Nothing Special   »   [go: up one dir, main page]

JPH05180673A - Method for measuring flow rate of fluid - Google Patents

Method for measuring flow rate of fluid

Info

Publication number
JPH05180673A
JPH05180673A JP3346094A JP34609491A JPH05180673A JP H05180673 A JPH05180673 A JP H05180673A JP 3346094 A JP3346094 A JP 3346094A JP 34609491 A JP34609491 A JP 34609491A JP H05180673 A JPH05180673 A JP H05180673A
Authority
JP
Japan
Prior art keywords
polarization
optical fiber
light
frequency
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3346094A
Other languages
Japanese (ja)
Inventor
Hiroshi Iitaka
弘 飯高
Munezumi Sato
宗純 佐藤
Yoshikazu Murata
吉和 村田
Toshiharu Miyamoto
俊治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
Agency of Industrial Science and Technology
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sumitomo Electric Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3346094A priority Critical patent/JPH05180673A/en
Publication of JPH05180673A publication Critical patent/JPH05180673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To achieve a highly accurate and highly reliable measurement of a vibration frequency in a Karman vortex street which is generated within a ductwork by allowing a light in polarization mode which crosses a polarization retention optical fiber to enter and detecting a change frequency of a phase difference of both modes. CONSTITUTION:A cylinder 2 is provided within a ductwork 1 as Karman vortex generator and an optical fiber sensor 3 is provided at the downstream. A polarization retention optical fiber is used as the sensor 3 and a laser beam impinges on the sensor 3 from an HeNe laser 4 with a wavelength of 630mm through a 1/4 wave plate 5 and a lens 6. The laser beam is subjected to circular polarization by the wave plate 5 and then the beam diameter is constricted by the lens 6. A light which is irradiated from the sensor 3 impinges on a light- detection element 9 through a lens 7 and a detection element 8 and a phase difference of both modes of X and Y polarization of light output is observed as light intensity. A signal of phase difference which is converted to an electrical signal by the light-detection element 9 is subjected to frequency analysis by a spectrum analyzer 11 through a detection circuit 10 and a flow rate can be obtained by measuring frequency of the vortex.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、管路内の気体や液体
の流速をカルマン渦を利用して検出する光ファイバセン
サによる流速計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring method using an optical fiber sensor for detecting the flow velocity of a gas or a liquid in a pipeline by using a Karman vortex.

【0002】[0002]

【従来の技術】管路内の流体の流速を計測する方法とし
て、カルマン渦を利用した種々の計測方法が知られてい
る。カルマン渦は、流体の一様な流れの中に置かれた円
柱などの2次元状物体から安定的に放出され、その周期
は物体の形状寸法と流速に関係し、規則性が良いなどの
点から流量計や流速計に広く応用されている。特にカル
マン渦流速計は、出力が周波数であり、高い精度で広い
測定範囲について測定できるなどの特徴がある。
2. Description of the Related Art As a method for measuring the flow velocity of a fluid in a pipe, various measuring methods utilizing Karman vortices are known. Karman vortices are stably emitted from a two-dimensional object such as a cylinder placed in a uniform flow of a fluid, and their period is related to the geometrical dimensions and flow velocity of the object and has good regularity. Has been widely applied to flowmeters and anemometers. In particular, the Karman vortex velocimeter has a feature that its output is frequency and that it can measure a wide measurement range with high accuracy.

