manufacturing the contact material according to the present invention, since the powder obtained by alloying the metal powder for the base material and the metal powder for strengthening the contact characteristics by the mechanical alloying treatment is used, the metal particles for strengthening the contact characteristics should be sufficient. Finely dispersed in various amounts. Further, in the case of the present invention, the mechanical alloying treatment is performed by adding the powder for improving the sinterability, and the mixed sintering interfering substance reacts with the powder for improving the sinterability in the granulation step or the firing step, and is burned. It has been changed to oxides and carbides that do not impair the binding property, and as a result, the gas generation phenomenon at the firing stage can be avoided, and a sufficiently sintered contact material can be obtained.
Further, the oxides and carbides generated by the reaction remain in the sintered body in a finely dispersed state, but they do not pose any problem and rather contribute to the improvement of the contact characteristics.

【0017】なお、焼結性向上用粉末をメカニカルアロ
イング処理の後で混入する、つまり後添加することも考
えられるが、後添加では適切な無害化作用を発揮しな
い。後添加した場合、普通に混合しただけでは焼結性向
上用粉末が万遍なく行き渡らず、焼結性向上用粉末に十
分に近接していない酸素や炭素が未反応となり、ガスと
なって焼結を妨害するからである。焼結性向上用粉末を
メカニカルアロイング処理の段階で混入する、つまり先
添加する場合、メカニカルアロイング処理で焼結性向上
用粉末が万遍なく微細分散され、不純物として混入した
酸素や炭素が皆、焼結性向上用粉末と反応し焼結に害の
ない物質に変わり、焼結が十分に進むようになるのであ
る。
It is possible to mix the sinterability-improving powder after the mechanical alloying treatment, that is, to add it later, but the post-addition does not exert an appropriate detoxifying effect. When added afterwards, the sinterability improving powder cannot be spread evenly just by mixing normally, and oxygen and carbon that are not sufficiently close to the sinterability improving powder become unreacted and become a gas and burned. Because it interferes with the result. When the powder for improving sinterability is mixed at the stage of mechanical alloying, that is, when it is added in advance, the powder for improving sinterability is uniformly dispersed throughout the mechanical alloying process, and oxygen and carbon mixed as impurities are removed. All of them react with the powder for improving the sinterability and change into substances that do not harm the sintering, and the sintering proceeds sufficiently.

【0018】図1は、接点材料の製造過程毎の材料密度
(充填率)をあらわすグラフであり、実線はこの発明の
場合、破線が従来の場合を示している。従来法では、酸
素ガスや炭素ガスの発生により焼結が阻まれて焼成で密
度が大きく落ち込んでいるのに対し、この発明の方法で
は、焼成により密度が向上しており、焼結妨害物質が十
分に無害化されていることがよく分かる。
FIG. 1 is a graph showing the material density (filling rate) in each contact material manufacturing process, the solid line shows the case of the present invention, and the broken line shows the conventional case. In the conventional method, the generation of oxygen gas or carbon gas hinders the sintering, and the density is greatly lowered by the firing, whereas in the method of the present invention, the density is improved by the firing, and the sintering interfering substance is It can be seen that it is sufficiently harmless.

【0019】図2は、接点材料の製造過程毎の材料硬度
をあらわすグラフであり、実線がこの発明の場合、破線
が従来の場合を示している。焼結が十分でないと圧縮に
より最終的に密度を高めても、従来のように未焼結だと
粒界同士がしっかりと結合しいないために硬度は非常に
低いのに対し、この発明のように焼結が十分だと粒界同
士がしっかりと結合していて、硬度が高くて耐溶着性な
ど重要な特性が向上するようになる。
FIG. 2 is a graph showing the material hardness in each manufacturing process of the contact material, in which the solid line shows the case of the present invention and the broken line shows the case of the prior art. Even if the density is finally increased by compression if the sintering is not sufficient, the hardness is very low because the grain boundaries are not firmly bonded to each other as in the conventional case, whereas the hardness is very low. When the sintering is sufficient, the grain boundaries are firmly bonded to each other, and the hardness is high, and important properties such as welding resistance are improved.

【0020】また、この発明の場合、実施にあたって
は、メカニカルアロイング処理の際に適当量の焼結性向
上用粉末を添加する程度の操作が加わる程度で格別困難
を伴う処理が必要なわけでなく、実施は非常に容易であ
り、優れた接点材料を容易に得ることができる。
Further, in the case of the present invention, in carrying out the treatment, it is necessary to carry out a treatment which is particularly difficult because the operation of adding an appropriate amount of the sinterability improving powder is added during the mechanical alloying treatment. Without, it is very easy to implement and good contact materials can be easily obtained.

