JPH05179475A - Production of hypochlorite - Google Patents
Production of hypochloriteInfo
- Publication number
- JPH05179475A JPH05179475A JP4001355A JP135592A JPH05179475A JP H05179475 A JPH05179475 A JP H05179475A JP 4001355 A JP4001355 A JP 4001355A JP 135592 A JP135592 A JP 135592A JP H05179475 A JPH05179475 A JP H05179475A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- hypochlorite
- concentration
- catholyte
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 29
- 239000000460 chlorine Substances 0.000 claims abstract description 29
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 19
- 239000003014 ion exchange membrane Substances 0.000 claims abstract description 12
- 239000007864 aqueous solution Substances 0.000 claims description 19
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 150000003839 salts Chemical class 0.000 abstract description 14
- 238000005341 cation exchange Methods 0.000 abstract description 12
- 239000012528 membrane Substances 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 239000005708 Sodium hypochlorite Substances 0.000 abstract description 7
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 abstract description 7
- 229910001510 metal chloride Inorganic materials 0.000 abstract description 6
- 229910000000 metal hydroxide Inorganic materials 0.000 abstract 1
- 150000004692 metal hydroxides Chemical class 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 21
- 235000002639 sodium chloride Nutrition 0.000 description 21
- 238000000034 method Methods 0.000 description 15
- 239000011780 sodium chloride Substances 0.000 description 8
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000006298 dechlorination reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 1
- 229940005991 chloric acid Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- -1 high Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は次亜塩素酸塩の電解によ
る製造方法に関し、とくに高濃度の次亜塩素酸塩を製造
する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hypochlorite by electrolysis, and more particularly to a method for producing high concentration hypochlorite.
【0002】[0002]
【従来の技術】次亜塩素酸ナトリウムに代表される次亜
塩素酸塩類は、漂白剤、殺菌剤として、上下水の処理、
排水の処理から家庭の台所用あるいは洗濯用等の各方面
で用いられている。次亜塩素酸塩の製造は、食塩水等の
アルカリ金属塩化物の水溶液の電気分解によって得られ
たアルカリ金属水酸化物と塩素とを反応させて製造する
方法あるいは、アルカリ金属塩化物を無隔膜電解槽にお
いて電気分解を行って、電解槽中で次亜塩素酸塩を直接
製造する方法で行われている。2. Description of the Related Art Hypochlorites typified by sodium hypochlorite are used as bleaching agents and bactericides for treating sewage,
It is used in various fields from wastewater treatment to household kitchen or laundry. Hypochlorite can be produced by reacting chlorine with an alkali metal hydroxide obtained by electrolysis of an aqueous solution of an alkali metal chloride such as saline, or by using an alkali metal chloride without a diaphragm. It is carried out by a method of directly producing hypochlorite in the electrolytic cell by performing electrolysis in the electrolytic cell.
【0003】アルカリ金属水酸化物と塩素を反応させる
方法は、高濃度の次亜塩素酸塩を得ることができるの
で、次亜塩素酸塩を販売する目的で製造する場合にはこ
の方法で行われているが、アルカリ金属水酸化物と塩素
を製造する電解設備が必要となるので、食塩水などの電
解工場において水酸化ナトリウムあるいは塩素の製造に
付随して大規模に行われている。Since a method of reacting an alkali metal hydroxide with chlorine can obtain a high concentration of hypochlorite, this method is used when producing hypochlorite for the purpose of selling it. However, since an electrolytic facility for producing an alkali metal hydroxide and chlorine is required, it is carried out on a large scale in association with the production of sodium hydroxide or chlorine in an electrolytic plant such as a saline solution.
【0004】図2は、食塩の電気分解によって得られる
水酸化ナトリウム水溶液と塩素とを反応させて次亜塩素
酸塩を製造する方法を示したものである。陽極室21に
は陽極22が設けられており、陰極室23には陰極24
が設けられており、陽極室と陰極室が陽イオン交換膜2
5によって区画されたイオン交換膜電解槽26の陽極室
には食塩水を供給し、陽極室21からは濃度の低下した
食塩水を取り出して脱塩素塔27において、溶存してい
る塩素を分離した後に食塩調整工程26において食塩を
溶解するとともに食塩水を精製して陽極室に循環してい
る。FIG. 2 shows a method of producing hypochlorite by reacting an aqueous sodium hydroxide solution obtained by electrolysis of sodium chloride with chlorine. An anode 22 is provided in the anode chamber 21, and a cathode 24 is provided in the cathode chamber 23.