【0003】かかるカルマン渦に基づく流速又は流量の
計測方法として、渦によって誘起される流体の振動を白
金抵抗線や加熱サーミスタ等で検出する方法、圧力変化
を圧電素子等で検出する方法、あるいは圧電素子の代わ
りにダイヤフラムを駆動し容量センサで検出する方法な
どが知られている。
As a method of measuring the flow velocity or flow rate based on such Karman vortex, a method of detecting vibration of fluid induced by the vortex with a platinum resistance wire or a heating thermistor, a method of detecting pressure change with a piezoelectric element, or a piezoelectric A method is known in which a diaphragm is driven instead of an element and a capacitance sensor detects the diaphragm.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の測定方
法は、カルマン渦の振動数を計測する方法であり、いず
れの方法でもセンサ部は振動数を電気的な信号に変換す
る方法を用いているため、可燃性の気体や液体の流速の
計測には適さない。電気的な短絡事故等が生じると内部
の流体に着火する恐れがあるからであり、そのため回路
構成には何重もの安全対策が必要である。
The conventional measuring method described above is a method of measuring the frequency of the Karman vortex. In any method, the sensor unit uses the method of converting the frequency into an electrical signal. Therefore, it is not suitable for measuring the flow velocity of flammable gas or liquid. This is because the fluid inside may be ignited if an electrical short-circuit accident or the like occurs, and therefore multiple safety measures are required for the circuit configuration.

【0005】この発明は、上述した従来のカルマン渦を
利用した流速の計測方法の問題点に留意して、管路内の
流体の流速を電気的な検出手段を流体に対して直接的に
使用せず計測する方法として、カルマン渦周波数を光フ
ァイバセンサ自体をカルマン渦発生体として測定する
か、あるいはカルマン渦発生体の下流に設けた光ファイ
バセンサを用いて光学的に測定することにより火気に対
して安全な流速計測方法を提供することを課題とするも
のである。
The present invention uses the above-mentioned conventional flow velocity measuring method using Karman vortices in direct consideration of the flow velocity of the fluid in the pipe and an electrical detecting means for the fluid. As a method of measurement without measuring the Karman vortex frequency, the optical fiber sensor itself may be used as the Karman vortex generator or the optical fiber sensor provided downstream of the Karman vortex generator may be used to optically measure the flame. On the other hand, it is an object to provide a safe flow velocity measuring method.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
この発明は、管路内に偏波保持光ファイバセンサを配設
し、管路内に流体を流してカルマン渦を発生させ、直交
する2偏波モードの光を上記光ファイバセンサに入射し
その光モードが渦によって生ずる曲げ振動により変化し
て生ずる両モードの位相差が変化するその周波数を検知
することによって渦の周波数を求め、これに基づいて流
速を計測することから成る流体の流速計測方法としたの
である。
In order to solve the above-mentioned problems, the present invention has a polarization-maintaining optical fiber sensor arranged in a pipe line and causes a fluid to flow in the pipe line to generate a Karman vortex, thereby making them orthogonal to each other. The frequency of the vortex is obtained by detecting the frequency at which the phase difference between both modes is generated by injecting light of two polarization modes into the optical fiber sensor and changing the optical mode due to bending vibration caused by the vortex. This is a method for measuring the flow velocity of a fluid, which comprises measuring the flow velocity based on

【0007】上記方法において、管路内にカルマン渦発
生体を置き、その下流側に偏波保持光ファイバセンサを
配設したものとしてもよい。
In the above method, the Karman vortex generator may be placed in the conduit and the polarization-maintaining optical fiber sensor may be disposed downstream of the Karman vortex generator.

【0008】上記いずれかの計測方法において、レーザ
光源からレーザ光を1/4波長板を介して上記直交する
2偏波モードの光として光ファイバセンサに入射し、そ
の出射光を光ファイバ偏波軸と通過偏波面を45度ずら
した検光子を介して光検出素子で受光して電気信号に変
換し、その受光信号をスペクトラムアナライザで周波数
分析することにより両モードの位相差の変化を検出して
渦の周波数を求めるようにするのが好ましい。
In any one of the above measuring methods, laser light from a laser light source is incident on an optical fiber sensor as light of the above-mentioned two polarization modes orthogonal to each other through a quarter-wave plate, and the emitted light is an optical fiber polarization. Detect the change in the phase difference between the two modes by receiving the light with the photodetector through the analyzer with the polarization plane shifted by 45 degrees, converting it into an electrical signal, and analyzing the frequency of the received signal with a spectrum analyzer. It is preferable to determine the frequency of the vortex.