【0021】[0021]

【実施例】以下、この発明の実施例を説明する。この発
明は、勿論、下記の実施例に限らない。 −実施例1− 銀粉末、ニッケル粉末、チタン粉末を重量比で87:1
0:3の割合で秤量し、それをアルゴンガスで置換した
グローブボックス内でスチールポットにセットした。銀
粉末は350メッシュの電解銀粉末であり、ニッケル粉
末はカーボニールニッケル粉末である。
Embodiments of the present invention will be described below. The present invention is of course not limited to the following embodiments. -Example 1-Silver powder, nickel powder, and titanium powder in a weight ratio of 87: 1
It was weighed at a ratio of 0: 3 and set in a steel pot in a glove box which had been purged with argon gas. The silver powder is a 350 mesh electrolytic silver powder, and the nickel powder is carbonyl nickel powder.

【0022】粉末合計量とステンレス製スチールボール
の量は重量比で1:100となるようにした。そして、
低エネルギーボールミルで300時間かけてメカニカル
アロイング処理し、合金粉末を得た。この合金粉末で
は、銀に分散したニッケルやチタンが固溶類似状態で存
在していることを、X線回折法による分析を行い、未固
溶のニッケルやチタンがある場合には現出するピークが
消えて存在していないことにより確認した。
The total amount of powder and the amount of stainless steel balls were set to be 1: 100 in weight ratio. And
Mechanical alloying treatment was performed in a low energy ball mill for 300 hours to obtain an alloy powder. In this alloy powder, the presence of nickel and titanium dispersed in silver in a solid-solution-like state was analyzed by X-ray diffractometry, and peaks appearing when undissolved nickel and titanium were present. Was confirmed by disappearing and not existing.

【0023】続いて、合金粉末を10kgf/mm2 の圧力で
直径20mmの円筒形に成形したあと焼成した。焼成工程
では、850℃の温度で4時間熱処理してから、450
℃の温度で90kgf/mm2 の圧力で熱間押し出した後、再
び、850℃の温度で4時間熱処理を行い、焼結体を得
た。続いて、焼結体を450℃の温度で熱間押し出して
直径6mmの線材の接点材料を得た。図3は、この線材の
金属組織をあらわす走査型電子顕微鏡写真である。銀素
地中にニッケルやチタン化合物が微細に分散しているこ
とがよく分かる。
Subsequently, the alloy powder was molded into a cylindrical shape having a diameter of 20 mm at a pressure of 10 kgf / mm 2 and then fired. In the firing process, heat treatment is performed at a temperature of 850 ° C. for 4 hours, and then 450
After hot extruding at a temperature of 90 ° C. and a pressure of 90 kgf / mm 2 , heat treatment was performed again at a temperature of 850 ° C. for 4 hours to obtain a sintered body. Subsequently, the sintered body was hot extruded at a temperature of 450 ° C. to obtain a wire contact material having a diameter of 6 mm. FIG. 3 is a scanning electron micrograph showing the metallographic structure of this wire. It can be clearly seen that nickel and titanium compounds are finely dispersed in the silver base.

【0024】−実施例2− 銀粉末、ニッケル粉末、タングステン粉末を重量比で8
7:10:3の割合で秤量するようにした他は、実施例
1と同様にして接点材料を得た。図4は、実施例2で得
られた接点材料である線材の金属組織をあらわす走査型
電子顕微鏡写真である。やはり、銀素地中にニッケルや
タングステン化合物が微細に分散していることがよく分
かる。
-Example 2-A silver powder, a nickel powder, and a tungsten powder in a weight ratio of 8
A contact material was obtained in the same manner as in Example 1 except that weighing was performed at a ratio of 7: 10: 3. FIG. 4 is a scanning electron micrograph showing the metal structure of the wire material which is the contact material obtained in Example 2. After all, it is well understood that nickel and tungsten compounds are finely dispersed in the silver base.

【0025】−実施例3− ニッケル粉末を鉄粉末に代え、銀粉末、鉄粉末、チタン
粉末を重量比で87:10:3の割合で秤量するように
した他は、実施例1と同様にして接点材料を得た。 −比較例1− 銀粉末、ニッケル粉末を重量比で90:10の割合で秤
量するようにした他は、実施例1と同様にして接点材料
を得た。
Example 3 The same as Example 1 except that the nickel powder was replaced with iron powder and silver powder, iron powder, and titanium powder were weighed at a weight ratio of 87: 10: 3. To obtain the contact material. -Comparative Example 1-A contact material was obtained in the same manner as in Example 1 except that silver powder and nickel powder were weighed at a weight ratio of 90:10.