Is provided, and the anode chamber and the cathode chamber are the cation exchange membrane 2
Saline solution was supplied to the anode chamber of the ion exchange membrane electrolytic cell 26 partitioned by 5, and the saline solution having a reduced concentration was taken out from the anode chamber 21, and dissolved chlorine was separated in the dechlorination tower 27. Later, in the salt adjusting step 26, the salt is dissolved and the saline is purified and circulated in the anode chamber.
【0005】一方、陰極室23には水29を供給し陰極
液の水酸化ナトリウム水溶液の濃度を一定に保持しなが
ら陰極液貯槽30との間を循環している。そして、陰極
液貯槽の水酸化ナトリウム水溶液を吸収塔31において
電解槽の陽極室で発生した塩素32と反応させて次亜塩
素酸ナトリウム水溶液を製造している。On the other hand, water 29 is supplied to the cathode chamber 23 and circulates between it and the catholyte storage tank 30 while keeping the concentration of the sodium hydroxide aqueous solution of the catholyte constant. Then, the sodium hydroxide aqueous solution in the catholyte storage tank is reacted with chlorine 32 generated in the anode chamber of the electrolytic tank in the absorption tower 31 to produce the sodium hypochlorite aqueous solution.
【0006】また、食塩などの水溶液を無隔膜電解槽に
おいて電気分解する方法では、生成する次亜塩素酸塩の
濃度は比較的低いが、水の浄化や殺菌に直接利用するこ
とが可能な濃度のものを製造することができ、製造設備
も水酸化アルカリと塩素を製造する電解設備に比べて簡
単であるので、次亜塩素酸塩を必要とする現場において
製造されている。しかも、次亜塩素酸塩の電解製造は、
次亜塩素酸塩の必要量に応じて通電する電流を加減する
ことが可能であり、殺菌などに有効な塩素分がすべて水
中に溶解しているという特徴を有している。したがっ
て、これまで液体塩素の貯蔵設備を設けて気体状の塩素
を使用していた設備あるいは濃厚な次亜塩素酸塩を貯蔵
して使用していた設備においても、貯蔵や運搬の必要が
ない現場での電気分解によって次亜塩素酸を製造が行わ
れるようになっている。Further, in the method of electrolyzing an aqueous solution of salt or the like in a diaphragmless electrolytic cell, the concentration of hypochlorite produced is relatively low, but it is a concentration that can be directly used for purification and sterilization of water. Since it can be produced and the production equipment is simpler than the electrolytic equipment for producing alkali hydroxide and chlorine, it is produced at a site requiring hypochlorite. Moreover, the electrolytic production of hypochlorite is
It is possible to adjust the current to be applied depending on the required amount of hypochlorite, and the characteristic feature is that all chlorine content effective for sterilization is dissolved in water. Therefore, even in the case where liquid chlorine storage facilities have been used so far to use gaseous chlorine or facilities that store concentrated hypochlorite, they do not need to be stored or transported. Hypochlorous acid is produced by electrolysis in Japan.
【0007】[0007]
【発明が解決しようとする課題】イオン交換膜電解槽に
おいて得られたアルカリ金属水酸化物と塩素とを反応さ
せて得られる次亜塩素酸塩は高濃度のものが得られる
が、電解設備およびその保守面が複雑である。また、通
常は食塩などの塩化アルカリの水溶液を、無隔膜電解槽
を使用して電気分解を行う方法の場合には、電解液とし
て供給する塩水の濃度は2%ないし4%の濃度のもので
ある。食塩濃度が高いほど陽極での塩素の発生効率は高
いが、電解で製造した次亜塩素酸を含む塩水をそのまま
水処理等に使用するために濃厚な塩水を使用すれば、高
濃度の塩水が被処理水に混合するために、好ましくない
ので、通常は海水の食塩濃度程度のものを使用してい
る。The hypochlorite obtained by reacting the alkali metal hydroxide obtained in the ion exchange membrane electrolysis cell with chlorine can be obtained in high concentration. Its maintenance is complicated. Also, in the case of a method of electrolyzing an aqueous solution of alkali chloride such as common salt using a non-diaphragm electrolytic cell, the concentration of salt water supplied as an electrolytic solution should be 2% to 4%. is there. The higher the salt concentration, the higher the chlorine generation efficiency at the anode, but if salt water containing hypochlorous acid produced by electrolysis is used as is for water treatment, etc., if concentrated salt water is used, a high concentration of salt water will be obtained. Since it is not preferable to mix with the water to be treated, a salt concentration of seawater is usually used.