【0009】[0009]

【作用】上述したこの発明による流速計測方法では、管
路内に適当な流速の流体を流して光ファイバセンサ自体
又はカルマン渦発生体の下流側にカルマン渦列を発生さ
せる。この渦列は規則的に発生し、カルマンによれば渦
列の間隔aと渦列の距離bがb/a=0.281を満す
ときに限り渦が安定であることが証明されている。この
カルマン渦が直径dの円柱側面から単位時間にf個放出
されるとすると流速Uとの間に、 f=St・U/d (1) の関係が成立する。ここでStはストローハル数と呼ば
れる無次元の定数である。カルマン渦は流線形でない物
体であればどのような形のものに対しても発生し、特に
円柱に関しては多くの実験報告がある。
In the above-described flow velocity measuring method according to the present invention, a fluid having an appropriate flow velocity is caused to flow in the conduit to generate a Karman vortex street on the downstream side of the optical fiber sensor itself or the Karman vortex generator. This vortex street is regularly generated, and according to Kalman, it is proved that the vortex is stable only when the distance a between the vortex streets and the distance b between the vortex streets satisfy b / a = 0.281. . If f Karman vortices are discharged from the side surface of a cylinder having a diameter d in a unit time, the relationship of f = St · U / d (1) is established with the flow velocity U. Here, St is a dimensionless constant called the Strouhal number. Karman vortices occur for any shape that is not a streamlined object, and there are many experimental reports, especially for cylinders.

【0010】ところで、流体一般に対してレイノルズ数
Reは、動粘性係数をνとすると、 Re=U・d/ν (2) で与えられる。そしてこのRe数が102.5 〜105
範囲では上記St数はほぼ一定となることが実験により
求められており、例えば円柱では0.2、角柱では0.
16である。従って、かかるSt数を用いると共に周波
数fを測定すれば(1)式よりU=f・d/Stにより
流速Uを求めることができる。
By the way, the Reynolds number Re for a general fluid is given by Re = Ud / ν (2) where ν is the kinematic viscosity coefficient. It has been experimentally determined that the St number is substantially constant in the range where the Re number is in the range of 10 2.5 to 10 5 , for example, 0.2 for a cylinder and 0.
Sixteen. Therefore, by using the St number and measuring the frequency f, the flow velocity U can be obtained from the equation (1) by U = f · d / St.

【0011】上記渦の発生周波数fを知るために流体中
に単独あるいはカルマン渦発生柱の下流に偏波保持光フ
ァイバを用いた光ファイバセンサが配置されており、こ
の光ファイバセンサにレーザ光を入射しその出射光の強
度の位相変化を測定することにより周波数fを求める。
入射光の強度をPo、出射光をPとすると P∝Po cos(φ+Δφ) (3) となる。ここでφは光ファイバ中の直交する光学軸に沿
って透過したX偏波とY偏の光の位相差である。φ=−
π/2とすると、 P∝Po cos(−π/2+Δφ) =Po・(1+sin Δφ) が得られる。従って、位相差の変化Δφが十分小さい範
囲では P∝Po(1+Δφ) (4) と表わせ、出射光Pの変化は位相差の変化Δφに比例す
る。この出射光Pの位相差の変化Δφを測定すれば周波
数が求められる。
In order to know the generation frequency f of the vortex, an optical fiber sensor using a polarization-maintaining optical fiber is arranged in the fluid alone or downstream of the Karman vortex generation column, and laser light is supplied to this optical fiber sensor. The frequency f is obtained by measuring the phase change of the intensity of the incident light and its emitted light.
If the intensity of the incident light is Po and the intensity of the emitted light is P, then P∝Po cos (φ + Δφ) (3). Here, φ is the phase difference between the X-polarized light and the Y-polarized light transmitted along the orthogonal optical axes in the optical fiber. φ =-
When π / 2, P∝Po cos (−π / 2 + Δφ) = Po · (1 + sin Δφ) is obtained. Therefore, it can be expressed as P∝Po (1 + Δφ) (4) in a range where the phase difference change Δφ is sufficiently small, and the change of the outgoing light P is proportional to the phase difference change Δφ. The frequency can be obtained by measuring the change Δφ in the phase difference of the emitted light P.