【0026】実施例および比較例の接点材料である線材
のビッカース硬度を測定した。硬度測定は100gの荷
重を15秒間加えるという条件で行った。測定結果を表
1に記す。さらに、得られた接点材料を使って頭部径4
mm、足部径2mmのリベット接点を作製し、ASTM型接
点試験器にかけて接点特性として重要な耐溶着性を調べ
た。測定条件は、つぎの通りである。
The Vickers hardness of the wire material which is the contact material of the examples and comparative examples was measured. The hardness was measured under the condition that a load of 100 g was applied for 15 seconds. The measurement results are shown in Table 1. Furthermore, using the obtained contact material, the head diameter is 4
A rivet contact having a diameter of 2 mm and a foot diameter of 2 mm was prepared and subjected to an ASTM type contact tester to examine the welding resistance, which is important as a contact property. The measurement conditions are as follows.

【0027】突入電流・・・90A 定常電流・・・2
0A 負荷・・・コンデンサ負荷 結果は、初期溶着回数のρ90で示した。結果を表1に
記す。
Inrush current: 90 A Steady current: 2
0A load ... Capacitor load The result is shown by ρ90 of the number of initial welding. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1をみれば、実施例の各接点材料は、比
較例の接点材料に比べて、硬度に関して約20%ほどの
上昇が認められ、これに従い耐溶着性が向上しているこ
とが分かる。すなわち、焼結性向上用粉末の添加によ
り、焼結性を良くして接点特性を向上させることが出来
たのである。
As shown in Table 1, the contact materials of the examples show an increase of about 20% in hardness as compared with the contact materials of the comparative examples, and accordingly, the welding resistance is improved. I understand. That is, it was possible to improve the sinterability and improve the contact characteristics by adding the sinterability improving powder.

【0030】[0030]

【発明の効果】以上に述べたように、この発明の接点材
料の製造方法の場合、素地用の金属粉末と接点特性強化
用の金属粉末をメカニカルアロイング処理により合金化
した粉末を用いるため、接点特性強化用の金属粒子を十
分な量で微細分散させられ、しかも、焼結性向上用粉末
を添加してメカニカルアロイング処理を行っていて、混
入した焼結妨害物質は造粒段階や焼成段階で焼結性向上
用粉末と反応し焼結性を阻害しない物質に変わっている
ため、焼結が十分なものとなっており、しかも、メカニ
カルアロイング処理の際に適当量の焼結性向上用粉末を
添加する程度の操作が加わる程度で格別困難を伴う操作
が加わるわけではないため、特性の優れた接点材料を容
易に得ることができる。
As described above, in the method of manufacturing the contact material according to the present invention, the metal powder for the base material and the metal powder for strengthening the contact characteristics are alloyed by the mechanical alloying treatment. A sufficient amount of metal particles for strengthening contact characteristics can be finely dispersed, and mechanical alloying treatment is performed by adding powder for improving sinterability. At the stage, it has been changed to a substance that does not interfere with the sinterability by reacting with the powder for improving sinterability, so that the sintering is sufficient, and an appropriate amount of sinterability is obtained during the mechanical alloying process. Since an operation involving extra difficulty is not added to the extent that an operation of adding the improving powder is added, it is possible to easily obtain a contact material having excellent characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】接点材料の製造過程毎の材料密度(充填率)を
あらわすグラフである。
FIG. 1 is a graph showing a material density (filling rate) in each manufacturing process of a contact material.

【図2】接点材料の製造過程毎の材料硬度をあらわすグ
ラフである。
FIG. 2 is a graph showing the material hardness of each manufacturing process of a contact material.

【図3】実施例1の接点材料の表面(金属組織)をあら
わす走査型電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph showing the surface (metal structure) of the contact material of Example 1.

【図4】実施例2の接点材料の表面(金属組織)をあら
わす走査型電子顕微鏡写真である。
4 is a scanning electron micrograph showing the surface (metal structure) of the contact material of Example 2. FIG.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属素地中に接点特性強化用の金属粒子
が分散している焼結体からなる接点材料を得るにあた
り、素地用の金属粉末と接点特性強化用の金属粉末をメ
カニカルアロイング処理により合金化した合金粉末の成
形体を焼成することにより前記焼結体を得るようにする
接点材料の製造方法において、前記合金粉末として、前
記両金属粉末に焼結妨害物質を無害化する焼結性向上用
粉末を加えてメカニカルアロイング処理して得た粉末を
用いることを特徴とする接点材料の製造方法。
1. To obtain a contact material composed of a sintered body in which metal particles for enhancing contact characteristics are dispersed in a metal substrate, a mechanical alloying treatment is performed on the metal powder for substrate and the metal powder for enhancing contact characteristics. In the method for producing a contact material, the sintered body is obtained by firing a molded body of alloy powder alloyed by A method for producing a contact material, which comprises using a powder obtained by mechanically alloying by adding a powder for improving property.
【請求項2】 素地用の金属粉末、接点特性強化用の金
属粉末および焼結性向上用粉末の合計量100wt%のう
ち、接点特性強化用の金属粉末が1〜20wt%であっ
て、焼結性向上用粉末が0.1〜5wt%であり、残部が
素地用の金属粉末である請求項1記載の接点材料の製造
方法。
2. Of the total amount of the metal powder for the base material, the metal powder for strengthening the contact characteristics and the powder for improving the sinterability of 100 wt%, the metal powder for strengthening the contact characteristics is 1 to 20 wt%, The method for producing a contact material according to claim 1, wherein the powder for improving the binding property is 0.1 to 5 wt% and the balance is a metal powder for a base material.
【請求項3】 素地用の金属粉末が銀粉末であって、接
点特性強化用の金属粉末がニッケル粉末および/または
鉄粉末であり、焼結性向上用粉末がチタン粉末および/
またはタングステン粉末である請求項1または2記載の
接点材料の製造方法。
3. The base metal powder is silver powder, the contact property enhancing metal powder is nickel powder and / or iron powder, and the sinterability improving powder is titanium powder and / or
Alternatively, the method for producing a contact material according to claim 1 or 2, which is a tungsten powder.
【請求項4】 メカニカルアロイング処理を素地用の金
属粉末と接点特性強化用の金属粉末および焼結性向上用
粉末が固溶類似状態となるように行う請求項1から3ま
でのいずれかに記載の接点材料の製造方法。
4. The mechanical alloying treatment is performed so that the metal powder for the base material, the metal powder for strengthening the contact characteristics, and the powder for improving the sinterability are in a solid solution similar state. A method for producing the contact material described.
【請求項5】 メカニカルアロイング処理を、ボールミ
ルを用いボールの量を接点特性強化用の金属粉末および
焼結性向上用粉末の合計重量の50〜200倍の量にし
て行うようにする請求項1から4までのいずれかに記載
の接点材料の製造方法。
5. The mechanical alloying treatment is carried out by using a ball mill with the amount of balls being 50 to 200 times the total weight of the metal powder for strengthening contact characteristics and the powder for improving sinterability. 5. The method for manufacturing the contact material according to any one of 1 to 4.
JP4032788A 1992-01-22 1992-01-22 Manufacture of contact material Pending JPH05205555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4032788A JPH05205555A (en) 1992-01-22 1992-01-22 Manufacture of contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4032788A JPH05205555A (en) 1992-01-22 1992-01-22 Manufacture of contact material

Publications (1)

Publication Number Publication Date
JPH05205555A true JPH05205555A (en) 1993-08-13

Family

ID=12368592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4032788A Pending JPH05205555A (en) 1992-01-22 1992-01-22 Manufacture of contact material

Country Status (1)

Country Link
JP (1) JPH05205555A (en)

Similar Documents

Publication Publication Date Title
US5723799A (en) Method for production of metal-based composites with oxide particle dispersion
CZ290947B6 (en) Wrought metal alloy product
CN108421985A (en) A method of preparing entropy alloy in oxide dispersion intensifying
AU638642B2 (en) Oxide-dispersion-strengthened heat-resistant sintered alloy
US20050238522A1 (en) Binary rhenium alloys
US5000910A (en) Method of manufacturing intermetallic compound
US6740288B2 (en) Process for preparing a powdered W-Al alloy
US3438753A (en) Tungsten-copper composites
Takahashi et al. Preparation of dispersion-strengthened coppers with NbC and TaC by mechanical alloying
JP2957424B2 (en) Corrosion resistant tungsten based sintered alloy
JP2004190084A (en) Sintered alloy and manufacturing method therefor
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
JPH05205555A (en) Manufacture of contact material
KR100446985B1 (en) A PREPARATION OF W-Cu COMPOSITE POWDER
JPH10273701A (en) Production of tungsten carbide base cemented carbide having high strength
JPH0762467A (en) Dispersion-strengthening type copper alloy and its production
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
US5258052A (en) Powder metallurgy silver-tin oxide electrical contact material
JPH09111363A (en) Production of sintered alloy containing ta and si
JPH0470380B2 (en)
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP2905878B1 (en) Manufacturing method of composite thermoelectric material
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JP3054698B2 (en) Method for producing particle-dispersed alloy powder
JPH0892672A (en) Production of dispersion strengthened alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term