【0008】陽極側で生じた塩素と陰極側で生じたアル
カリとの反応によって次亜塩素酸塩を生じるが、次亜塩
素塩は電解槽中において更に電解を続けていると塩素酸
へと変化する。したがって、無隔膜電解槽において高濃
度の次亜塩素酸塩を製造しようとして、電解液の滞留時
間を長くしても塩素酸塩の生成量が多くなるのみで、次
亜塩素酸塩の生成効率は低下する。Hypochlorite is produced by the reaction between chlorine generated on the anode side and alkali generated on the cathode side. The hypochlorite salt is changed to chloric acid when electrolysis is further continued in the electrolytic cell. To do. Therefore, even if the residence time of the electrolytic solution is lengthened to produce a high concentration hypochlorite in a diaphragmless electrolytic cell, the amount of chlorate produced is increased, and the efficiency of hypochlorite production is increased. Will fall.
【0009】そこで、高電流効率で次亜塩素酸塩を製造
するためには、単位電解槽での電気分解率を高くせず
に、陽極と陰極を備えた複数の電解槽を仕切板を介して
多段式に設置した電解槽が提案されている(例えば、特
公昭52−28104号、特公昭61−44956
号)。Therefore, in order to produce hypochlorite with high current efficiency, a plurality of electrolytic cells equipped with an anode and a cathode are placed through a partition plate without increasing the electrolysis rate in the unit electrolytic cell. Electrolyzers installed in multiple stages have been proposed (for example, Japanese Patent Publication No. 52-28104 and Japanese Patent Publication No. 61-44956).
issue).
【0010】ところが、このような方法において得られ
る次亜塩素酸の濃度は十分なものではなく、高効率で高
濃度の次亜塩素酸塩を電解で製造する方法が求められて
いた。However, the concentration of hypochlorous acid obtained by such a method is not sufficient, and there has been a demand for a method of electrolytically producing a highly efficient and high concentration hypochlorite salt.
【0011】[0011]
【課題を解決するための手段】本発明の次亜塩素酸塩の
電解による製造方法は、陽イオン交換膜によって区画し
た電解槽の陽極室において得られる濃度の低下したアル
カリ金属塩化物水溶液を陰極室に加えて得られた次亜塩
素酸塩を含有したアルカリ水溶液と陽極室で得られた塩
素を反応させることによって高濃度の次亜塩素酸塩水溶
液を得る方法である。The method for producing hypochlorite by electrolysis according to the present invention is a method for producing an aqueous solution of an alkali metal chloride having a reduced concentration obtained in an anode chamber of an electrolytic cell partitioned by a cation exchange membrane as a cathode. This is a method of obtaining a high-concentration aqueous solution of hypochlorite by reacting an aqueous alkaline solution containing hypochlorite obtained in addition to the chamber with chlorine obtained in the anode chamber.
【0012】すなわち、アルカリ金属塩化物の水溶液と
して、食塩水を使用する場合について説明すると、食塩
水を陽極室に供給し、電解の進行に伴って濃度の低下し
た食塩水を陰極室へ供給するので、濃度の低下した戻り
食塩水の処理工程は必要ではなく、また陰極液へ陽極室
の濃度の低下した戻り食塩水を添加しているので、陰極
液の濃度調整のために水を添加することも不要となる。That is, the case of using a saline solution as an aqueous solution of an alkali metal chloride will be described. The saline solution is supplied to the anode chamber, and the saline solution whose concentration is lowered with the progress of electrolysis is supplied to the cathode chamber. Therefore, it is not necessary to perform the step of treating the returned saline solution having a reduced concentration, and since the returned saline solution having a reduced concentration in the anode chamber is added to the catholyte, water is added to adjust the concentration of the catholyte. It becomes unnecessary.