【0012】上記測定に用いられる偏波保持光ファイバ
は、偏波面の直交する2つのモードが独立に伝搬できる
ように形成された光ファイバであり、一般に偏光状態の
乱れを受け難く光の位相情報や偏光状態を安定に保持し
て伝搬できる。この偏波保持光ファイバをセンサとして
用い、そのセンサ部分にカルマン渦により生ずる振動等
の外乱を与えて曲げ変形を起こすと、その材質の屈折率
の変化により伝搬光のの位相が変化し、直交偏波モード
の光では振動により位相変化量Δφが得られる。
The polarization-maintaining optical fiber used for the above measurement is an optical fiber formed so that two modes whose polarization planes are orthogonal to each other can propagate independently. The polarization state can be stably maintained and propagated. When this polarization-maintaining optical fiber is used as a sensor and the sensor part is subjected to bending deformation by disturbance such as vibration caused by Karman vortex, the phase of the propagating light changes due to the change of the refractive index of the material, and With polarization mode light, the amount of phase change Δφ is obtained due to vibration.

【0013】上記偏波保持光ファイバセンサへ入射され
る光は、レーザ光源からの直線偏波のレーザ光を1/4
波長板を用いて円偏波光として変換した直交するX偏波
とY偏波の2偏波モード光が用いられる。振動によって
位相変化を生じた出射光は、検光子をそれぞれの偏波光
が通過し、例えばPIN−PDなどの受光素子で電気信
号に変換される。これをアナライザで周波数分析すれば
両モードの位相差の変化が検出され、渦の周波数fが求
まる。
The light incident on the polarization maintaining optical fiber sensor is 1/4 of the linearly polarized laser light from the laser light source.
Bipolarization mode light of orthogonal X polarization and Y polarization, which is converted into circular polarization light using a wave plate, is used. The emitted light having a phase change caused by the vibration passes through the analyzer as each polarized light, and is converted into an electric signal by a light receiving element such as PIN-PD. If this is frequency-analyzed by an analyzer, the change in phase difference between both modes is detected, and the frequency f of the vortex is obtained.

【0014】[0014]

【実施例】以下この発明の実施例について図面を参照し
て説明する。図1はカルマン渦発生体を用いた場合の実
施例の流速計測装置の概略斜視図である。カルマン渦発
生体を用いた方が、偏波保持光ファイバセンサはカルマ
ン渦の影響を直接受けることになり感度が向上するが、
必ずしもカルマン渦発生体を用いる必要はない。図示の
ように、この計測装置は、管路1内にカルマン渦発生体
として円柱2を長手方向と直角に設け、その適宜長さ後
方に偏波保持光ファイバを用いた光ファイバセンサ3を
備えている。光ファイバセンサ3には、光源として設け
た波長630nmのHeNeレーザ4からのレーザ光を1
/4波長板5やレンズ6を通して一端から入射する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic perspective view of a flow velocity measuring device of an embodiment when a Karman vortex generator is used. When a Karman vortex generator is used, the polarization-maintaining optical fiber sensor is directly affected by the Karman vortex, which improves the sensitivity.
It is not always necessary to use the Karman vortex generator. As shown in the figure, this measuring device is provided with a column 2 as a Karman vortex generator in the pipe line 1 at right angles to the longitudinal direction, and an optical fiber sensor 3 using a polarization maintaining optical fiber at the rear of an appropriate length thereof. ing. The optical fiber sensor 3 receives a laser beam from a HeNe laser 4 having a wavelength of 630 nm provided as a light source.
The light enters from one end through the quarter wave plate 5 and the lens 6.

