JPH05181135A - Polarizing illuminating device and projection display device using it - Google Patents
Polarizing illuminating device and projection display device using itInfo
- Publication number
- JPH05181135A JPH05181135A JP92245A JP24592A JPH05181135A JP H05181135 A JPH05181135 A JP H05181135A JP 92245 A JP92245 A JP 92245A JP 24592 A JP24592 A JP 24592A JP H05181135 A JPH05181135 A JP H05181135A
- Authority
- JP
- Japan
- Prior art keywords
- light
- polarized light
- polarized
- polarization
- polarizing element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
- G02B27/285—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Projection Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は偏光照明装置及び該偏光
照明装置を有する投写表示装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarized illumination device and a projection display device having the polarized illumination device.
【0002】[0002]
【従来の技術】近年、偏光照明装置の小型化、軽量化を
目指して、アレイ化した偏光素子を搭載した偏光照明装
置が提案されている。図16はそのような偏光照明装置
を用いた投写表示装置の従来例を示す要部構成図であ
り、特開平2−62475に記載されているものであ
る。2. Description of the Related Art In recent years, a polarized illumination device equipped with arrayed polarizing elements has been proposed in order to reduce the size and weight of the polarized illumination device. FIG. 16 is a main part configuration diagram showing a conventional example of a projection display device using such a polarized illumination device, which is described in JP-A-2-62475.
【0003】1は光源、2は反射ミラー、20は偏光素
子、203a、203bは偏光分離作用膜、7は液晶ラ
イトバルブ、22はλ/4光学位相板である。図16に
おいて2つの偏光分離作用膜203a、203bはほぼ
90度の角度で互いの端部が接しており、偏光素子20
は図に示す様にそれらを単位とした繰り返し構造となっ
ている。反射鏡2によって略平行光となった光源1から
のランダム光Aoは偏光素子20の偏光分離作用膜20
3aにより、P偏光光Apは透過され、S偏光光Asは
反射される。S偏光光Asは更に光路に設置されている
他方の偏光分離作用膜203bで反射され、光学軸が所
望の方向に設定されているλ/4光学位相板22を通過
後、円偏光光Arとなり、光源1、反射鏡2を介して再
度λ/4光学位相板22を通過する事によりP偏光光A
p′となって偏光分離作用膜を透過し、液晶ライトバル
ブ7に入射する。この投写表示装置では、偏光分離作用
膜203aまたは203bで分離されるP偏光光Apと
S偏光光Asの両偏光光を、同じ偏光方向を持つ偏光光
Ap、Ap′とし、液晶ライトバルブ7を照明すること
ができるため、偏光照明装置を用いない投写表示装置に
比べて大幅な光利用効率のアップが図れまた、アレイ化
することにより一般の偏光照明装置に比べて軽量化、小
型化が達成できる。Reference numeral 1 is a light source, 2 is a reflection mirror, 20 is a polarizing element, 203a and 203b are polarization separating films, 7 is a liquid crystal light valve, and 22 is a λ / 4 optical phase plate. In FIG. 16, the two polarization separation action films 203a and 203b are in contact with each other at their ends at an angle of approximately 90 degrees, and the polarization element 20
Has a repeating structure with them as a unit as shown in the figure. Random light Ao from the light source 1 that has been converted into substantially parallel light by the reflecting mirror 2 is used as the polarization separation film 20 of the polarization element 20.
The P-polarized light Ap is transmitted and the S-polarized light As is reflected by 3a. The S-polarized light As is further reflected by the other polarization separation film 203b installed in the optical path, passes through the λ / 4 optical phase plate 22 whose optical axis is set in the desired direction, and becomes circularly polarized light Ar. , P-polarized light A by passing through the λ / 4 optical phase plate 22 again via the light source 1 and the reflecting mirror 2.
It becomes p ′, passes through the polarization splitting film, and enters the liquid crystal light valve 7. In this projection display device, both the P-polarized light Ap and the S-polarized light As separated by the polarization separation action film 203a or 203b are polarized lights Ap and Ap 'having the same polarization direction, and the liquid crystal light valve 7 is turned on. Since it can illuminate, the light utilization efficiency can be significantly improved compared to a projection display device that does not use a polarized light illumination device, and the arrayed structure achieves weight and size reduction compared to general polarized light illumination devices. it can.
【0004】[0004]
【発明が解決しようとする課題】ところが、偏光素子を
アレイ化した時、1つのユニット幅をピッチPとする輝
度ムラや色ムラが生じる事になり、そのような偏光素子
を用いた偏光照明装置で投写表示装置を構成すると投影
される画像は非常に見にくくなってしまう。However, when the polarizing elements are arrayed, unevenness in brightness or unevenness in color with one unit width being the pitch P occurs, and a polarized illumination device using such a polarizing element. If the projection display device is configured with, the projected image becomes very difficult to see.
【0005】従来例を用いて色ムラが生じる様子を説明
する。光源は有限の径をもっているので、反射ミラーで
被照明体(従来例では液晶ライトバルブ)へ向けられた
光は完全な平行光とはならずある拡がり角をもった光と
なる。そのような光が偏光分離作用膜を通過し、液晶ラ
イトバルブへ入射する様子を示したのが図17である。A state in which color unevenness occurs will be described using a conventional example. Since the light source has a finite diameter, the light directed to the object to be illuminated (the liquid crystal light valve in the conventional example) by the reflection mirror is not a perfect parallel light but a light with a certain divergence angle. FIG. 17 shows how such light passes through the polarization splitting film and enters the liquid crystal light valve.
【0006】周知のように誘電体の多層膜である偏光分
離作用膜には角度依存性があり、所望の角度で光が入射
しないと偏光分離特性が落ちたり、偏光分離作用膜通過
後の光の波長成分が変わってしまう。例えば、偏光分離
作用膜に対して45度より大きな角度で白色光が入射す
ると出射光は赤みがかかり、45度より小さな角度だと
出射光は青っぽくなるとする。すると図17に示す様
に、液晶ライトバルブ7を照明する照明光に於て、赤み
がかかった領域C、青みがかかった領域B、双方が混ざ
った領域Aに分かれ、色ムラとなってしまう。As is well known, the polarization splitting action film which is a dielectric multilayer film has an angle dependence, and the polarization splitting characteristic is degraded unless the light is incident at a desired angle, or the light after passing through the polarization splitting action film. The wavelength component of changes. For example, it is assumed that when white light is incident on the polarization separating film at an angle larger than 45 degrees, the emitted light is reddish, and when the angle is smaller than 45 degrees, the emitted light is bluish. Then, as shown in FIG. 17, the illumination light that illuminates the liquid crystal light valve 7 is divided into a reddish region C, a bluish region B, and a mixed region A, resulting in color unevenness. ..
【0007】輝度ムラについても同様に説明できる。例
えば、偏光分離作用膜に対して45度より大きな角度で
光が入射するとP偏光光の透過率が悪くなり、45度よ
り小さな角度だとP偏光光の透過率が良くなるとすれ
ば、明るい領域と暗い領域が生じ、つまり輝度ムラとな
る。The brightness unevenness can be similarly explained. For example, if light is incident on the polarization splitting film at an angle larger than 45 degrees, the transmittance of P-polarized light becomes poor, and if the angle is smaller than 45 degrees, the transmittance of P-polarized light becomes good. A dark area occurs, that is, uneven brightness occurs.
【0008】[0008]
【課題を解決するための手段】本発明は、偏光素子のア
レイのピッチに対応した輝度ムラ、色ムラの目立たない
薄型偏光素子を提供する事を目的とし、本発明は、光源
の大きさが有限である事に起因して照明手段からの光束
は決して完全な平行光とはならないことを利用し、偏光
素子に入射する光束の拡がり角±θ、偏光素子と被照明
体間の距離Lからアレイ化された偏光手段の最適なピッ
チPを決定している。SUMMARY OF THE INVENTION An object of the present invention is to provide a thin polarizing element in which brightness unevenness and color unevenness corresponding to the pitch of the array of polarizing elements are not noticeable. Due to the fact that the luminous flux from the illumination means is never a perfect parallel light due to its finiteness, the divergence angle ± θ of the luminous flux incident on the polarizing element and the distance L between the polarizing element and the illuminated body The optimum pitch P of the arrayed polarizing means is determined.
【0009】[0009]
【実施例】図1は本発明の偏光素子を用いた投写表示装
置の構成を示したものであり、ハロゲンランプ、メタル
ハライドランプなどからなる光源1、光源1から発せら
れる光束の一部を反射する反射鏡2、光源1から直接ま
たは反射鏡2を介して入射される光束の熱線を吸収また
は反射する熱線カットフィルター3、熱線が除去された
光束を平行光束に変換するコンデンサレンズ4、旋光体
であるλ/4光学位相板22、平行光束を直線偏光光に
変換する偏光素子20、直線偏光光となった平行光束を
投写レンズ10の瞳内に集光するコンデンサレンズ2
1、直線偏光光を画像信号に応じて変調する液晶ライト
バルブ7、変調された直線偏光光のうちその透過軸方向
の成分のみを透過する偏光板8、透過した直線偏光光を
不図示のスクリーンに拡大投写する投写レンズ10とを
有する。FIG. 1 shows the configuration of a projection display apparatus using a polarizing element of the present invention, which is a light source 1 composed of a halogen lamp, a metal halide lamp or the like, and a part of a light beam emitted from the light source 1 is reflected. A reflecting mirror 2, a heat ray cut filter 3 that absorbs or reflects heat rays of a light flux incident from the light source 1 directly or through the reflecting mirror 2, a condenser lens 4 that converts the light flux from which the heat rays are removed into a parallel light flux, and an optical rotator. A λ / 4 optical phase plate 22, a polarizing element 20 for converting a parallel light beam into a linearly polarized light, and a condenser lens 2 for condensing the parallel light beam that has become the linearly polarized light into the pupil of the projection lens 10.
1. A liquid crystal light valve 7 that modulates linearly polarized light according to an image signal, a polarizing plate 8 that transmits only the component in the transmission axis direction of the modulated linearly polarized light, and a screen (not shown) that transmits the linearly polarized light. And a projection lens 10 for enlarging and projecting.
【0010】図2は本発明の偏光素子の一部の斜視図を
示したものであり、図3は同じく断面図を示したもので
ある。FIG. 2 is a perspective view of a part of the polarizing element of the present invention, and FIG. 3 is a sectional view of the same.
【0011】1つのユニットは、入射光側に面を持つ直
角プリズム201と、出射光側に面を持つ直角プリズム
202、直角プリズム201及び202の接合部に設け
られた偏光分離作用膜203により構成されている。当
該偏光素子は、上記個々のユニットを図のように複数接
合し、接合部には全反射ミラー204が設けられた構成
となっている。One unit is composed of a right-angle prism 201 having a surface on the incident light side, a right-angle prism 202 having a surface on the output light side, and a polarization splitting action film 203 provided at the joint portion of the right-angle prisms 201 and 202. Has been done. The polarizing element has a structure in which a plurality of the individual units are joined as shown in the drawing, and a total reflection mirror 204 is provided in the joined portion.
【0012】図4を用いて本発明の偏光素子20の作用
を説明する。The operation of the polarizing element 20 of the present invention will be described with reference to FIG.
【0013】偏光分離作用膜203は、該偏光分離作用
膜203への45度入射光に対して、偏光分離作用膜面
に平行な偏光成分(S偏光光とする)は反射し、S偏光
光に対して垂直な偏光成分(P偏光光とする)は透過す
る作用を持つ。The polarization splitting action film 203 reflects the polarization component parallel to the plane of the polarization splitting action film (referred to as S-polarized light) with respect to the 45 ° incident light on the polarization splitting action film 203, and the S polarization light. A polarized light component perpendicular to (a P-polarized light) has a transmitting effect.
【0014】図4において不定偏光光である光束αは偏
光分離作用膜203において、光束αのうちP偏光光L
P はそのまま透過して、偏光素子20より出射される。
一方、反射されるS偏光光LS は全反射ミラー204で
垂直反射され、再び偏光分離作用膜203で反射された
後、LS ′として前記LP とは反対方向に出射される。
図からも明らかなように全反射ミラー204の裏側、つ
まり直角プリズム202に面した側は、光束を反射させ
る必要がないので、乱反射を防ぐために光吸収面として
もよい。In FIG. 4, the light beam α which is indefinite polarized light is P-polarized light L of the light beam α in the polarization separation film 203.
P is transmitted as it is and emitted from the polarization element 20.
On the other hand, the reflected S-polarized light L S is vertically reflected by the total reflection mirror 204, reflected again by the polarization splitting film 203, and then emitted as L S ′ in the direction opposite to L P.
As is apparent from the figure, the back side of the total reflection mirror 204, that is, the side facing the right-angle prism 202 does not need to reflect the light flux, and thus may be a light absorbing surface to prevent irregular reflection.
【0015】S偏光光LS ′のその後について図5を用
いて説明する。図5は簡単のため光源1、反射鏡2、コ
ンデンサレンズ4、λ/4光学位相板22、偏光素子2
0のみ示して他は省略した。The process after the S-polarized light L S ′ will be described with reference to FIG. For simplicity, FIG. 5 shows a light source 1, a reflecting mirror 2, a condenser lens 4, a λ / 4 optical phase plate 22, and a polarizing element 2.
Only 0 is shown and the others are omitted.
【0016】図4で説明したように偏光素子20におい
て分離されたS偏光光LS ′は、所望の方向に光学軸が
設定されているλ/4光学位相板22の作用を受け円偏
光光LC となった後、コンデンサレンズ4を介してコン
デンサレンズ4の焦点位置にあり、反射鏡2の曲率中心
の位置に置かれた光源1に向かう。光源1に入射する円
偏光光LC の一部は、図に示すようにその偏光状態を保
持したまま透過し、反射鏡2で反射されるが、円偏光光
LC は反射の際、その進行方向に対する回転方向を変え
円偏光光LC ′となり、光源1へ向かう。ここで分かり
やすくするために反射前と反射後で光路をずらして示し
てある。再び光源1を透過した円偏光光LC ′は、再び
コンデンサレンズ4を介してλ/4光学位相板22及び
偏光素子20へと向かう。S偏光光LS ′はこのように
LS ′→LC →LC ′→LP ′という具合に変換される
ので、結果的にλ/4光学位相板を2度通過する。この
為、λ/4光学位相板22は作用としてλ/2光学位相
板と同じになりS偏光光LS ′の偏光方向を90度回転
させることが出来るので、S偏光光であったLS ′はP
偏光光LP ′として偏光素子20を透過する。As described with reference to FIG. 4, the S-polarized light L S ′ separated by the polarization element 20 is subjected to the action of the λ / 4 optical phase plate 22 whose optical axis is set in the desired direction and is circularly polarized light. After reaching L C , it goes through the condenser lens 4 to the light source 1 located at the focal position of the condenser lens 4 and at the position of the center of curvature of the reflecting mirror 2. A part of the circularly polarized light L C incident on the light source 1 is transmitted while maintaining its polarization state as shown in the figure, and is reflected by the reflecting mirror 2. When the circularly polarized light L C is reflected, The rotation direction is changed with respect to the traveling direction to become circularly polarized light L C ′, which is directed to the light source 1. Here, for the sake of clarity, the optical paths before and after reflection are shifted. The circularly polarized light L C ′ that has passed through the light source 1 again travels through the condenser lens 4 to the λ / 4 optical phase plate 22 and the polarizing element 20. The S-polarized light L S ′ is thus converted into the condition L S ′ → L C → L C ′ → L P ′, and as a result, passes through the λ / 4 optical phase plate twice. Therefore, the λ / 4 optical phase plate 22 has the same function as that of the λ / 2 optical phase plate and can rotate the polarization direction of the S-polarized light L S ′ by 90 degrees, so that the S-polarized light L S is obtained. ′ Is P
The polarized light L P ′ is transmitted through the polarizing element 20.
【0017】一方、円偏光光LC のうち光源1で拡散さ
れ、偏光状態が多少変化した光は、あたかも光源から発
した光のように振る舞い、コンデンサレンズ4を介して
偏光素子20を照射する。そして同じ動作を繰り返して
やがてはP偏光光LP ′となる。On the other hand, among the circularly polarized light L C , the light diffused by the light source 1 and having a slightly changed polarization state behaves like light emitted from the light source and illuminates the polarizing element 20 via the condenser lens 4. .. Then, the same operation is repeated until P-polarized light L P ′ is obtained.
【0018】本実施例では図5に示す様に繰り返し構造
のピッチをP、図示してはいないが偏光素子に入射する
光束の拡がり角をθ、被照明体と偏光素子の間の距離を
Lとしたときに2Ltanθ≧Pとすれば、偏光素子の
アレイ構造に起因して生じる色ムラや輝度ムラが被照明
体上でうまくキャンセルできる。この様子を輝度ムラを
例にとって図6に示した。 図6は2Ltanθ=Pの
条件を満たす配置である。不図示の照明手段から角度θ
の拡がりをもって入射してきた光束のうち反射面204
に当たる光束は図中矢印で示す様に反射面204で反射
(反射面204の裏面が吸収面になっていれば吸収)す
る為、斜線で示す様な領域に於て輝度の低下が起き、通
常、被照明面である液晶ライトバルブ上で輝度ムラが起
きるはずである。ところが、上記条件により輝度低下の
領域が、隣接する輝度低下の領域と重なるために輝度ム
ラが解消される。2Ltanθ>Pにした時は、さらに
重畳効果が促進される。In the present embodiment, as shown in FIG. 5, the pitch of the repeating structure is P, the divergence angle of the light beam incident on the polarizing element is θ, which is not shown, and the distance between the illuminated object and the polarizing element is L. Then, if 2Ltan θ ≧ P, the color unevenness and the brightness unevenness caused by the array structure of the polarizing element can be canceled well on the illuminated body. This state is shown in FIG. 6 by taking the luminance unevenness as an example. FIG. 6 shows an arrangement that satisfies the condition of 2L tan θ = P. Angle θ from the illumination means (not shown)
Of the light flux entering with the spread of
Since the light beam striking the light is reflected by the reflection surface 204 as shown by the arrow in the figure (absorption if the back surface of the reflection surface 204 is an absorption surface), the luminance decreases in the shaded area, , Uneven brightness should occur on the liquid crystal light valve that is the illuminated surface. However, due to the above conditions, the area where the brightness is reduced overlaps the adjacent area where the brightness is reduced, so that the uneven brightness is eliminated. When 2Ltan θ> P, the superimposing effect is further promoted.
【0019】本実施例では直角プリズム201と202
を用いたが、直角でなくともよい。例えばプリズム20
1を直角から多少ずらすと、光源へ戻る円偏光光LC の
光軸がずれ、円偏光光LC の少なくとも一部が光源1を
避けて通るので、光源1に直接ぶつかる円偏光光LC は
少なくなる。In this embodiment, right angle prisms 201 and 202
Was used, but it does not have to be a right angle. For example, prism 20
When 1 is shifted slightly from the right angle, the optical axis of the circularly polarized light L C returning to the light source shifts, and at least a part of the circularly polarized light L C passes through the light source 1, so that the circularly polarized light L C that directly strikes the light source 1 Will be less.
【0020】通常、光源に光が当たると透過、拡散され
る以外に吸収などによる損失光が生じる。該損失光は決
して無視できる量ではないので、前述したように、光源
1に直接ぶつかる円偏光光LC を少なくするのは光利用
効率アップにつながる。Normally, when light strikes a light source, in addition to being transmitted and diffused, loss of light due to absorption occurs. Since the amount of the lost light is by no means negligible, reducing the amount of circularly polarized light L C that directly strikes the light source 1 leads to an increase in light utilization efficiency, as described above.
【0021】図7に他の偏光素子の実施例を示す。FIG. 7 shows another embodiment of the polarizing element.
【0022】図7はプリズム201′、プリズム20
2′、偏光分離作用膜203′で構成される偏光ビーム
スプリッタと、プリズム201″、プリズム202″、
偏光分離作用膜203″で構成される偏光ビームスプリ
ッタを、偏光分離作用膜203′と203″が直交する
ように張り合わせ、その接合部に全反射ミラー204を
設けて、図のようにアレイ化したものである。この場
合、204は裏表共に全反射面となっており、偏光分離
作用膜203′と203″で反射されたS偏光光を両面
で反射させているので、全反射ミラー204を設ける面
を半分にすることができる。また、プリズム202′2
02″は1つのプリズムとして作製する事ができる。FIG. 7 shows a prism 201 'and a prism 20.
2 ', a polarization beam splitter composed of a polarization splitting action film 203', a prism 201 ", a prism 202",
The polarization beam splitter composed of the polarization splitting film 203 ″ is laminated so that the polarization splitting films 203 ′ and 203 ″ are orthogonal to each other, and the total reflection mirror 204 is provided at the joint portion to form an array as shown in the figure. It is a thing. In this case, 204 is a total reflection surface on both the front and back surfaces, and since the S-polarized light reflected by the polarization splitting films 203 ′ and 203 ″ is reflected on both surfaces, the surface on which the total reflection mirror 204 is provided is halved. In addition, the prism 202′2
02 ″ can be manufactured as one prism.
【0023】本実施例に於ても輝度ムラ、色ムラ等が偏
光素子構造の周期に合わせて表れるはずだが、前実施例
と同様に偏光素子の1ユニットのピッチP、偏光素子2
0に入射する光束の拡がり角θ、被照明体と偏光素子と
の間の距離Lを本発明の条件に合わせれば、光束の拡が
り角による重畳効果により、上記輝度ムラ、色ムラ等は
目立たなくなる。Even in this embodiment, uneven brightness, uneven color, etc. should appear in accordance with the period of the polarizing element structure. However, as in the previous embodiment, the pitch P of one unit of the polarizing element, the polarizing element 2
If the divergence angle θ of the light flux incident on 0 and the distance L between the object to be illuminated and the polarizing element are matched with the conditions of the present invention, the above-mentioned brightness unevenness, color unevenness, etc. become inconspicuous due to the superimposing effect of the light flux divergence angle. ..
【0024】図8に本発明の他の実施例を示す。FIG. 8 shows another embodiment of the present invention.
【0025】図8はガラスなどからなる板状の部材の一
方の面に、該板状部材の他方の面に対して垂直な面と、
同じく他方の面に対してほぼ45度をなすような斜面と
を交互に設け、前記垂直な面には全反射ミラー204
を、前記45度をなす面には偏光分離作用膜を設け、そ
れに前記板状部材と同一の形状の部材を張り合せたもの
であり、照明系からの光束に対する作用は第1実施例と
同様であるが、本実施例は強度の面で非常に優れている
という効果も合わせ持つ。FIG. 8 shows one surface of a plate-shaped member made of glass or the like, a surface perpendicular to the other surface of the plate-shaped member,
Similarly, inclined surfaces that form approximately 45 degrees with the other surface are alternately provided, and the total reflection mirror 204 is provided on the vertical surface.
A polarization splitting action film is provided on the surface forming the 45 degrees, and a member having the same shape as the plate-like member is attached to the film, and the action on the light flux from the illumination system is the same as in the first embodiment. However, this embodiment also has the effect of being very excellent in terms of strength.
【0026】図9は本発明の偏光照明装置の他の実施例
の要部を示したものであり、偏光素子20に相当する部
分のみ示した。FIG. 9 shows a main part of another embodiment of the polarized light illuminating device of the present invention, and only a part corresponding to the polarizing element 20 is shown.
【0027】本実施例の偏光素子20は、直角三角形を
断面とする三角柱の形状をした直角プリズム201と2
02の、直角を挟んでいる面のどちらか一方に夫々偏光
分離作用膜を設け、該偏光分離作用膜を有する面どうし
を張り合せたものである。尚、偏光分離作用膜は直角プ
リズム201、202のどちらか一方のみに設けても良
い。The polarizing element 20 of this embodiment is composed of right-angle prisms 201 and 2 in the shape of a triangular prism whose cross section is a right-angled triangle.
No. 02, a polarization splitting film is provided on either one of the surfaces sandwiching a right angle, and the surfaces having the polarization splitting film are bonded together. The polarization separating film may be provided on only one of the right angle prisms 201 and 202.
【0028】偏光分離作用膜203は、偏光分離作用膜
203へほぼ45度の入射角で入射する光に対して、偏
光分離作用膜203に平行な偏光方向を持つS偏光光は
反射し、S偏光光に対して垂直な偏光方向を持つP偏光
光は透過する作用を持つ。偏光分離作用膜203におい
て、不定偏光光束(a)のうちのP偏光光LP は偏光分
離作用膜203を透過して偏光素子20より出射され
る。一方不定偏光光束(a)のうちのS偏光光LS は偏
光分離作用膜203で反射され、更に全反射ミラー20
4で反射され、LS ′として偏光素子20より出射され
る。The polarization splitting action film 203 reflects S-polarized light having a polarization direction parallel to the polarization splitting action film 203 with respect to light incident on the polarization splitting action film 203 at an incident angle of approximately 45 degrees, and P-polarized light having a polarization direction perpendicular to the polarized light has a function of transmitting. In the polarization splitting action film 203, the P polarized light L P of the indefinitely polarized light flux (a) is transmitted through the polarization splitting action film 203 and emitted from the polarization element 20. On the other hand, the S-polarized light L S of the indefinite polarized light beam (a) is reflected by the polarization separation film 203, and is further reflected by the total reflection mirror 20.
The light is reflected at 4 and is emitted from the polarizing element 20 as L S ′.
【0029】もう一方の不定偏光光束(b)は、P及び
S偏光光共に、全反射ミラー204にて反射され、偏光
分離作用膜203において不定偏光光束(b)のうちP
偏光光LP のみそのまま透過される。そして、P偏光光
LP は全反射ミラー204′でP偏光光LP と同じ進行
方向に向けて反射され、偏光素子20より出射される。
一方、偏光分離作用膜203にて反射されたS偏光光は
LS として偏光素子20より出射される。The other indefinite polarized light beam (b) is reflected by the total reflection mirror 204 together with the P and S polarized light beams, and P of the indefinite polarized light beam (b) is reflected by the polarization separation film 203.
Only the polarized light L P is directly transmitted. And P-polarized light
L P is reflected by the total reflection mirror 204 ′ in the same traveling direction as the P-polarized light L P, and is emitted from the polarization element 20.
On the other hand, the S-polarized light reflected by the polarization splitting action film 203 is
It is emitted from the polarizing element 20 as L S.
【0030】S偏光光LS ′とLS ′のその後について
図10を用いて説明する。図10は簡単のため光源1、
球面反射ミラー2、λ/4光学位相板22、偏光素子2
0のみ示して他は省略した。The subsequent process of the S-polarized light L S ′ and L S ′ will be described with reference to FIG. FIG. 10 shows the light source 1 for simplicity.
Spherical reflecting mirror 2, λ / 4 optical phase plate 22, polarizing element 2
Only 0 is shown and the others are omitted.
【0031】図9で説明したように偏光素子20におい
て分離されたS偏光光LS ′は、所望の方向に光学軸が
設定されているλ/4光学位相板22の作用を受け円偏
光光LC となった後、コンデンサレンズ21を介してコ
ンデンサレンズ21の焦点位置にあり、球面反射鏡2の
曲率中心の位置に置かれた光源1に向かう。光源1に入
射する円偏光光LC の一部は、図に示すようにその偏光
状態を保持したまま透過し、球面反射鏡2で反射される
が、円偏光光LC は反射の際、その進行方向に対する回
転方向を変え円偏光光LC ′となり、光源1へ向かう。
ここで分かりやすくするために反射前と反射後で光路を
ずらして示してある。再び光源1を透過した円偏光光L
C ′は、再びコンデンサレンズ21を介してλ/4光学
位相板22及び偏光素子20へと向かう。S偏光光L
S ′はこのようにLS ′→LC →LC ′→LP ′という
具合に変換されるので、結果的にλ/4光学位相板を2
度通過する。この為、λ/4光学位相板22は作用とし
てλ/2光学位相板と同じになりS偏光光LS ′の偏光
方向を90度回転させることが出来るので、S偏光光で
あったLS ′はP偏光光LP ′として偏光素子20を透
過する。As described with reference to FIG. 9, the S-polarized light L S ′ separated by the polarization element 20 is subjected to the action of the λ / 4 optical phase plate 22 whose optical axis is set in the desired direction and is circularly polarized light. After reaching L C , it goes through the condenser lens 21 to the light source 1 located at the focal position of the condenser lens 21 and at the position of the center of curvature of the spherical reflecting mirror 2. A part of the circularly polarized light L C incident on the light source 1 is transmitted while maintaining its polarization state as shown in the figure, and is reflected by the spherical reflecting mirror 2. When the circularly polarized light L C is reflected, The rotation direction with respect to the traveling direction is changed to become circularly polarized light L C ′, which is directed to the light source 1.
Here, for the sake of clarity, the optical paths before and after reflection are shifted. Circularly polarized light L transmitted through the light source 1 again
C ′ again goes to the λ / 4 optical phase plate 22 and the polarization element 20 via the condenser lens 21. S-polarized light L
Since S'is thus converted into the order of L S '→ L C → L C ′ → L P ′, as a result, the λ / 4 optical phase plate becomes 2
Pass by. Therefore, the λ / 4 optical phase plate 22 has the same function as that of the λ / 2 optical phase plate and can rotate the polarization direction of the S-polarized light L S ′ by 90 degrees, so that the S-polarized light L S is L-polarized light. ′ Passes through the polarization element 20 as P-polarized light L P ′.
【0032】一方、円偏光光LC のうち光源1で拡散さ
れ、偏光状態が多少変化した光は、あたかも光源から発
した光のように振る舞い、コンデンサレンズ21を介し
て偏光素子20を照射する。そして同じ動作を繰り返し
てやがてはP偏光光LP ′となる。On the other hand, of the circularly polarized light L C , the light that has been diffused by the light source 1 and whose polarization state has changed slightly behaves like light emitted from the light source, and illuminates the polarizing element 20 via the condenser lens 21. .. Then, the same operation is repeated until P-polarized light L P ′ is obtained.
【0033】LS ′についてもLS ′と同様である。[0033] is the same 'is also L S for' and L S.
【0034】本実施例に於ても輝度ムラ、色ムラ等が図
示したような偏光素子構造の周期Pに合わせて表れるは
ずだが、前実施例と同様にピッチP、偏光素子20に入
射する光束の拡がり角θ、被照明体と偏光素子との間の
距離Lを本発明の条件に合わせれば、光束の拡がり角に
よる重畳効果により、上記輝度ムラ、色ムラ等は目立た
なくなる。Even in this embodiment, the uneven brightness, the uneven color, etc. should appear in accordance with the period P of the polarizing element structure as shown in the figure, but the light flux incident on the polarizing element 20 with the pitch P as in the previous embodiment. If the divergence angle .theta.
【0035】図11は本発明の偏光照明装置の他の実施
例の要部を示したものであり、偏光素子20に相当する
部分のみ示した。FIG. 11 shows a main part of another embodiment of the polarized light illuminating device of the present invention, and only a part corresponding to the polarizing element 20 is shown.
【0036】本実施例の偏光素子20は、直角三角形を
断面とする三角柱の形状をした直角プリズム201と2
02の、直角を挟んでいる両方の面に夫々偏光分離作用
膜を設け、該偏光分離作用膜を有する面どうしを張り合
せたものである。尚、偏光分離作用膜は直角プリズム2
01、202のどちらか一方のみに設けても良い。The polarizing element 20 of this embodiment is composed of right-angle prisms 201 and 2 in the shape of a triangular prism whose cross section is a right-angled triangle.
No. 02 is provided with a polarization splitting action film on both surfaces sandwiching a right angle, and the faces having the polarization splitting action film are bonded together. The polarization separating film is a right angle prism 2
It may be provided in only one of 01 and 202.
【0037】偏光分離作用膜203は、偏光分離作用膜
203へほぼ45度の入射角で入射する光に対して、偏
光分離作用膜203に平行な偏光方向を持つS偏光光は
反射し、S偏光光に対して垂直な偏光方向を持つP偏光
光は透過する作用を持つ。偏光分離作用膜203におい
て、不定偏光光束(a)のうちのP偏光光LP は偏光分
離作用膜203を透過して偏光素子20より出射され
る。一方不定偏光光束(a)のうちのS偏光光LS は偏
光分離作用膜203で反射され、更に隣接した偏光分離
作用膜203で反射され、LS ′として偏光素子20よ
り出射される。The polarization splitting action film 203 reflects S-polarized light having a polarization direction parallel to the polarization splitting action film 203 with respect to light incident on the polarization splitting action film 203 at an incident angle of approximately 45 degrees, and P-polarized light having a polarization direction perpendicular to the polarized light has a function of transmitting. In the polarization splitting action film 203, the P polarized light L P of the indefinitely polarized light flux (a) is transmitted through the polarization splitting action film 203 and emitted from the polarization element 20. On the other hand, the S-polarized light L S of the indefinite polarized light beam (a) is reflected by the polarization separation film 203, is further reflected by the adjacent polarization separation film 203, and is emitted from the polarization element 20 as L S ′.
【0038】もう一方の不定偏光光束(b)も同様にし
てP偏光光LP とS偏光光LS に分離される。The other indefinite polarized light beam (b) is similarly split into P polarized light L P and S polarized light L S.
【0039】S偏光光LS ′とLS ′のその後の振る舞
いについては図10に示したのと同様なので省略する。The subsequent behavior of the S-polarized light L S ′ and L S ′ is the same as that shown in FIG.
【0040】本実施例に於ても輝度ムラ、色ムラ等が図
示したような偏光素子構造の周期Pに合わせて表れるは
ずだが、前実施例と同様にピッチP、偏光素子20に入
射する光束の拡がり角θ、被照明体と偏光素子との間の
距離Lを本発明の条件に合わせれば、光束の拡がり角に
よる重畳効果により、上記輝度ムラ、色ムラ等は目立た
なくなる。Even in the present embodiment, the uneven brightness, the uneven color, etc. should appear in accordance with the period P of the polarizing element structure as shown in the figure, but the pitch P and the luminous flux incident on the polarizing element 20 are the same as in the previous embodiment. If the divergence angle .theta.
【0041】図12は本発明の偏光照明装置の他の実施
例の要部を示したものであり、偏光素子20に相当する
部分のみ示した。FIG. 12 shows a main part of another embodiment of the polarized light illuminating device of the present invention, and only a part corresponding to the polarizing element 20 is shown.
【0042】本実施例の偏光素子は、入射光束を複数の
光束に分割する光束分割部301及び該複数に分割され
た光束の各々について、直線偏光光に変換する偏光変換
部302から構成している。The polarizing element of the present embodiment comprises a light beam splitting unit 301 that splits an incident light beam into a plurality of light beams, and a polarization conversion unit 302 that converts each of the multiple light beams into linearly polarized light. There is.
【0043】光束分割部301は入射側に光束を集束さ
せる作用をもつ集束作用面301aの列をもち、出射側
に光束を発散させる作用をもつ発散作用面301bの列
をもっている。本実施例では集束作用面301aとして
正のパワーをもつレンチキュラーレンズ、発散作用面3
01bとして、集束作用面301aと同じ周期をもちか
つ、対となる収束作用面と共焦点をなす負のパワーのレ
ンチキュラーレンズから構成されており、該負パワーレ
ンズの焦点距離の絶対値を正パワーレンズの焦点距離の
1/2とすることにより、入射平行光束は光束巾が該レ
ンチキュラーレンズピッチの1/2の略平行光の光束に
分割される。発散作用面301bは集束作用面301a
と同じ巾をもつ必要はないので、光束の進行を妨げない
範囲でその一部を非作用面301cで構成してもかまわ
ない。また、非作用面301cに吸収膜を設ける事によ
り、該光束分割部内での乱反射等による悪影響を軽減す
ることができる。The light beam splitting unit 301 has a row of focusing surface 301a having a function of focusing the light beam on the incident side, and a row of diverging surface 301b having a function of diverging the light beam on the output side. In this embodiment, the focusing action surface 301a is a lenticular lens having a positive power, and the divergence action surface 3
Reference numeral 01b is a negative power lenticular lens having the same period as that of the focusing surface 301a and confocal with the pair of focusing surfaces, and the absolute value of the focal length of the negative power lens is defined as the positive power. By setting the focal length of the lens to ½, the incident parallel light flux is divided into substantially parallel light flux having a light flux width of ½ of the lenticular lens pitch. The diverging surface 301b is the focusing surface 301a.
Since it is not necessary to have the same width as the above, a part of the non-action surface 301c may be formed as long as it does not hinder the progress of the light flux. Further, by providing the absorbing film on the non-acting surface 301c, it is possible to reduce the adverse effects due to diffused reflection and the like in the light beam splitting portion.
【0044】偏光変換部302は光束分割部の光束出射
部301bに対応した、その断面が平行四辺形のガラス
部材206と、同等の形状でガラス部材206どうしの
間に配置するガラス部材205とガラス部材206、2
05が接する面のうち、光束出射部301bの光路に対
応した面に形成された偏光分離作用膜203、他方の面
に形成された反射面204及び、λ/2光学位相板11
からなる。The polarization converting section 302 corresponds to the light beam emitting section 301b of the light beam splitting section, and has a parallelogram glass section 206, and a glass member 205 having the same shape and arranged between the glass members 206 and the glass member 205. Members 206, 2
Of the surfaces in contact with 05, the polarization splitting film 203 formed on the surface corresponding to the optical path of the light beam emitting portion 301b, the reflecting surface 204 formed on the other surface, and the λ / 2 optical phase plate 11
Consists of.
【0045】偏光変換部302に入射した光束(a)は
偏光分離作用膜203でP偏光光LP は透過され、S偏
光光LS は反射される。反射されたS偏光光LS は反射
面204で90°向きを変えた後、λ/2光学位相板1
1で偏光面を90°回転され、P偏光光LP ′となっ
て、P偏光光LP と共に同じ直線偏光光として出射され
る。The light beam (a) incident on the polarization conversion section 302 is transmitted through the polarization separation film 203 as P polarized light L P and reflected as S polarized light L S. The reflected S-polarized light L S changes its direction by 90 ° on the reflecting surface 204, and then the λ / 2 optical phase plate 1
At 1, the plane of polarization is rotated by 90 ° to become P-polarized light L P ′, which is emitted together with P-polarized light L P as the same linearly polarized light.
【0046】本実施例に於ても輝度ムラ、色ムラ等が図
示したような偏光素子構造の周期Pに合わせて表れるは
ずだが、ピッチP、偏光変換部302に入射する光束の
拡がり角θ′、被照明体と偏光素子との間の距離Lを本
発明の条件に合わせれば、光束の拡がり角による重畳効
果により、上記輝度ムラ、色ムラ等は目立たなくなる。Even in this embodiment, the uneven brightness, the uneven color, etc. should appear in accordance with the period P of the polarizing element structure as shown in the figure, but the pitch P and the divergence angle θ ′ of the light beam incident on the polarization conversion unit 302 are shown. If the distance L between the object to be illuminated and the polarizing element is adjusted to the conditions of the present invention, the uneven brightness, uneven color and the like become inconspicuous due to the superimposing effect of the spread angle of the light flux.
【0047】本実施例が他の実施例と異なる点は光束分
割部301を用いて、各ユニットに対応する光束を約半
分の巾に圧縮している点で、これにより照明手段からの
光束の拡がり各θに対して、光束分割部301からの出
射光束の拡がり角はθ′に変化する。一般に拡がり角θ
とθ′の関係は、光束の圧縮率に反比例し、本実施例の
場合、光束の巾が約1/2になるので、θ′≒2θとな
る。The present embodiment is different from the other embodiments in that the light beam splitting section 301 is used to compress the light beam corresponding to each unit to about half the width. With respect to each divergence θ, the divergence angle of the luminous flux emitted from the luminous flux splitting unit 301 changes to θ ′. Spread angle θ
And θ ′ are inversely proportional to the compression rate of the light flux, and in the case of the present embodiment, the width of the light flux becomes about 1/2, so that θ′≈2θ.
【0048】図13は、本発明の偏光素子を用いたカラ
ーの投写表示装置の構成を示したものである。FIG. 13 shows the structure of a color projection display apparatus using the polarizing element of the present invention.
【0049】コンデンサレンズ4により平行化された平
行光束は、赤色を反射し、緑、青色を透過するダイクロ
イックミラー28、緑色を反射し青色を透過するダイク
ロイックミラー23、全反射ミラー24により赤・緑・
青の3色に分解され、各色に対応して設けられた偏光素
子20R、20G、20Bで直線偏光光に変換され、コ
ンデンサレンズ21R、21G、21Bを介して液晶ラ
イトバルブ7R、7G、7Bに入射する。液晶ライトバ
ルブ7R、7G、7Bで変調された光は検光子8R、8
G、8Bで透過・吸収の選択がなされ、緑色を反射し赤
色を透過するダイクロイックミラー26、赤、緑色を透
過し青色を反射するダイクロイックミラー27、全反射
ミラー25、により再び合成される。合成光は投写レン
ズ10により不図示のスクリーン上へ投写表示される。The parallel luminous flux collimated by the condenser lens 4 reflects a red color and transmits a green color and a blue color through a dichroic mirror 28, a green color reflects a blue color through a dichroic mirror 23 and a total reflection mirror 24 into a red / green color.・
It is decomposed into three colors of blue, converted into linearly polarized light by the polarizing elements 20R, 20G, 20B provided corresponding to each color, and is converted into liquid crystal light valves 7R, 7G, 7B via condenser lenses 21R, 21G, 21B. Incident. The light modulated by the liquid crystal light valves 7R, 7G and 7B is analyzed by the analyzers 8R and 8R.
Transmission and absorption are selected by G and 8B, and they are combined again by a dichroic mirror 26 that reflects green and transmits red, a dichroic mirror 27 that transmits red and green and reflects blue, and a total reflection mirror 25. The combined light is projected and displayed on the screen (not shown) by the projection lens 10.
【0050】本実施例においては3色に分解した後に、
前述した実施例の構成の偏光素子20R、20G、20
Bを設けることにより以下の効果を有する。In this embodiment, after being separated into three colors,
The polarizing elements 20R, 20G, and 20 having the configurations of the above-described embodiments
Providing B has the following effects.
【0051】一般に偏光分離作用膜は波長依存性を零に
押さえるのは難しく、白色光の入射光束に対しては、効
率上の限界がある。従って、本実施例のように3色別に
偏光素子を構成することにより、効率アップ、良好な色
再現性等に関するより良い設計が可能となる。Generally, it is difficult for the polarization splitting film to suppress the wavelength dependence to zero, and there is a limit in efficiency for the incident light flux of white light. Therefore, by constructing the polarizing element for each of the three colors as in the present embodiment, it is possible to improve efficiency and design better with respect to good color reproducibility.
【0052】本発明の偏光素子を用いる構成としては、
本実施例に限定されるものではなく、色分解系にクロス
ダイクロイックミラーを用いたもの、色合成系にクロス
ダイクロイックミラーを用いたもの、色合成系を用いず
3色別に投写レンズを用いるもの等、さまざまな構成に
適用可能である。また、偏光素子の配置位置も3色分解
後に限定されるものではなく、色分解系の途中、あるい
は色分解系の前に置くことも可能であり、必要な偏光素
子の個数も各々の場合で異なってくる。また、反射型液
晶ライトバルブを用いた投写表示装置にも用いることが
出来るのは言うまでもない。いずれにしても、複数の偏
光素子を用いる場合は色ムラの発生を抑制する為にも光
学的に等価な位置に配置する必要がある。ここで言う光
学的に等価な位置とは光路中の同じ位置関係にあるとい
う場合以外に、光束の分布(各偏光素子への入射角分
布、強度分布等)が類似しているという意味も含む。As a constitution using the polarizing element of the present invention,
The present invention is not limited to this embodiment, a color separation system uses a cross dichroic mirror, a color synthesis system uses a cross dichroic mirror, a color synthesis system does not use a projection lens for each of the three colors, and the like. , Applicable to various configurations. Further, the arrangement position of the polarizing element is not limited to the one after the three-color separation, and it can be placed in the middle of the color separation system or before the color separation system, and the required number of the polarizing elements is different in each case. Will be different. Further, it goes without saying that it can also be used in a projection display device using a reflective liquid crystal light valve. In any case, when using a plurality of polarizing elements, it is necessary to arrange them at optically equivalent positions in order to suppress the occurrence of color unevenness. The term “optically equivalent position” as used herein means that the distribution of light flux (incident angle distribution to each polarization element, intensity distribution, etc.) is similar, except that it has the same positional relationship in the optical path. ..
【0053】以上の実施例においては、光源の背面に設
ける反射鏡として球面反射鏡を用いたが、放物面反射鏡
や楕円面反射鏡なども考えられる。一般に平行光束を得
るときには球面反射鏡よりも放物面反射鏡のほうが光利
用効率が良くなるが、偏光変換効率は、偏光素子から戻
ってくる光束のリフレクタでの反射回数が奇数回である
球面反射鏡を用いたほうが有利である。In the above embodiments, the spherical reflecting mirror is used as the reflecting mirror provided on the back surface of the light source, but a parabolic reflecting mirror, an elliptic reflecting mirror or the like is also conceivable. Generally, when obtaining a parallel light flux, the parabolic reflector has a higher light utilization efficiency than the spherical reflector, but the polarization conversion efficiency is a spherical surface where the number of reflections of the light flux returning from the polarizing element by the reflector is an odd number. It is advantageous to use a reflector.
【0054】放物反射鏡のようにリフレクタでの反射回
数が偶数回だと、偏光変換効率が悪くなるが、それを補
う照明手段としては図14のようなものが考えられる。If the number of reflections by the reflector is even, as in the case of a parabolic reflector, the polarization conversion efficiency will deteriorate, but as an illumination means for compensating for this, the one shown in FIG. 14 can be considered.
【0055】図14の照明手段はλ/4光学位相板が光
源からの光軸を境にしてλ/4光学位相板22aとλ/
4光学位相板22bとに別れており、入射光であるS偏
光光LS に対して、より多く出射光がP偏光光LP とし
て得られるように夫々λ/4光学位相板22aとλ/4
光学位相板22bの光学軸を設定するものである。普通
はλ/4光学位相板22aとλ/4光学位相板bの光学
軸がほぼ90度をなすように設定すると最も偏光変換効
率が良くなる。In the illuminating means shown in FIG. 14, the λ / 4 optical phase plate 22a and the λ / 4 optical phase plate 22a are separated from each other with the optical axis from the light source as a boundary.
4 optical phase plate 22b and λ / 4 optical phase plates 22a and λ /, respectively, so that more outgoing light can be obtained as P polarized light L P with respect to S polarized light L S that is incident light. Four
The optical axis of the optical phase plate 22b is set. Normally, the polarization conversion efficiency is maximized when the λ / 4 optical phase plate 22a and the λ / 4 optical phase plate b are set so that their optical axes form approximately 90 degrees.
【0056】次に照明手段からの光束の拡がり角につい
て図15を用いて説明を加える。半径rの光源1、半径
Rの反射鏡2(この場合は球面鏡)、凸レンズ4の組み
合わせに於て、反射鏡の開口を2m、開口から偏光素子
までの距離をlとすると、 tanθ1 =m/l tanθ2 =r/R 偏光素子へ入射する光束の拡がり角θは、 tanθ1 ≦tanθ2 つまり m/l≦r/R の
時 θ=θ1 tanθ1 ≧tanθ2 つまり m/l≧r/R の
時 θ=θ2 Next, the divergence angle of the luminous flux from the illumination means will be described with reference to FIG. In a combination of a light source 1 having a radius r, a reflecting mirror 2 having a radius R (a spherical mirror in this case), and a convex lens 4, assuming that the opening of the reflecting mirror is 2 m and the distance from the opening to the polarizing element is 1, tan θ 1 = m / L tan θ 2 = r / R The spread angle θ of the light beam incident on the polarizing element is tan θ 1 ≦ tan θ 2 that is m / l ≦ r / R θ = θ 1 tan θ 1 ≧ tan θ 2 that is m / l ≧ r When / R θ = θ 2
【0057】つまり、距離lが十分大きいと、偏光素子
20から距離lを隔てた開口の見かけの大きさに依存
し、距離lが小さくなると、反射鏡2上から見た光源1
の見かけの大きさに依存する。実際の装置では後者の場
合が多い。That is, when the distance 1 is sufficiently large, it depends on the apparent size of the aperture that is separated from the polarizing element 20 by the distance 1, and when the distance 1 is small, the light source 1 viewed from above the reflecting mirror 2 is shown.
Depends on the apparent size of. In the actual device, the latter is often the case.
【0058】反射鏡2として焦点距離fの放物面鏡を用
いた場合は、前記Rが可変となり、拡がり角θ=θ2 が
最大になるのはRが最小の値fをとる時、つまり放物面
鏡の底部で反射した光に相当する。しかし、一般に光源
1の配光分布を考えると、放物面鏡の底部へ向かう光は
少量であることや、実際には当該底部には光源の支持部
材取り付けの為の穴が開いているので、前述したような
光は殆ど存在しない。よって、Rがとる最小の値は実際
にはfより大きくなる。When a parabolic mirror having a focal length f is used as the reflecting mirror 2, the above R becomes variable and the spread angle θ = θ 2 becomes maximum when R has a minimum value f, that is, It corresponds to the light reflected at the bottom of the parabolic mirror. However, in general, considering the light distribution of the light source 1, since a small amount of light travels to the bottom of the parabolic mirror, and in fact there is a hole for attaching a support member for the light source in the bottom. There is almost no light as described above. Therefore, the minimum value of R is actually larger than f.
【0059】以下に、本発明の数値実施例を示す。Numerical examples of the present invention will be shown below.
【0060】通常、150wのメタルハライドランプの
発光径は約5mmであり、焦点距離が16mmの放物面
鏡と組み合わせ、ランプから偏光素子までの距離を15
0mmとした時、偏光素子に入射する光束の拡がり角は
最大約±8.9°となる。図13のように各液晶ライト
バルブに対応する偏光素子を当該液晶ライトバルブから
夫々30mm離して設置したとすると、前記条件式より
前記偏光素子は約9.4mm以下のピッチにすれば、輝
度ムラや色ムラが目立たない投影像を得ることができ
る。Usually, the emission diameter of a 150-w metal halide lamp is about 5 mm, and it is combined with a parabolic mirror having a focal length of 16 mm, and the distance from the lamp to the polarizing element is 15 mm.
When it is set to 0 mm, the divergence angle of the light beam incident on the polarizing element is about ± 8.9 ° at the maximum. As shown in FIG. 13, assuming that the polarizing elements corresponding to the respective liquid crystal light valves are installed 30 mm apart from the liquid crystal light valves, if the pitch of the polarizing elements is set to about 9.4 mm or less from the conditional expression, the uneven brightness will be caused. It is possible to obtain a projected image in which color unevenness is not noticeable.
【0061】尚、本発明は以上の実施例に限定されるも
のではなく、発明の主旨を逸脱しない範囲で、種々の構
成が可能であることは言うまでもない。Needless to say, the present invention is not limited to the above embodiments, and various configurations can be made without departing from the spirit of the invention.
【0062】偏光変換部に用いられるプリズムは偏光分
離作用膜の分離機能を最適に保つ為に、屈折率選択の自
由度の大きい光学ガラスを用いることが多いが、プラス
チック材によるものも可能である。又、プリズムを用い
ないで平行平板の組み合わせで構成することもできる
が、P偏光光の透過率はプリズムに比べて劣る。For the prism used in the polarization conversion section, an optical glass having a large degree of freedom in selecting the refractive index is often used in order to keep the separation function of the polarization separation action film optimal, but a plastic material is also possible. .. Further, it is possible to use a combination of parallel plates without using a prism, but the transmittance of P-polarized light is inferior to that of a prism.
【0063】偏光分離作用膜203としては通常の光学
多層膜により構成することが出来るが、偏光分離作用膜
203の代わりにグリッド偏光子を用いても同様の効果
が得られる。この場合、プリズムでグリッド偏光子を挟
まなくても偏光分離機能は最適な状態に保てるので、偏
光照明装置の軽量化という更なる効果が期待できる。The polarization splitting action film 203 can be constituted by an ordinary optical multilayer film, but a similar effect can be obtained by using a grid polarizer instead of the polarization splitting action film 203. In this case, the polarization splitting function can be kept in an optimum state without sandwiching the grid polarizer by the prisms, so that a further effect of reducing the weight of the polarization illumination device can be expected.
【0064】グリッド偏光子は、金属を平行に配列した
非常に細かい格子構造をしており、この格子間隔の2倍
以上の波長を持つ光が入射する場合、格子に平行な偏光
成分は反射し、格子に垂直な偏光成分は透過する。The grid polarizer has a very fine lattice structure in which metals are arranged in parallel. When light having a wavelength of at least twice the lattice spacing is incident, the polarized component parallel to the lattice is reflected. , The polarization component perpendicular to the grating is transmitted.
【0065】また、偏光分離作用膜の代わりにコレステ
リック液晶層などを用いても本発明は適用できる。The present invention can also be applied by using a cholesteric liquid crystal layer or the like instead of the polarization splitting film.
【0066】λ/4光学位相板22としては雲母、水晶
等の結晶性のもの、延伸した高分子フィルム、一定の厚
みを持ち一定方向に分子軸をそろえて配向させた低分子
液晶、または側鎖型高分子液晶、高分子中に分散させた
低分子液晶等を用いることが出来る。また、全反射ミラ
ー204としてはアルミ蒸着ミラーを用いるかまたは薄
膜多層膜を用いることが多いが、全反射ミラー204の
裏面にも同じように全反射ミラーを設けても良い。The λ / 4 optical phase plate 22 is a crystalline material such as mica or quartz, a stretched polymer film, a low-molecular liquid crystal having a certain thickness and oriented in a certain direction with its molecular axes aligned, or a side surface. A chain type polymer liquid crystal, a low molecular weight liquid crystal dispersed in a polymer, or the like can be used. An aluminum vapor deposition mirror or a thin-film multilayer film is often used as the total reflection mirror 204, but a total reflection mirror may be similarly provided on the back surface of the total reflection mirror 204.
【0067】[0067]
【発明の効果】以上説明したように本発明は、照明手段
からの所定の拡がり角を持った光束の光路に設けた偏光
素子により該光束を互いに偏光面の異なる第1偏光光と
第2偏光光に分離し、該第1偏光光を第1の方向に向け
ると共に該第2偏光光を前記偏光素子によって前記照明
手段に戻し、前記照明手段により該第2偏光光の偏光面
を前記第1偏光光と同じ偏光面に変換すると共に該第2
偏光光を前記偏光素子を介して前記第1の方向に向ける
偏光照明装置において、前記偏光素子を1つの単位とし
て前記照明手段からの光束の光路を横切るよう所定方向
に沿って複数個配列した繰り返し構造となっており、前
記偏光素子に入射する光束の拡がり角を±θ、被照明体
と前記偏光素子の間の距離をL、前記繰り返し構造のピ
ッチをPとしたときに、 2Ltanθ≧P としたので、輝度ムラや色ムラの目立たない偏光照明装
置を得ることができる。As described above, according to the present invention, the polarizing element provided in the optical path of the light flux having the predetermined divergence angle from the illuminating means causes the light flux to have the first polarized light and the second polarized light having different polarization planes. The first polarized light is directed to the first direction, the second polarized light is returned to the illuminating means by the polarizing element, and the polarization plane of the second polarized light is changed to the first by the illuminating means. The second light is converted into the same polarization plane as the polarized light and
In a polarized illumination device that directs polarized light in the first direction through the polarization element, a plurality of the polarization elements are repeatedly arranged along a predetermined direction so as to cross an optical path of a light beam from the illumination unit. 2Ltan θ ≧ P, where the divergence angle of the light beam incident on the polarizing element is ± θ, the distance between the object to be illuminated and the polarizing element is L, and the pitch of the repeating structure is P. Therefore, it is possible to obtain a polarized light illumination device in which uneven brightness and uneven color are not noticeable.
【0068】本発明の偏光照明装置を投写表示装置に用
いれば、軽量コンパクトでかつ安価な高輝度投写表示装
置を、画質を落とすことなく提供することができる。If the polarized illumination device of the present invention is used for a projection display device, it is possible to provide a lightweight, compact and inexpensive high-luminance projection display device without degrading the image quality.
【図1】本発明の実施例を示す投写表示装置の概略構成
図FIG. 1 is a schematic configuration diagram of a projection display device showing an embodiment of the present invention.
【図2】本発明の実施例を示す偏光素子の斜視図FIG. 2 is a perspective view of a polarizing element showing an embodiment of the present invention.
【図3】本発明の実施例を示す偏光素子の断面図FIG. 3 is a sectional view of a polarizing element showing an embodiment of the present invention.
【図4】本発明の実施例を示す偏光素子の作用説明図FIG. 4 is an explanatory view of the action of the polarizing element showing the embodiment of the present invention.
【図5】本発明の実施例を示す偏光照明装置の作用説明
図FIG. 5 is an operation explanatory view of the polarized illumination device showing the embodiment of the present invention.
【図6】本発明の効果を示す作用説明図FIG. 6 is an operation explanatory view showing the effect of the present invention.
【図7】本発明の偏光素子の他の実施例FIG. 7 is another embodiment of the polarizing element of the present invention.
【図8】本発明の偏光素子の他の実施例FIG. 8 is another embodiment of the polarizing element of the present invention.
【図9】本発明の偏光素子の他の実施例とその作用説明
図FIG. 9 is a diagram illustrating another embodiment of the polarizing element of the present invention and its operation explanatory diagram.
【図10】本発明の偏光照明装置の他の実施例の作用説
明図FIG. 10 is an operation explanatory view of another embodiment of the polarized illumination device of the present invention.
【図11】本発明の偏光素子の他の実施例とその作用説
明図FIG. 11 is a diagram illustrating another embodiment of the polarizing element of the present invention and its operation explanatory diagram.
【図12】本発明の偏光素子の他の実施例とその作用説
明図FIG. 12 is a schematic view of another embodiment of the polarizing element of the present invention and its operation.
【図13】本発明の実施例を示すカラー投写表示装置の
概略構成図FIG. 13 is a schematic configuration diagram of a color projection display device showing an embodiment of the present invention.
【図14】本発明の偏光照明装置に用いる照明手段の実
施例FIG. 14 is an example of an illuminating means used in the polarized illumination device of the present invention.
【図15】偏光照明装置の拡がり角の説明図FIG. 15 is an explanatory diagram of a divergence angle of the polarized illumination device.
【図16】偏光照明装置を用いた投写表示装置の従来例FIG. 16 is a conventional example of a projection display device using a polarized illumination device.
【図17】偏光素子の従来例の作用説明図FIG. 17 is an explanatory view of the operation of a conventional example of a polarizing element.
1 光源 2 反射ミラー 3 熱線カットフィルター 4 コンデンサレンズ 5、8 偏光板 7 液晶ライトバルブ(LCD) 10 投写レンズ 11 λ/2光学位相板 20 偏光素子 21 コンデンサレンズ 22 λ/4光学位相板 201、202 直角プリズム 203 偏光分離作用膜 24、25、204 反射面 23、26、27、28 ダイクロイックミラー 1 Light Source 2 Reflection Mirror 3 Heat Ray Cut Filter 4 Condenser Lens 5, 8 Polarizer 7 Liquid Crystal Light Valve (LCD) 10 Projection Lens 11 λ / 2 Optical Phase Plate 20 Polarizing Element 21 Condenser Lens 22 λ / 4 Optical Phase Plate 201, 202 Right angle prism 203 Polarization separating film 24, 25, 204 Reflective surface 23, 26, 27, 28 Dichroic mirror
Claims (7)
光束の光路に設けた偏光素子により該光束を互いに偏光
面の異なる第1偏光光と第2偏光光に分離し、該第1偏
光光を第1の方向に向けると共に該第2偏光光を前記偏
光素子によって前記照明手段に戻し、前記照明手段によ
り該第2偏光光の偏光面を前記第1偏光光と同じ偏光面
に変換すると共に該第2偏光光を前記偏光素子を介して
前記第1の方向に向ける偏光照明装置において、前記偏
光素子を1つの単位として前記照明手段からの光束の光
路を横切るよう所定方向に沿って複数個配列した繰り返
し構造となっており、前記偏光素子に入射する光束の拡
がり角を±θ、被照明体と前記偏光素子の間の距離を
L、前記繰り返し構造のピッチをPとしたときに、 2Ltanθ≧P とすることを特徴とする偏光照明装置。1. A polarizing element provided in an optical path of a light beam having a predetermined spread angle from an illuminating device separates the light beam into first polarized light and second polarized light having different polarization planes, and the first polarized light The light is directed to the first direction and the second polarized light is returned to the illuminating means by the polarizing element, and the illuminating means converts the polarization plane of the second polarized light into the same polarization plane as the first polarized light. At the same time, in the polarized illuminating device for directing the second polarized light in the first direction through the polarizing element, a plurality of the polarizing elements are set as one unit along a predetermined direction so as to cross the optical path of the light flux from the illuminating means. When the divergence angle of the light beam incident on the polarizing element is ± θ, the distance between the object to be illuminated and the polarizing element is L, and the pitch of the repeating structure is P, 2L tan θ ≧ P Polarizing illumination device according to claim.
けた反射鏡と、該光源の前面に設けたλ/4光学位相板
からなり、前記偏光素子は前記照明手段の光軸に対して
傾いた偏光分離作用膜と前記光軸とほぼ平行な反射面か
らなることを特徴とする請求項1記載の偏光照明装置。2. The illuminating means comprises a light source, a reflecting mirror provided behind the light source, and a λ / 4 optical phase plate provided in front of the light source, wherein the polarizing element is arranged with respect to an optical axis of the illuminating means. 2. The polarized illumination device according to claim 1, wherein the polarized light separating film is inclined and the reflecting surface is substantially parallel to the optical axis.
けた反射鏡と、該光源の前面に設けたλ/4光学位相板
からなり、前記偏光素子は偏光分離作用膜と一端が該偏
光分離作用膜の一端とある角度をもって接している全反
射ミラーとを前記照明手段からの光路に夫々斜設し、該
全反射ミラーの裏面に第2の全反射ミラーを設けたこと
を特徴とする請求項1記載の偏光照明装置。3. The illuminating means comprises a light source, a reflecting mirror provided behind the light source, and a λ / 4 optical phase plate provided in front of the light source, and the polarizing element has a polarization separation film and one end thereof. A total reflection mirror, which is in contact with one end of the polarization splitting action film at an angle, is obliquely provided in the optical path from the illuminating means, and a second total reflection mirror is provided on the back surface of the total reflection mirror. The polarized illumination device according to claim 1.
けた反射鏡と、該光源の前面に設けたλ/4光学位相板
からなり、前記偏光素子は偏光分離作用膜と一端が該偏
光分離作用膜の一端とある角度をもって接している第2
の偏光分離作用膜とを前記照明手段からの光路に夫々斜
設したことを特徴とする請求項1記載の偏光照明装置。4. The illuminating means comprises a light source, a reflecting mirror provided behind the light source, and a λ / 4 optical phase plate provided in front of the light source, and the polarization element has a polarization separation film and one end thereof. Second contact with one end of the polarization splitting film at an angle
The polarized light illuminating device according to claim 1, wherein the polarized light separating action film and the polarized light separating action film are obliquely provided in an optical path from the illuminating means, respectively.
偏光光を変調することにより画像を形成する画像形成手
段と、該画像形成手段により形成された画像光を投影す
る投影手段とを有する投写表示装置において、前記偏光
照明装置は、照明手段からの所定の拡がり角を持った光
束の光路に設けた偏光素子により該光束を互いに偏光面
の異なる第1偏光光と第2偏光光に分離し、該第1偏光
光を第1の方向に向けると共に該第2偏光光を前記偏光
素子によって前記照明手段に戻し、前記照明手段により
該第2偏光光の偏光面を前記第1偏光光と同じ偏光面に
変換すると共に該第2偏光光を前記偏光素子を介して前
記第1の方向に向ける偏光照明装置において、前記偏光
素子を1つの単位として前記照明手段からの光束の光路
を横切るよう所定方向に沿って複数個配列した繰り返し
構造となっており、前記前記偏光素子に入射する光束の
拡がり角を±θ、前記画像形成手段と前記偏光素子の間
の距離をL、前記繰り返し構造のピッチをPとしたとき
に、 2Ltanθ≧P とすることを特徴とする投写表示装置。5. A polarized illuminating device, an image forming unit that forms an image by modulating polarized light from the polarized illuminating device, and a projection unit that projects the image light formed by the image forming unit. In the projection display device, the polarized illumination device separates the light beam into first polarized light and second polarized light having different polarization planes by a polarizing element provided in an optical path of the light beam having a predetermined divergence angle. Then, the first polarized light is directed to the first direction and the second polarized light is returned to the illuminating means by the polarizing element, and the illuminating means changes the polarization plane of the second polarized light to the first polarized light. In a polarized illumination device that converts the same polarization plane and directs the second polarized light in the first direction through the polarization element, the polarization element is taken as a unit to cross an optical path of a light beam from the illumination means. Predetermined person A plurality of repeating structures are arrayed along the direction, the divergence angle of the light beam incident on the polarizing element is ± θ, the distance between the image forming unit and the polarizing element is L, and the pitch of the repeating structure. The projection display device is characterized in that 2Ltan θ ≧ P, where P is P.
光束の光路に、該光束を互いに偏光面の異なる第1偏光
光と第2偏光光に進行方向によって分離し、該第2偏光
光を前記第1偏光光と同じ偏光面に変換すると共に該第
2偏光光と前記第1偏光光の進行方向を同一にする偏光
素子を設けた偏光照明装置に於て、前記偏光素子を1つ
の単位として前記照明手段からの光束の光路を横切るよ
う所定方向に沿って複数個配列した繰り返し構造となっ
ており、前記偏光素子に入射する光束の拡がり角を±
θ′、被照明体と前記偏光素子の間の距離をL、前記繰
り返し構造のピッチをPとしたときに、 2Ltanθ′≧P とすることを特徴とする偏光照明装置。6. The second polarized light is divided into a first polarized light and a second polarized light having different polarization planes in the optical path of the light flux having a predetermined divergence angle from the illuminating means, and the second polarized light. In a polarization illuminating device provided with a polarization element that converts the same to the same plane of polarization as the first polarized light and makes the traveling directions of the second polarized light and the first polarized light the same. As a unit, it has a repeating structure in which a plurality of light beams from the illuminating means are arranged along a predetermined direction so as to cross the optical path, and the divergence angle of the light beam incident on the polarizing element is ±.
Polarized illuminating device, wherein 2Ltan θ ′ ≧ P, where θ ′, the distance between the illuminated object and the polarizing element is L, and the pitch of the repeating structure is P.
偏光光を変調することにより画像を形成する画像形成手
段と、該画像形成手段により形成された画像光を投影す
る投影手段とを有する投写表示装置において、前記偏光
照明装置は、照明手段からの所定の拡がり角を持った光
束の光路に、該光束を互いに偏光面の異なる第1偏光光
と第2偏光光に進行方向によって分離し、該第2偏光光
を前記第1偏光光と同じ偏光面に変換すると共に該第2
偏光光と前記第1偏光光の進行方向を同一にする偏光素
子を設けた偏光照明装置に於て、前記偏光素子を1つの
単位として前記照明手段からの光束の光路を横切るよう
所定方向に沿って複数個配列した繰り返し構造となって
おり、前記偏光素子に入射する光束の拡がり角を±
θ′、前記画像形成手段と前記偏光素子の間の距離を
L、前記繰り返し構造のピッチをPとしたときに、 2Ltanθ′≧P とすることを特徴とする投写表示装置。7. A polarized illuminating device, an image forming unit that forms an image by modulating polarized light from the polarized illuminating device, and a projecting unit that projects the image light formed by the image forming unit. In the projection display device, the polarized illumination device separates the light beam into a first polarized light beam and a second polarized light beam having different polarization planes according to a traveling direction in an optical path of the light beam having a predetermined spread angle from the illumination means. , Converting the second polarized light to the same plane of polarization as the first polarized light and
In a polarized illuminating device provided with a polarizing element that makes the traveling directions of the polarized light and the first polarized light the same, the polarizing element is taken as a unit along a predetermined direction so as to cross the optical path of the light beam from the illuminating means. It has a repeating structure in which a plurality of light beams are incident on the polarizing element.
The projection display device is characterized in that 2Ltan θ ′ ≧ P, where θ ′, the distance between the image forming means and the polarizing element is L, and the pitch of the repeating structure is P.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP92245A JPH05181135A (en) | 1992-01-06 | 1992-01-06 | Polarizing illuminating device and projection display device using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP92245A JPH05181135A (en) | 1992-01-06 | 1992-01-06 | Polarizing illuminating device and projection display device using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05181135A true JPH05181135A (en) | 1993-07-23 |
Family
ID=11468570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP92245A Pending JPH05181135A (en) | 1992-01-06 | 1992-01-06 | Polarizing illuminating device and projection display device using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05181135A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08201751A (en) * | 1995-01-31 | 1996-08-09 | Hitachi Ltd | Picture display device |
US5764412A (en) * | 1994-10-15 | 1998-06-09 | Fujitsu Limited | Polarization separation/conversion device for polarized lighting apparatus and projection display unit |
US6038054A (en) * | 1997-03-25 | 2000-03-14 | Sharp Kabushiki Kaisha | Polarized-light converting elemental device having cholesteric crystal layer |
US6147802A (en) * | 1994-12-28 | 2000-11-14 | Seiko Epson Corporation | Polarization luminaire and projection display |
US6497485B1 (en) | 2000-01-20 | 2002-12-24 | Seiko Epson Corporation | Image projection system having uniform brightness |
US6597409B1 (en) | 1999-01-29 | 2003-07-22 | Nec Viewtechnology, Ltd. | Video projector |
JP2003329978A (en) * | 2002-05-10 | 2003-11-19 | Seiko Epson Corp | Illuminator and projection display device |
USRE39243E1 (en) | 1996-12-18 | 2006-08-22 | Seiko Epson Corporation | Optical element, polarization illumination device, and projector |
US7408622B2 (en) | 2003-08-14 | 2008-08-05 | Carl Zeiss Smt Ag | Illumination system and polarizer for a microlithographic projection exposure apparatus |
WO2015132820A1 (en) * | 2014-03-06 | 2015-09-11 | 株式会社有沢製作所 | Optical element |
CN109483886A (en) * | 2018-12-21 | 2019-03-19 | 绍兴市上虞区幻想动力机器人科技有限公司 | A kind of liquid crystal display 3D printing polarized light source |
-
1992
- 1992-01-06 JP JP92245A patent/JPH05181135A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5764412A (en) * | 1994-10-15 | 1998-06-09 | Fujitsu Limited | Polarization separation/conversion device for polarized lighting apparatus and projection display unit |
US7119957B2 (en) | 1994-12-28 | 2006-10-10 | Seiko Epson Corporation | Polarization luminaire and projection display |
US6147802A (en) * | 1994-12-28 | 2000-11-14 | Seiko Epson Corporation | Polarization luminaire and projection display |
US6667834B2 (en) | 1994-12-28 | 2003-12-23 | Seiko Epson Corporation | Polarization luminaire and projection display |
US6445500B1 (en) | 1994-12-28 | 2002-09-03 | Seiko Epson Corporation | Polarization luminaire and projection display |
US6310723B1 (en) | 1994-12-28 | 2001-10-30 | Seiko Epson Corporation | Polarization luminaire and projection display |
US6344927B1 (en) | 1994-12-28 | 2002-02-05 | Seiko Epson Corporation | Polarization luminaire and projection display |
US6411438B1 (en) | 1994-12-28 | 2002-06-25 | Seiko Epson Corporation | Polarization luminaire and projection display |
JPH08201751A (en) * | 1995-01-31 | 1996-08-09 | Hitachi Ltd | Picture display device |
US6746123B2 (en) | 1996-05-29 | 2004-06-08 | Seiko Epson Corporation | Projector for preventing light loss |
USRE40251E1 (en) | 1996-12-18 | 2008-04-22 | Seiko Epson Corporation | Optical element, polarization illumination device, and projector |
USRE39243E1 (en) | 1996-12-18 | 2006-08-22 | Seiko Epson Corporation | Optical element, polarization illumination device, and projector |
US6038054A (en) * | 1997-03-25 | 2000-03-14 | Sharp Kabushiki Kaisha | Polarized-light converting elemental device having cholesteric crystal layer |
US6290358B1 (en) | 1997-03-25 | 2001-09-18 | Sharp Kabushiki Kaisha | Polarized-light converting optical system, a polarized-light converting elemental device, a polarized-light converting elemental device array and a projection-type display device using any one of those components |
US6597409B1 (en) | 1999-01-29 | 2003-07-22 | Nec Viewtechnology, Ltd. | Video projector |
US6497485B1 (en) | 2000-01-20 | 2002-12-24 | Seiko Epson Corporation | Image projection system having uniform brightness |
US7192147B2 (en) | 2002-05-10 | 2007-03-20 | Seiko Epson Corporation | Lighting system and projector |
JP2003329978A (en) * | 2002-05-10 | 2003-11-19 | Seiko Epson Corp | Illuminator and projection display device |
US7408622B2 (en) | 2003-08-14 | 2008-08-05 | Carl Zeiss Smt Ag | Illumination system and polarizer for a microlithographic projection exposure apparatus |
US7847920B2 (en) | 2003-08-14 | 2010-12-07 | Carl Zeiss Smt Ag | Illumination system and polarizer for a microlithographic projection exposure apparatus |
WO2015132820A1 (en) * | 2014-03-06 | 2015-09-11 | 株式会社有沢製作所 | Optical element |
CN109483886B (en) * | 2018-12-21 | 2024-01-30 | 深圳市龙祥卓越电子科技有限公司 | Polarized light source for liquid crystal display 3D printing |
CN109483886A (en) * | 2018-12-21 | 2019-03-19 | 绍兴市上虞区幻想动力机器人科技有限公司 | A kind of liquid crystal display 3D printing polarized light source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1063554B1 (en) | Polarization luminaire and projector using it | |
US5387953A (en) | Polarization illumination device and projector having the same | |
JPH03122631A (en) | Projection type liquid crystal display device | |
JPH08114765A (en) | Polarization separation/conversion element and polarization lighting device using same and projection display device | |
JPH08254678A (en) | Projection type liquid crystal display device | |
JP2000504440A (en) | Image projection module and image projection apparatus provided with this module | |
US5653520A (en) | Liquid crystal display projector | |
JPH08334623A (en) | Polarization dividing device | |
JPH05181135A (en) | Polarizing illuminating device and projection display device using it | |
JP3657347B2 (en) | LCD screen lighting equipment | |
JPH09133905A (en) | Optical deflection apparatus and liquid-crystal valve-type projection system making use of said apparatus | |
US6987618B2 (en) | Polarization converting device, illumination optical system and projector | |
JP3986136B2 (en) | Polarized light source device | |
JP3335885B2 (en) | Polarized illumination device and projection type liquid crystal display device | |
JPH0566367A (en) | Polarized light illumination device and projection display device equipped with the same | |
JPH0772428A (en) | Polarization light source device for projection type liquid crystal display device | |
JP4077490B2 (en) | Projection-type image display device | |
EP1130450A1 (en) | Polarized light illuminator and projection display | |
JPH05181089A (en) | Polarized light illuminator and projection display device using the same | |
JP3669371B2 (en) | Illumination device for image display device | |
JP2800812B2 (en) | Color image generation unit | |
JP3428004B2 (en) | Color separation light emitting device | |
JPH0534638A (en) | Polarizing illuminator and projection display device using the same | |
JP3205693B2 (en) | Optical element and projection type liquid crystal display device having the same | |
JPH04127119A (en) | Projection type display device |