【0013】さらに、戻り食塩水を陰極液中へ添加する
ので、陽極液中に溶存している塩素を次亜塩素酸塩の製
造に有効に利用することができる。また、戻り食塩水を
添加した陰極液には陽極で発生した塩素をそのまま吸収
させて次亜塩素酸塩を製造する。その結果、食塩水の直
接電解によって得られる次亜塩素酸塩に比べて、はるか
に高濃度の次亜塩素酸塩を得ることが可能となり、また
食塩のイオン交換膜法電解によって塩素と高濃度の水酸
化ナトリウム水溶液とを製造した後に両者を反応させて
次亜塩素酸塩を得る方法に比べて製造工程および製造設
備面において簡単となり、製造設備の運転管理が容易と
なるので、次亜塩素酸塩の消費場所においても設置する
ことが容易となる。Furthermore, since the return saline is added to the catholyte, the chlorine dissolved in the anolyte can be effectively used for the production of hypochlorite. Further, the catholyte solution to which the return saline is added absorbs chlorine generated at the anode as it is to produce hypochlorite. As a result, it is possible to obtain a much higher concentration of hypochlorite compared to the hypochlorite obtained by direct electrolysis of saline, and the ion exchange membrane method electrolysis of salt produces chlorine and high concentrations of chlorine. In comparison with the method of producing a hypochlorite by reacting both with an aqueous solution of sodium hydroxide, the production process and production equipment are simpler, and the operation management of the production equipment is easier. It is easy to install at the place where the acid salt is consumed.
【0014】[0014]
【作用】アルカリ金属塩化物水溶液を陽イオン交換膜を
使用した電解槽の陽極室に供給して電気分解し、陽極室
の濃度の低下したアルカリ金属塩化物水溶液を陰極室に
供給するとともに、陰極室から取り出した陰極液と陽極
室で発生する塩素を反応させることにより高濃度の次亜
塩素酸塩を製造することができる。[Function] The alkaline metal chloride aqueous solution is supplied to the anode chamber of the electrolytic cell using the cation exchange membrane to be electrolyzed, and the alkaline metal chloride aqueous solution having a reduced concentration in the anode chamber is supplied to the cathode chamber and the cathode A high concentration of hypochlorite can be produced by reacting the catholyte taken out from the chamber with chlorine generated in the anode chamber.
【0015】[0015]
【実施例】以下に、本発明を図面を参照して説明する。
図1は、本発明の次亜塩素酸塩の製造方法の1実施例を
示す図である。The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing one embodiment of the method for producing hypochlorite of the present invention.
【0016】陽イオン交換膜1によって区画されたイオ
ン交換膜電解槽2の陽極室3にはチタン等の金属基体上
に白金族の金属の酸化物を含む電極触媒物質の被覆が形
成された陽極4が設けられており、陰極室5には、ニッ
ケル、ステンレスあるいはこれらの金属に水素過電圧を
低下させる陰極活性物質の被覆を形成した陰極6が設け
られている。陽極室3には食塩水調整工程7において食
塩の溶解と精製を行った食塩水を供給しながら電気分解
を行い、陽極室3からは濃度の低下した食塩水を取り出
して陰極室へ供給し陰極室の水酸化ナトリウム水溶液の
濃度を一定に保持するとともに、陰極液を反応室8にお
いて陽極室で発生した塩素9と反応させて次亜塩素酸ナ
トリウムを製造する。反応室には、下部に次亜塩素酸ナ
トリウム水溶液の貯槽部10があり、循環ポンプ11に
よって反応室の上部から次亜塩素酸ナトリウムと水酸化
ナトリウムの混合溶液をシャワー状に供給し、陽極室で
得られた塩素と反応させている。反応室に供給する陰極
液、塩素、および反応室内はそれぞれ冷却水等によって
冷却し、生成する次亜塩素酸塩が分解しないようにする
ことが必要である。In the anode chamber 3 of the ion-exchange membrane electrolytic cell 2 partitioned by the cation-exchange membrane 1, an anode in which a coating of an electrocatalytic substance containing an oxide of a platinum group metal is formed on a metal substrate such as titanium. 4 is provided, and the cathode chamber 5 is provided with a cathode 6 in which nickel, stainless steel, or a metal thereof is coated with a cathode active material that reduces hydrogen overvoltage. Electrolysis is performed while supplying the salt solution in which the salt is dissolved and purified in the salt solution adjusting step 7 to the anode chamber 3, and the salt solution having a reduced concentration is taken out from the anode chamber 3 and is supplied to the cathode chamber. While keeping the concentration of the aqueous sodium hydroxide solution in the chamber constant, the catholyte is reacted with chlorine 9 generated in the anode chamber in the reaction chamber 8 to produce sodium hypochlorite. In the reaction chamber, there is a storage tank 10 for the sodium hypochlorite aqueous solution in the lower part, and a mixed solution of sodium hypochlorite and sodium hydroxide is supplied from the upper part of the reaction chamber in the form of a shower by the circulation pump 11, and the anode chamber is used. It is reacted with the chlorine obtained in. It is necessary to cool the catholyte and chlorine supplied to the reaction chamber and the reaction chamber with cooling water or the like so that the generated hypochlorite is not decomposed.