【0015】レーザ光(直線偏波光)は1/4波長板5
で円偏光に変換され、レンズ6でビーム径を絞って偏波
保持光ファイバに入射される。円偏光としたのは偏波保
持光ファイバの直交する2偏波モードを等しい強度で入
力するためである。光ファイバセンサ3は、例えばエポ
キシ系接着剤で固定する。固定の際特に張力をかけるよ
うなことは施されていない。
The laser light (linearly polarized light) is a quarter wavelength plate 5
Is converted into circularly polarized light, and the beam diameter is narrowed by the lens 6 to be incident on the polarization maintaining optical fiber. The circularly polarized light is used to input two orthogonal polarization modes of the polarization maintaining optical fiber with equal intensity. The optical fiber sensor 3 is fixed with, for example, an epoxy adhesive. No special tension is applied when fixing.

【0016】光ファイバセンサ3からの出射光は、レン
ズ7でビーム径を広げこれと検出子(ウオラストンプリ
ズム)8を通して光検出素子(PIN−PD)9に入
れ、光出力の両モードの位相差を光強度として観測す
る。検光子8は光ファイバ偏波軸と通過偏波面を45°
ずらしたものが用いられている。光検出素子9で電気信
号に変換された位相差の信号はハイパスフィルタ、プリ
アンプを含む検出回路10を通し、その信号をスペクト
ラムアナライザ11で周波数分析する。
The light emitted from the optical fiber sensor 3 has its beam diameter expanded by a lens 7 and is introduced into a photodetector (PIN-PD) 9 through this and a detector (Wollaston prism) 8 to obtain both light output modes. Observe the phase difference as the light intensity. The analyzer 8 sets the polarization axis of the optical fiber to the polarization plane of the passing polarization by 45 °.
Staggered ones are used. The phase difference signal converted into an electric signal by the photodetection element 9 passes through a detection circuit 10 including a high-pass filter and a preamplifier, and the spectrum analyzer 11 analyzes the frequency of the signal.

【0017】この実施例の計測装置は、上記のように構
成され、次のようにして流速が計測される。管路1内に
流体を図1の矢印のように流すと、カルマン渦発生用の
円柱2に当たり、その後方にカルマン渦が発生する。そ
の渦の発生は図2に示すようにピッチa、幅bの規則的
なものとなる。円柱の径をd、流体の平均流速をUとす
る。
The measuring device of this embodiment is constructed as described above, and the flow velocity is measured as follows. When a fluid is flown in the pipe line 1 as shown by the arrow in FIG. 1, it hits the Karman vortex generating cylinder 2 and a Karman vortex is generated behind it. The generation of the vortices is regular with a pitch a and a width b as shown in FIG. Let d be the diameter of the cylinder and U be the average flow velocity of the fluid.

【0018】上記渦を含む流体がその後方の光ファイバ
センサ3に当たると、これによって光ファイバセンサ3
が振動し曲げ作用を受ける。
When the fluid containing the vortex hits the optical fiber sensor 3 behind it, the optical fiber sensor 3 is thereby caused.
Vibrates and receives bending action.

【0019】この光ファイバセンサ3に対してHeNe
レーザ4からレーザ光を送ると、この直線偏波光は1/
4波長板5で円偏光に変換されて送り込まれる。そして
前述のように、この円偏光は偏波保持光ファイバの直交
する2偏波モードの光として光ファイバセンサ3に送り
込まれ、振動による曲げ作用で両モード光に位相差が生
じる。この出力光は検光子8で光ファイバ偏波軸と通過
偏波面がずれた状態で取り出され、光検出素子9で電気
信号に変換される。電気信号を検出回路10のハイパス
フィルタ、プリアンプ等に通し、スペクトラムアナライ
ザ11で周波数分析として両モード光の位相差の変化す
る周波数を検出することによってカルマン渦による光フ
ァイバセンサの振動数が分かり、その結果流体の平均流
速が求められる。
HeNe for the optical fiber sensor 3
When laser light is sent from the laser 4, this linearly polarized light is 1 /
It is converted into circularly polarized light by the four-wave plate 5 and sent. Then, as described above, the circularly polarized light is sent to the optical fiber sensor 3 as light of two polarization modes orthogonal to each other in the polarization maintaining optical fiber, and a phase difference occurs between the two modes of light due to the bending action due to the vibration. The output light is extracted by the analyzer 8 in a state where the polarization axis of the optical fiber and the plane of polarization of the passing polarization are deviated, and is converted into an electric signal by the photodetector 9. The frequency of the optical fiber sensor due to the Karman vortex is found by passing the electric signal through a high-pass filter, a preamplifier, etc. of the detection circuit 10 and detecting the frequency at which the phase difference between the two mode lights changes as a frequency analysis by the spectrum analyzer 11. The average velocity of the resulting fluid is determined.

【0020】図3〜5は、実験装置により測定した結果
を示す。実験ではカルマン渦発生として0.9mm径の円
柱2を用い、ビニル被覆された同径の光ファイバセンサ
を用いて測定した。図3は流速約0.5m/sの場合、
図4は1.4m/s、図5は2.4m/sの場合であ
る。それぞれのグラフを見ると振動スペクトルのピーク
1 、f2 、f3 がある。これらピーク値と流速Uとの
関係を図6に示す。このグラフから流速Uと周波数fが
ほぼ直線的な関係にあることが分かる。
3 to 5 show the results measured by the experimental apparatus. In the experiment, a cylinder 2 having a diameter of 0.9 mm was used for Karman vortex generation, and measurement was performed using a vinyl-coated optical fiber sensor having the same diameter. Fig. 3 shows that when the flow velocity is about 0.5 m / s,
FIG. 4 shows the case of 1.4 m / s and FIG. 5 shows the case of 2.4 m / s. Looking at the respective graphs, there are peaks f 1 , f 2 , and f 3 of the vibration spectrum. The relationship between these peak values and the flow velocity U is shown in FIG. From this graph, it can be seen that the flow velocity U and the frequency f have a substantially linear relationship.

【0021】[0021]

【効果】以上詳細に説明した通り、この発明による流速
計測方法では管路内に生ずるカルマン渦列の振動周波数
を、偏波保持光ファイバに直交する偏波モード光を入射
しその両モードの位相差の変化周波数を検出することに
よって測定するようにしたから、流体に接するセンサ部
に全く電気的な信号を用いずに光信号により渦の振動周
波数を求めることができ、しかもかかる計測を簡素化し
た光ファイバセンサで構成でき、極めて高精度で信頼性
の高い測定が可能となるという利点が得られる。従って
この発明による計測方法は火気を嫌う石油コンビナート
等での流速センサとして用いれば有効である。
As described in detail above, in the flow velocity measuring method according to the present invention, the vibration frequency of the Karman vortex street generated in the pipe is adjusted by the polarization mode light orthogonal to the polarization maintaining optical fiber to enter the position of both modes. Since the measurement is performed by detecting the change frequency of the phase difference, the vibration frequency of the vortex can be obtained from the optical signal without using an electrical signal at the sensor part in contact with the fluid, and the measurement is simplified. Since it can be configured with the above-mentioned optical fiber sensor, it has an advantage that extremely accurate and highly reliable measurement can be performed. Therefore, the measuring method according to the present invention is effective when used as a flow velocity sensor in a petroleum complex or the like that dislikes fire.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の流速計測装置の概略斜視図FIG. 1 is a schematic perspective view of a flow velocity measuring device according to an embodiment.

【図2】カルマン渦の発生状態の説明図FIG. 2 is an explanatory diagram of a Karman vortex generation state.

【図3】光ファイバセンサによるレーザ光のパワースペ
クトラム(周波数分析)結果
[Fig. 3] Power spectrum (frequency analysis) result of laser light by an optical fiber sensor

【図4】同上の結果で流速が異なる場合のデータ[Fig. 4] Data when the flow velocity is different according to the same result.

【図5】同上の結果で流速がさらに異なる場合のデータ[FIG. 5] Data when the flow velocity is further different according to the same result

【図6】図3〜5の結果から周波数と流速の関係を示す
FIG. 6 is a diagram showing the relationship between frequency and flow velocity based on the results of FIGS.

【符号の説明】[Explanation of symbols]

1 管路 2 円柱 3 光ファイバセンサ 4 レーザ光源 5 1/4波長板 6、7 レンズ 8 検光子 9 光検出素子 10 検出回路 11 スペクトラムアナライザ 1 Pipeline 2 Cylinder 3 Optical Fiber Sensor 4 Laser Light Source 5 1/4 Wave Plate 6, 7 Lens 8 Analyzer 9 Photodetector 10 Detection Circuit 11 Spectrum Analyzer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 宗純 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 村田 吉和 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 宮本 俊治 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sosumi Sato 1-1-4 Umezono, Tsukuba-shi, Ibaraki Industrial Technology Research Institute (72) Inventor Yoshikazu Murata 1-1-1 Shimaya, Konohana-ku, Osaka No. 3 Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Shunji Miyamoto 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Denki Industries Co., Ltd. Osaka Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管路内に偏波保持光ファイバセンサを配
設し、管路内に流体を流してカルマン渦を発生させ、直
交する2偏波モードの光を上記光ファイバセンサに入射
しその光モードが渦によって生ずる曲げ振動により変化
して生ずる両モードの位相差が変化するその周波数を検
知することによって渦の周波数を求め、これに基づいて
流速を計測することから成る流体の流速計測方法。
1. A polarization-maintaining optical fiber sensor is arranged in a pipe, a fluid is caused to flow in the pipe to generate a Karman vortex, and two orthogonal polarization mode lights are incident on the optical fiber sensor. Velocity measurement of the fluid, which consists of determining the frequency of the vortex by detecting the frequency at which the phase difference between both modes caused by the bending vibration caused by the vortex changes its optical mode, and measuring the flow velocity based on this. Method.
【請求項2】 管路内にカルマン渦発生体を置き、その
下流側に偏波保持光ファイバセンサを配設したことを特
徴とする請求項1に記載の流体の流速計測方法。
2. The fluid flow velocity measuring method according to claim 1, wherein a Karman vortex generator is placed in the pipe, and a polarization-maintaining optical fiber sensor is disposed downstream of the Karman vortex generator.
【請求項3】 レーザ光源からレーザ光を1/4波長板
を介して上記直交する2偏波モードの光として光ファイ
バセンサに入射し、その出射光を光ファイバ偏波軸と通
過偏波面を45度ずらした検光子を介して光検出素子で
受光して電気信号に変換し、その受光信号をスペクトラ
ムアナライザで周波数分析することにより両モードの位
相差の変化を検出して渦の周波数を求めることを特徴と
する請求項1又は2に記載の流体の流速計測方法。
3. Laser light from a laser light source is incident on an optical fiber sensor as light of the above-mentioned two polarization modes orthogonal to each other through a quarter wavelength plate, and its emitted light is transmitted through an optical fiber polarization axis and a passing polarization plane. The photodetector receives light through the analyzer shifted by 45 degrees, converts it into an electrical signal, and frequency-analyzes the received signal with a spectrum analyzer to detect the change in phase difference between both modes and obtain the frequency of the vortex. The fluid flow velocity measuring method according to claim 1 or 2, characterized in that.
JP3346094A 1991-12-27 1991-12-27 Method for measuring flow rate of fluid Pending JPH05180673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3346094A JPH05180673A (en) 1991-12-27 1991-12-27 Method for measuring flow rate of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3346094A JPH05180673A (en) 1991-12-27 1991-12-27 Method for measuring flow rate of fluid

Publications (1)

Publication Number Publication Date
JPH05180673A true JPH05180673A (en) 1993-07-23

Family

ID=18381099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3346094A Pending JPH05180673A (en) 1991-12-27 1991-12-27 Method for measuring flow rate of fluid

Country Status (1)

Country Link
JP (1) JPH05180673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031445A1 (en) * 2000-10-13 2002-04-18 Heraeus Electro-Nite Japan, Ltd. Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this
CN108414038A (en) * 2018-04-26 2018-08-17 辽宁省计量科学研究院 A kind of fiber-optic fiber gas flow velocity and Flow Measuring System and method based on spectral absorption
CN108593956A (en) * 2018-04-28 2018-09-28 中国空气动力研究与发展中心超高速空气动力研究所 Micro- current meter of double mode and preparation method thereof
CN113267642A (en) * 2021-05-25 2021-08-17 海南赛沐科技有限公司 Method and system for monitoring whole-sea deep sea current distribution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031445A1 (en) * 2000-10-13 2002-04-18 Heraeus Electro-Nite Japan, Ltd. Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this
CN108414038A (en) * 2018-04-26 2018-08-17 辽宁省计量科学研究院 A kind of fiber-optic fiber gas flow velocity and Flow Measuring System and method based on spectral absorption
CN108414038B (en) * 2018-04-26 2023-08-08 辽宁省计量科学研究院 Optical fiber gas flow velocity and flow measurement system and method based on spectral absorption
CN108593956A (en) * 2018-04-28 2018-09-28 中国空气动力研究与发展中心超高速空气动力研究所 Micro- current meter of double mode and preparation method thereof
CN108593956B (en) * 2018-04-28 2023-06-02 中国空气动力研究与发展中心超高速空气动力研究所 Dual-mode micro-flowmeter and preparation method thereof
CN113267642A (en) * 2021-05-25 2021-08-17 海南赛沐科技有限公司 Method and system for monitoring whole-sea deep sea current distribution

Similar Documents

Publication Publication Date Title
Albrecht et al. Laser Doppler and phase Doppler measurement techniques
Gupta et al. Industrial fluid flow measurement using optical fiber sensors: A review
JP3150958B2 (en) Eddy current sensor
US5432605A (en) Interferometric cylinder sizing and velocimetry device
US5865871A (en) Laser-based forward scatter liquid flow meter
Obi et al. Experimental study on the statistics of wall shear stress in turbulent channel flows
WO1998014760A9 (en) Laser-based forward scatter liquid flow meter
Vignola et al. Laser detection of sound
US7466399B2 (en) Fiber optic flow sensing device and method
EP0188492B1 (en) Vortex shedding flowmeter
JPH05180673A (en) Method for measuring flow rate of fluid
WO1996000407A1 (en) Elimination of modulated interference effects in photoelastic modulators
JPH0688737A (en) Method for measuring flow speed of fluid
JP2023080150A (en) Measurement system, measurement apparatus and measurement method
Webster et al. Air flow measurement by vortex shedding from multimode and monomode optical fibres
GB2238380A (en) Vortex shedding flowmeter
US3457419A (en) Fluid flow meter in which laser light scattered by the fluid and by a stationary scattering center is heterodyned
JP2769990B2 (en) Flow measurement method and flow meter
Lau et al. Fibre optic sensors for laboratory measurements
EP3812712B1 (en) Fluid flow analysis
Roszko et al. Vortex flowmeter with polarimetric sensing
Pitt et al. Optical fibre flowmeters
Alcoz et al. Noncontact detection of ultrasound with rugged fiber-optic interferometer
Jarzynski et al. Fiber Optic Doppler Systems For Remote Sensing Of Fluid Flow.
Mahdi et al. Design and Construction a dual (Pressure and Liquid Level) Measuring by using Fiber optical Sensor