【0017】また、本発明の方法で使用するイオン交換
膜電解槽の陽イオン交換膜には、フッ素樹脂系の陽イオ
ン交換膜を用いることができるが、陰極で生成する水酸
化ナトリウム水溶液の濃度をとくに高濃度とする必要は
ないので、陽極液として供給する食塩水中に不純物が比
較的多く含まれていても電気分解の特性に悪影響を及ぼ
さない陽イオン交換膜を用いることができるので、食塩
水の調整工程を簡素化することができ、電解槽の運転も
容易となる。Further, as the cation exchange membrane of the ion exchange membrane electrolytic cell used in the method of the present invention, a fluororesin cation exchange membrane can be used, but the concentration of the sodium hydroxide aqueous solution produced at the cathode is Since it is not necessary to make the concentration of the salt particularly high, it is possible to use a cation exchange membrane that does not adversely affect the electrolysis characteristics even if the saline solution supplied as the anolyte contains a relatively large amount of impurities. The water adjustment process can be simplified, and the operation of the electrolytic cell becomes easy.
【0018】実施例1 縦400mm、横500mmの白金族金属の酸化物を含
有する電極触媒物質を被覆した陽極(ペルメレック電極
(株)製)とニッケル陰極を有する電極室ユニット、お
よびフッ素樹脂系の陽イオン交換膜であるナフィオン3
24を4枚使用して複極式の電解槽を組み立てた。Example 1 An electrode chamber unit having an anode (manufactured by Permelek Electrode Co., Ltd.) coated with an electrode catalyst material containing an oxide of a platinum group metal having a length of 400 mm and a width of 500 mm, and a nickel resin, and a fluororesin-based unit. Nafion 3 which is a cation exchange membrane
A bipolar electrode cell was assembled using four sheets of 24.
【0019】この電解槽に400アンペアの電流を通電
したところ、槽電圧は14.2Vであった。陽極室には
300g/lの食塩水を12リットル/時間の流量で供
給し、陽極室から流出する94g/lの戻り食塩水を陰
極室に供給し、陰極室からは陰極液を取り出して反応室
に供給し、陰極液と陽極室で得られた塩素とを反応させ
て13重量%(158g/l)の次亜塩素酸ナトリウム
水溶液が11.4リットル/時の流量で得られた。次亜
塩素酸塩の製造の電流効率は85%であった。When a current of 400 amperes was passed through the electrolytic cell, the cell voltage was 14.2V. 300 g / l saline solution is supplied to the anode chamber at a flow rate of 12 liters / hour, 94 g / l return saline solution flowing out from the anode chamber is supplied to the cathode chamber, and the catholyte is taken out from the cathode chamber and reacted. Then, the catholyte was reacted with chlorine obtained in the anode chamber to obtain 13% by weight (158 g / l) of sodium hypochlorite aqueous solution at a flow rate of 11.4 liter / hour. The current efficiency for the production of hypochlorite was 85%.
【0020】[0020]
【発明の効果】アルカリ金属塩化物水溶液を陽イオン交
換膜を使用した電解槽の陽極室に供給して電気分解し、
陽極室の濃度の低下したアルカリ金属塩化物水溶液を陰
極室に供給するとともに、陰極室から取り出した陰極液
に陽極室で発生する塩素を反応させたもので、陰極液の
濃度調整手段、陽極液の脱塩素工程等が必要でなくな
り、高濃度の次亜塩素酸塩を次亜塩素酸塩の消費場所に
おいて容易に製造することができる。The alkali metal chloride aqueous solution is supplied to the anode chamber of the electrolytic cell using the cation exchange membrane for electrolysis,
An alkaline metal chloride aqueous solution with a reduced concentration in the anode chamber is supplied to the cathode chamber, and the catholyte taken out from the cathode chamber is reacted with chlorine generated in the anode chamber. The dechlorination step of No. 1 is unnecessary, and high-concentration hypochlorite can be easily produced at the place where hypochlorite is consumed.
【図1】本発明の方法の1実施例を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the method of the present invention.
【図2】イオン交換膜電解槽を用いた従来の次亜塩素酸
塩の製造方法を説明する図である。FIG. 2 is a diagram illustrating a conventional method for producing hypochlorite using an ion exchange membrane electrolytic cell.
1…陽イオン交換膜、2…イオン交換膜電解槽、3…陽
極室、4…陽極、5…陰極室、6…陰極、7…食塩水調
整工程、8…反応室、9…塩素、10…貯槽部、11…
循環ポンプ、21…陽極室、22…陽極、23…陰極
室、24…陰極、25…陽イオン交換膜、26…イオン
交換膜電解槽、27…脱塩素塔、28…食塩水調整工
程、29…水、30…陰極液貯槽、31…吸収塔、32
…塩素DESCRIPTION OF SYMBOLS 1 ... Cation exchange membrane, 2 ... Ion exchange membrane electrolytic cell, 3 ... Anode chamber, 4 ... Anode, 5 ... Cathode chamber, 6 ... Cathode, 7 ... Saline adjustment process, 8 ... Reaction chamber, 9 ... Chlorine, 10 … Storage unit, 11…
Circulation pump, 21 ... Anode chamber, 22 ... Anode, 23 ... Cathode chamber, 24 ... Cathode, 25 ... Cation exchange membrane, 26 ... Ion exchange membrane electrolytic cell, 27 ... Dechlorination tower, 28 ... Saline solution adjusting step, 29 ... water, 30 ... catholyte storage tank, 31 ... absorption tower, 32
…chlorine
Claims (1)
区画したイオン交換膜電解槽の陽極室にアルカリ金属塩
化物水溶液を供給して電気分解を行い、陽極室の濃度の
低下したアルカリ金属塩化物水溶液を陰極室に添加し、
陰極液中のアルカリ金属水酸化物の濃度を一定に保持す
るとともに、陰極室から取りだした陰極液を陽極室で発
生する塩素と反応させることを特徴とする次亜塩素酸塩
の製造方法。1. An alkali metal chloride solution having a reduced concentration in the anode chamber is supplied by supplying an aqueous solution of an alkali metal chloride to the anode chamber of an ion exchange membrane electrolysis cell divided into an anode chamber and a cathode chamber by an ion exchange membrane for electrolysis. Substance aqueous solution is added to the cathode chamber,
A method for producing hypochlorite, characterized in that the concentration of alkali metal hydroxide in the catholyte is kept constant and the catholyte taken out from the cathode chamber is reacted with chlorine generated in the anode chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00135592A JP3283052B2 (en) | 1992-01-08 | 1992-01-08 | Method for producing hypochlorite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00135592A JP3283052B2 (en) | 1992-01-08 | 1992-01-08 | Method for producing hypochlorite |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05179475A true JPH05179475A (en) | 1993-07-20 |
JP3283052B2 JP3283052B2 (en) | 2002-05-20 |
Family
ID=11499189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00135592A Expired - Lifetime JP3283052B2 (en) | 1992-01-08 | 1992-01-08 | Method for producing hypochlorite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3283052B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07116247A (en) * | 1993-10-22 | 1995-05-09 | Raizaa Kogyo Kk | Method for sterilizing and purifying blood circulating and dialyzate piping pipeline for artificial dialysis method and its device |
WO2001075209A1 (en) * | 2000-04-03 | 2001-10-11 | Hee Jung Kim | Preparation system for sodium hydroxide and sodium hypochlorite solution |
WO2014114806A1 (en) * | 2013-01-28 | 2014-07-31 | Industrie De Nora S.P.A. | An electrolyzed water generating method and a generator |
CN107604377A (en) * | 2017-10-20 | 2018-01-19 | 中国水利水电科学研究院 | A kind of device for production water supply javelle water |
US10131555B2 (en) | 2014-02-06 | 2018-11-20 | Nikkiso Co., Ltd. | Method and apparatus for controlling concentration of free chlorine, and sterilization method and sterilization apparatus each utilizing said method and said apparatus |
US10194665B2 (en) | 2013-08-30 | 2019-02-05 | Epios Co., Ltd. | Cleaning solution and manufacturing method therefor |
WO2022230422A1 (en) | 2021-04-30 | 2022-11-03 | デノラ・ペルメレック株式会社 | Method and device for manufacturing sodium hypochlorite solution |
-
1992
- 1992-01-08 JP JP00135592A patent/JP3283052B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07116247A (en) * | 1993-10-22 | 1995-05-09 | Raizaa Kogyo Kk | Method for sterilizing and purifying blood circulating and dialyzate piping pipeline for artificial dialysis method and its device |
WO2001075209A1 (en) * | 2000-04-03 | 2001-10-11 | Hee Jung Kim | Preparation system for sodium hydroxide and sodium hypochlorite solution |
WO2014114806A1 (en) * | 2013-01-28 | 2014-07-31 | Industrie De Nora S.P.A. | An electrolyzed water generating method and a generator |
CN104903251B (en) * | 2013-01-28 | 2018-06-05 | 德诺拉工业有限公司 | Electrolysis water production method and generator |
EA030556B1 (en) * | 2013-01-28 | 2018-08-31 | Индустрие Де Нора С.П.А. | Electrolyzed water generating method and generator |
US10194665B2 (en) | 2013-08-30 | 2019-02-05 | Epios Co., Ltd. | Cleaning solution and manufacturing method therefor |
US10131555B2 (en) | 2014-02-06 | 2018-11-20 | Nikkiso Co., Ltd. | Method and apparatus for controlling concentration of free chlorine, and sterilization method and sterilization apparatus each utilizing said method and said apparatus |
CN107604377A (en) * | 2017-10-20 | 2018-01-19 | 中国水利水电科学研究院 | A kind of device for production water supply javelle water |
CN107604377B (en) * | 2017-10-20 | 2024-03-08 | 中国水利水电科学研究院 | Device for producing water supply sodium hypochlorite disinfectant |
WO2022230422A1 (en) | 2021-04-30 | 2022-11-03 | デノラ・ペルメレック株式会社 | Method and device for manufacturing sodium hypochlorite solution |
KR20230167128A (en) | 2021-04-30 | 2023-12-07 | 드 노라 페르멜렉 가부시키가이샤 | Manufacturing method and manufacturing device of sodium hypochlorite solution |
Also Published As
Publication number | Publication date |
---|---|
JP3283052B2 (en) | 2002-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4456510A (en) | Process for manufacturing chlorine dioxide | |
JP3716042B2 (en) | Acid water production method and electrolytic cell | |
JP3913923B2 (en) | Water treatment method and water treatment apparatus | |
US6527940B1 (en) | Production method of acid water and alkaline water | |
JP3428998B2 (en) | Electrolyzer producing mixed oxidant gas | |
CA1153982A (en) | Electrolytic production of alkali metal hypohalite and apparatus therefor | |
US5938916A (en) | Electrolytic treatment of aqueous salt solutions | |
US5935393A (en) | Apparatus for producing hypochlorite | |
JPH05214572A (en) | Electrocehmical process and reactor for producing sulfuric acid and sodium hydroxide | |
US4279712A (en) | Method for electrolyzing hydrochloric acid | |
JP3818619B2 (en) | Hypochlorite production apparatus and method | |
US5039383A (en) | Halogen generation | |
JP3283052B2 (en) | Method for producing hypochlorite | |
JP3561130B2 (en) | Electrolyzer for hydrogen peroxide production | |
US4510026A (en) | Process for electrolysis of sea water | |
JPH0673675B2 (en) | Method for producing sterilized water containing hypochlorous acid by electrolysis | |
JPH10291808A (en) | Production method of aqueous hydrogen peroxide and device therefor | |
JPH06173062A (en) | Electrolyzing method for aqueous alkali chloride solution | |
JP3677078B2 (en) | Method and apparatus for producing hydrogen peroxide water | |
JPH0428438B2 (en) | ||
JPH0938655A (en) | Electrolytic hypochlorous bactericide water containing ozone, its production and device therefor | |
JP2003293178A (en) | Method for preparing chemical for water treatment | |
JPH0114830B2 (en) | ||
JP2892120B2 (en) | Method for producing sterile water containing hypochlorous acid by electrolysis | |
JP3909957B2 (en) | Electrolyzer for hydrogen peroxide production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080301 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080301 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080301 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090301 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090301 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100301 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100301 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110301 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110301 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120301 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |