JPH05163332A - Biodegradable, optically active polymer and its production - Google Patents
Biodegradable, optically active polymer and its productionInfo
- Publication number
- JPH05163332A JPH05163332A JP35070891A JP35070891A JPH05163332A JP H05163332 A JPH05163332 A JP H05163332A JP 35070891 A JP35070891 A JP 35070891A JP 35070891 A JP35070891 A JP 35070891A JP H05163332 A JPH05163332 A JP H05163332A
- Authority
- JP
- Japan
- Prior art keywords
- optically active
- general formula
- lactide
- formula
- dioxepan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は生分解性光学活性ポリマ
ーとその製造方法に関する。さらに詳しく言えば、3−
ヒドロキシ酪酸ユニットを含有する光学活性な7−置換
−1,4−ジオキセパン−5−オン誘導体とラクチド類
を開環共重合させて得られる光学活性ポリエーテルエス
テルおよびその製造方法に関する。本発明によるポリエ
ーテルエステルは、光学活性、生分解性(酵素分解
性)、加水分解性を有する熱可塑性樹脂であり、土壌ま
たは水中に存在する微生物により分解されるので環境を
汚染しないクリーンプラスチックとして広く利用できる
機能性ポリマーである。TECHNICAL FIELD The present invention relates to a biodegradable optically active polymer and a method for producing the same. More specifically, 3-
The present invention relates to an optically active polyether ester obtained by ring-opening copolymerization of an optically active 7-substituted-1,4-dioxepan-5-one derivative containing a hydroxybutyric acid unit and a lactide, and a method for producing the same. The polyether ester according to the present invention is a thermoplastic resin having optical activity, biodegradability (enzymatic degradability), and hydrolyzability, and as a clean plastic that does not pollute the environment because it is decomposed by microorganisms existing in soil or water. It is a widely available functional polymer.
【0002】[0002]
【従来の技術およびその課題】本発明のポリマーの基本
骨格に相当する化合物である式(IV)2. Description of the Related Art A compound of formula (IV) corresponding to the basic skeleton of the polymer of the present invention
【化7】 で示される1,4−ジオキセパン−5−オン(1,5−
ジオキセパン−2−オンとも命名し得るが、本明細書で
は前者の名称を統一して使用する。)については公知で
ある。例えば、英国特許第1272733 号には、エチレング
リコールとアクリロニトリルを50%カセイソーダの存
在下に反応させて2−(2−シアノエトキシ)エタノー
ルを得、次いで塩化メチレン中で乾燥塩化水素を通して
環化し、5−イミノ−1,4−ジオキセパン−5−オン
塩酸塩とした後、水溶液中で40℃に加熱して1,4−
ジオキセパン−5−オンを得る方法(総収率約5%)が
記載されている。[Chemical 7] 1,4-dioxepan-5-one (1,5-
Although it can be named dioxepan-2-one, in the present specification, the former name is used in a unified manner. Is known. For example, in British Patent No. 1272733, ethylene glycol and acrylonitrile are reacted in the presence of 50% caustic soda to give 2- (2-cyanoethoxy) ethanol, which is then cyclized through dry hydrogen chloride in methylene chloride. -Imino-1,4-dioxepan-5-one hydrochloride, then heated to 40 ° C in an aqueous solution to give 1,4-
A method for obtaining dioxepan-5-one (total yield about 5%) is described.
【0003】1,4−ジオキセパン−5−オンとラクチ
ド類とのコポリマーについては、米国特許第4470416 号
に、多量部のラクチド(後述の一般式(II)においてR1
がメチル基の化合物)あるいはグリコリドと少量部の
1,4−ジオキセパン−5−オンからなるコポリマーを
オクチル酸スズの存在下で合成する方法が開示されてい
る。しかしながら、上記特許に記載されている1,4−
ジオキセパン−5−オンとラクチドからなるコポリマー
はモノマーが(7位に)置換基を持たないため、光学活
性でなく、生分解性の面で問題があった。Regarding copolymers of 1,4-dioxepan-5-one with lactides, US Pat. No. 4,470,416 discloses a large amount of lactide (R 1 in the general formula (II) described later).
A compound having a methyl group) or glycolide and a small amount of 1,4-dioxepan-5-one in the presence of tin octylate is disclosed. However, the 1,4-
The copolymer of dioxepan-5-one and lactide has a problem in that it has no substituent (at the 7-position) and is not optically active and biodegradable.
【0004】一方、近年、本発明化合物の一部構成部分
に対応する3−ヒドロキシ酪酸のポリマーを菌体内に蓄
積する微生物が知られており(P.A.Holmes,Phys.Techno
l.1985,(16),32参照)、このポリマーは生分解性すなわ
ち酵素分解性、加水分解性、生体適合性の特性を持つた
めに新しいタイプの機能性材料として注目されている
(生分解性高分子材料 19頁 土肥義治編著 工業調
査会1990年発行参照)。また、D−(+)−メチル−β
−プロピオラクトンの開環重合はPolymer letters, 9,
173 (1970)に報告されている。しかし微生物学的合成法
である方法は、微生物または酵素反応を利用するため、
菌体からのポリマーの分離などの繁雑な工程を必要と
し、製造原価が高いこと、またD−(+)−メチル−β
−プロピオラクトンの開環重合法には光学分割工程があ
ることなど工業化には多くの問題点がある。On the other hand, in recent years, a microorganism has been known which accumulates a polymer of 3-hydroxybutyric acid corresponding to a part of the compound of the present invention in the cells (PA Holmes, Phys. Techno.
l.1985, (16), 32), this polymer has been attracting attention as a new type of functional material because of its biodegradable or enzymatically degradable, hydrolyzable, and biocompatible properties (biodegradable). Polymeric Materials, p. 19, edited by Yoshiharu Dohi, published by Industrial Research Society 1990). In addition, D-(+)-methyl-β
-Ring-opening polymerization of propiolactone is described in Polymer letters, 9,
173 (1970). However, the method that is a microbiological synthesis method uses a microbial or enzymatic reaction,
It requires complicated processes such as separation of polymer from microbial cells, high production cost, and D-(+)-methyl-β
-Propiolactone ring-opening polymerization has many problems in industrialization such as an optical resolution step.
【0005】従って、本発明の目的は3−ヒドロキシ酪
酸ユニットを含有する光学活性な7−置換−1,4−ジ
オキセパン−5−オン誘導体をラクチド類と開環共重合
することにより、生分解性(酵素分解性)、加水分解性
に優れたポリマーおよびその製造方法を提供することに
ある。Therefore, an object of the present invention is to biodegrade by optically ring-opening copolymerization of an optically active 7-substituted-1,4-dioxepan-5-one derivative containing a 3-hydroxybutyric acid unit with a lactide. It is intended to provide a polymer excellent in (enzymatic degradability) and hydrolyzability and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を行なった結果、3−ヒドロキシ酪
酸ユニットを含有する光学活性な7−置換−1,4−ジ
オキセパン−5−オン誘導体がラクチド類と触媒の存在
下で容易に開環共重合して対応する光学活性なポリエー
テルエステルとなることを見出し本発明を完成するに至
った。As a result of intensive studies to solve the above problems, the present inventors have found that an optically active 7-substituted-1,4-dioxepane-5 containing a 3-hydroxybutyric acid unit is used. The inventors have found that the on-derivative can be easily subjected to ring-opening copolymerization in the presence of a lactide and a catalyst to give the corresponding optically active polyether ester, and completed the present invention.
【0007】すなわち、本発明は 1)下記一般式(II)That is, the present invention is: 1) The following general formula (II)
【化8】 (式中、R1 は水素原子あるいは炭素数1〜5のアルキ
ル基を表わす。)で示される化合物より選ばれる少なく
とも1種のラクチド類と一般式(III)[Chemical 8] (In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and at least one lactide selected from the compounds represented by the general formula (III)
【化9】 (式中、Rは炭素数1〜5のアルキル基を表わす。)で
示される光学活性7−置換−1,4−ジオキセパン−5
−オンとを開環共重合させて得られる一般式(I)[Chemical 9] (In the formula, R represents an alkyl group having 1 to 5 carbon atoms.) Optically active 7-substituted-1,4-dioxepane-5
General formula (I) obtained by ring-opening copolymerization with -one
【化10】 (式中、RおよびR1 は前記と同じ意味を表わし、mお
よびnは自然数を表わす。)で示される光学活性ポリマ
ー、および[Chemical 10] (In the formula, R and R 1 have the same meanings as described above, and m and n represent natural numbers.), And
【0008】2)下記一般式(II)2) The following general formula (II)
【化11】 (式中、R1 は前記と同じ意味を表わす。)で示される
化合物から選ばれる少なくとも1種のラクチド類と一般
式(III)[Chemical 11] (Wherein R 1 has the same meaning as described above) and at least one lactide selected from compounds represented by the general formula (III)
【化12】 (式中、Rは前記と同じ意味を表わす。)で示される光
学活性7−置換−1,4−ジオキセパン−5−オンを、
有機スズ化合物より選ばれる少なくとも1種の触媒の存
在下に開環共重合させることを特徴とする一般式(I)[Chemical 12] (Wherein R represents the same meaning as described above), and the optically active 7-substituted-1,4-dioxepan-5-one is represented by
General formula (I) characterized by carrying out ring-opening copolymerization in the presence of at least one catalyst selected from organotin compounds
【化13】 (式中、R、R1 、mおよびnは前記と同じ意味を表わ
す。)で示される光学活性ポリマーの製造方法を提供し
たものである。[Chemical 13] (Wherein R, R 1 , m and n have the same meanings as described above), and a method for producing an optically active polymer.
【0009】以下、本発明を詳細に説明する。本発明ポ
リマーの原料の1つである7−置換−1,4−ジオキセ
パン−5−オン誘導体は、例えば以下のように製造する
ことができる。The present invention will be described in detail below. The 7-substituted-1,4-dioxepan-5-one derivative, which is one of the raw materials for the polymer of the present invention, can be produced, for example, as follows.
【0010】[0010]
【化14】 [Chemical 14]
【0011】(式中、Rは前記と同じ意味を表わし、X
は炭素数1〜6のアルキル基を表わす。) 上記の工程において、出発原料の式(IV)で示される光学
活性な3−ヒドロキシアルカン酸エステルは本出願人が
特開昭63-310847 号公報に開示している方法、すなわち
一般式(VIII)(Wherein R has the same meaning as described above, X
Represents an alkyl group having 1 to 6 carbon atoms. In the above step, the optically active 3-hydroxyalkanoic acid ester represented by the formula (IV) as the starting material is prepared by the method disclosed by the applicant in JP-A-63-310847, that is, the general formula (VIII) )
【化15】 (式中、RおよびXは前記と同じ意味を表わす。)で示
されるβ−ケトエステル酸類をルテニウム−光学活性ホ
スフィン錯体を触媒として不斉水素化を行なうことによ
り容易に得ることができる。[Chemical 15] (In the formula, R and X have the same meanings as described above.) The β-ketoester acids can be easily obtained by asymmetric hydrogenation using a ruthenium-optically active phosphine complex as a catalyst.
【0012】また、本発明ポリマーのもう1つの原料で
あり、下記一般式(II)Another raw material of the polymer of the present invention is the following general formula (II)
【化16】 (式中、R1 は前記と同じ意味を表わす。)で示される
ラクチド類はα−オキシ酸を減圧加熱するか、あるいは
脱水剤を作用させ2分子間で脱水反応させて得られる環
状ジエステルであり、対応するα−オキシ酸から容易に
合成することができる。[Chemical 16] The lactide represented by the formula (wherein R 1 has the same meaning as described above) is a cyclic diester obtained by heating α-oxy acid under reduced pressure or by allowing a dehydrating agent to act to dehydrate between two molecules. Yes, it can be easily synthesized from the corresponding α-oxy acid.
【0013】一般式(II) においてR1 がアルキル基の
ラクチド類には、D−体、L−体およびラセミ体が存在
するが、本発明においてはいずれも使用できる。一般式
(II) のラクチド類のうち、特に好ましいものはR1 が
メチル基を表わす化合物(以下、単にラクチドとい
う。)およびR1 が水素原子を表わすグリコリドであ
り、これらは市販品を精製して使用できる。精製方法と
しては、例えば水素化カルシウムを加えて蒸留し使用前
まで不活性ガス中で保存する方法が採用できる。本発明
においては、一般式(II) のラクチド類は1種を単独で
使用してもよいし、2種以上を同時に使用してもよい。In the general formula (II), lactides in which R 1 is an alkyl group include D-form, L-form and racemate, but any of them can be used in the present invention. Among the lactides of the general formula (II), particularly preferred are compounds in which R 1 represents a methyl group (hereinafter simply referred to as lactide) and glycolides in which R 1 represents a hydrogen atom. Can be used. As a purification method, for example, a method in which calcium hydride is added and distilled and stored in an inert gas before use can be adopted. In the present invention, the lactides of general formula (II) may be used alone or in combination of two or more.
【0014】本発明において、開環共重合に付される光
学活性7−置換−1,4−ジオキセパン−5−オン誘導
体とラクチド類との割合は、前者:後者のモル%比で1
〜99:99〜1、好ましくは5〜50:95〜50で
ある。In the present invention, the ratio of the optically active 7-substituted-1,4-dioxepan-5-one derivative subjected to ring-opening copolymerization to the lactide is 1 in the molar ratio of the former to the latter.
˜99: 99 to 1, preferably 5 to 50:95 to 50.
【0015】開環共重合は、3−ヒドロキシ酪酸ユニッ
トを有する光学活性な7−置換−1,4−ジオキセパン
−5−オン誘導体とラクチド類とを上記範囲内の適宜の
比率で無溶媒または2〜10倍量の不活性有機溶媒、例
えばトルエン、ベンゼン、ジオキサン、テトラヒドロフ
ラン等の有機溶媒に溶かし、窒素またはアルゴン等の不
活性気体下で反応容器に仕込み、これに触媒を加え、常
圧で50〜180℃の温度で、1時間〜5日間反応させ
てポリマーを得るランダム共重合により行なわれる。The ring-opening copolymerization is carried out by using an optically active 7-substituted-1,4-dioxepan-5-one derivative having a 3-hydroxybutyric acid unit and a lactide at a suitable ratio within the above range without solvent or 2 Dissolved in 10 times the amount of an inert organic solvent, for example, an organic solvent such as toluene, benzene, dioxane, or tetrahydrofuran, and charged into a reaction vessel under an inert gas such as nitrogen or argon. It is carried out by random copolymerization to obtain a polymer by reacting at a temperature of ˜180 ° C. for 1 hour to 5 days.
【0016】ここで触媒としては、有機スズ化合物、例
えば、ジブチルスズオキシドに代表されるジアルキルス
ズオキシド、トリブチルスズメトキシドに代表されるト
リアルキルスズアルコキシド、オクチル酸スズ等のアル
キル酸スズ、1−ヒドロキシ−3−(イソチオシアネー
ト)テトラブチルジスタノキサンに代表されるジスタノ
キサン、塩化第一スズ、テトラフェニルスズ、テトラア
リルスズなどが用いられる。Here, as the catalyst, an organic tin compound, for example, a dialkyl tin oxide represented by dibutyl tin oxide, a trialkyl tin alkoxide represented by tributyl tin methoxide, a tin alkylate such as tin octylate, 1-hydroxy- Distannoxane represented by 3- (isothiocyanate) tetrabutyldistannoxane, stannous chloride, tetraphenyltin, tetraallyltin, etc. are used.
【0017】これら触媒は少なくとも1種を使用し、必
要に応じ数種を併用することができる。これらの触媒の
うちでは、特にジブチルスズオキシド、オクチル酸スズ
等が好ましく用いられる。触媒は原料モノマーに対して
1/10〜1/10000 倍モル程度の量で使用される。At least one of these catalysts is used, and if necessary, several types can be used in combination. Among these catalysts, dibutyltin oxide, tin octylate and the like are preferably used. The catalyst is used in an amount of about 1/10 to 1/10000 times the molar amount of the raw material monomer.
【0018】[0018]
【発明の効果】本発明によれば、3−ヒドロキシ酪酸ユ
ニットを含有する光学活性な7−置換−1,4−ジオキ
セパン−5−オン誘導体とラクチド類との開環共重合に
より、光学活性で酵素分解性、加水分解性という特徴を
持つ新しい機能性材料である有用なポリマーを、容易に
工業的に有利な方法で製造することができる。According to the present invention, an optically active 7-substituted-1,4-dioxepan-5-one derivative containing a 3-hydroxybutyric acid unit and a lactide are subjected to ring-opening copolymerization to give an optically active compound. A useful polymer, which is a new functional material having characteristics of enzymatic degradability and hydrolyzability, can be easily produced by an industrially advantageous method.
【0019】[0019]
【実施例】以下、実施例および試験例により本発明をさ
らに詳細に説明するが、本発明はこれら実施例に限定さ
れるものではない。なお、実施例で使用した分析機器お
よび生分解性試験で使用した施設は下記のとおりであ
る。 核磁気共鳴スペクトル(NMR):AM−400型装置
(400MHz)(ブルッカー社製) 赤外吸収スペルトル(IR):IR−810型赤外分光
分析装置(日本分光工業(株)製)、 分子量:D−2520GPC Integrator(日立製作所
(株)製)、 旋光度:DIP−360型デジタル旋光計(日本分光工
業(株)製)。 生分解性試験:活性汚泥を使用して行なった。The present invention will be described in more detail below with reference to examples and test examples, but the present invention is not limited to these examples. The analytical instruments used in the examples and the facilities used in the biodegradability test are as follows. Nuclear magnetic resonance spectrum (NMR): AM-400 type device (400 MHz) (manufactured by Bruker) Infrared absorption spectrum (IR): IR-810 type infrared spectroscopic analyzer (manufactured by JASCO Corporation), molecular weight: D-2520 GPC Integrator (manufactured by Hitachi, Ltd.), optical rotation: DIP-360 type digital polarimeter (manufactured by JASCO Corporation). Biodegradability test: Performed using activated sludge.
【0020】実施例1:D−(−)−7−メチル−1,
4−ジオキセパン−5−オンとL−ラクチドとからの開
環共重合によるポリエーテルエステルの合成 20mlの反応容器にD−(−)−7−メチル−1,4
−ジオキセパン−5−オン(以下、MDOと略記す
る。)0.26g(2ミリモル)、L−ラクチド(東京化成
(株)製)2.59g(18ミリモル)、減圧下120℃、
24時間乾燥させたジブチルスズオキシド0.0167g(0.
067 ミリモル)および乾燥トルエン5mlを入れ、窒素
雰囲気下120℃で2時間撹拌した。生成したポリマー
をメタノール中にいれ、エーテルで洗うことにより標題
のポリエーテルエステル(以下、P(MDO)−L−ラ
クチドと略記する。)2.58g(収率 90.5 %)を得た
(MDO部 6.7%、L−ラクチド部 93.3 %)。Example 1: D-(-)-7-methyl-1,
Synthesis of polyether ester by ring-opening copolymerization from 4-dioxepan-5-one and L-lactide D-(-)-7-methyl-1,4 was added to a 20 ml reaction vessel.
-Dioxepan-5-one (hereinafter abbreviated as MDO) 0.26 g (2 mmol), L-lactide (Tokyo Kasei Co., Ltd.) 2.59 g (18 mmol), 120 ° C under reduced pressure,
0.0167 g (0.10 g) of dibutyltin oxide dried for 24 hours.
(067 mmol) and 5 ml of dry toluene were added, and the mixture was stirred at 120 ° C. for 2 hours under a nitrogen atmosphere. The produced polymer was put in methanol and washed with ether to obtain 2.58 g (yield 90.5%) of the title polyether ester (hereinafter abbreviated as P (MDO) -L-lactide) (MDO part 6.7). %, L-lactide part 93.3%).
【0021】 1H−NMR(400MHz,CDCl3 )δp
pm:MDO部 1.15〜1.24(3H,m)、2.43〜2.40(1H,m)、2.55
〜2.70(1H,m)、3.58〜3.74(2H,m)、3.84〜3.95(1H,m)、
4.10〜4.34(2H,m);L−ラクチド部 1.47〜1.63(3H,m)、5.08〜5.23(2H,
m); IR(cm-1):2990、2850、1760、1455、1385、1185、
1095; 重量平均分子量(以下、Mwと略記する。):75400 ; 数平均分子量(以下、Mnと略記する。):59200 ; ガラス転移温度(以下、Tgと略記する。):47℃; 融点(以下、Tmと略記する。):154℃; 分解温度(以下、TGと略記する。):269℃; [α]D :−145.6 ゜(c=1,CHCl3 ,20
℃)。 1 H-NMR (400 MHz, CDCl 3 ) δp
pm: MDO part 1.15 to 1.24 (3H, m), 2.43 to 2.40 (1H, m), 2.55
~ 2.70 (1H, m), 3.58 ~ 3.74 (2H, m), 3.84 ~ 3.95 (1H, m),
4.10 to 4.34 (2H, m); L-lactide part 1.47 to 1.63 (3H, m), 5.08 to 5.23 (2H, m)
m); IR (cm -1 ): 2990, 2850, 1760, 1455, 1385, 1185,
1095; weight average molecular weight (hereinafter abbreviated as Mw): 75400; number average molecular weight (hereinafter abbreviated as Mn): 59200; glass transition temperature (hereinafter abbreviated as Tg): 47 ° C; melting point ( Hereinafter, abbreviated as Tm): 154 ° C .; decomposition temperature (hereinafter abbreviated as TG): 269 ° C .; [α] D : −145.6 ° (c = 1, CHCl 3 , 20
C).
【0022】実施例2:P(MDO(17%)−L−ラ
クチド(83%))の合成 20mlの反応容器にMDO 0.52 g(4ミリモル)、
L−ラクチド 2.31 g(16ミリモル)を使用した以外
は、すべて実施例1と同じ方法で反応を行ない標題のポ
リマー2.58g(収率 90.5 %)を得た(MDO部 16.6
%、L−ラクチド部 83.4 %)。 Mw:69500 ; Mn:47300 ; Tg:38℃; Tm:136℃; TG:279℃; [α]D :−134.5 ゜(c=1,CHCl3 ,20
℃)、 結晶化率:33%(X線解析による)。Example 2: Synthesis of P (MDO (17%)-L-lactide (83%)) 0.52 g (4 mmol) MDO in a 20 ml reaction vessel.
The reaction was performed in the same manner as in Example 1 except that 2.31 g (16 mmol) of L-lactide was used to obtain 2.58 g of the title polymer (yield 90.5%) (MDO part 16.6).
%, L-lactide part 83.4%). Mw: 69500; Mn: 47300; Tg: 38 ° C .; Tm: 136 ° C .; TG: 279 ° C .; [α] D : −134.5 ° (c = 1, CHCl 3 , 20,
C), crystallization rate: 33% (by X-ray analysis).
【0023】実施例3:P(MDO(29%)−L−ラ
クチド(71%))の合成 20mlの反応容器にMDO 0.78 g(6ミリモル)、
L−ラクチド 2.02 g(14ミリモル)を使用した以外
は、すべて実施例1と同じ方法で反応を行ない標題のポ
リマー2.37g(収率 84.6 %)を得た(MDO部 29.3
%、L−ラクチド部7 0.7 %)。 Mw:102800; Mn:26700 ; Tg:24℃; Tm:111℃; TG:275℃; [α]D :−118.7 ゜(c=1,CHCl3 ,20
℃)。Example 3: Synthesis of P (MDO (29%)-L-lactide (71%)) 0.78 g (6 mmol) of MDO in a 20 ml reaction vessel.
The reaction was carried out in the same manner as in Example 1 except that 2.02 g (14 mmol) of L-lactide was used to obtain 2.37 g (yield 84.6%) of the title polymer (MDO part: 29.3%).
%, L-lactide part 7 0.7%). Mw: 102800; Mn: 26700; Tg: 24 ° C .; Tm: 111 ° C .; TG: 275 ° C .; [α] D : -118.7 ° (c = 1, CHCl 3 , 20,
C).
【0024】実施例4:P(MDO(17%)−ラクチ
ド(83%))の合成 20mlの反応容器にMDO 0.52 g(4ミリモル)、
ラセミ体のラクチド(東京化成(株)製) 2.31 g(1
6ミリモル)を使用した以外は、すべて実施例1と同じ
方法で反応を行ない標題のポリマー2.17g(収率 76.7
%)を得た(MDO部 17.3 %、ラクチド部 82.7
%)。 Mw:78800 ; Mn:43800 ; Tg:13℃; TG:277℃。Example 4: Synthesis of P (MDO (17%)-lactide (83%)) 0.52 g (4 mmol) MDO in a 20 ml reaction vessel.
Racemic lactide (Tokyo Kasei Co., Ltd.) 2.31 g (1
The reaction was conducted in the same manner as in Example 1 except that 6 mmol) was used, and 2.17 g of the title polymer (yield 76.7
%) (MDO part 17.3%, lactide part 82.7)
%). Mw: 78800; Mn: 43800; Tg: 13 ° C; TG: 277 ° C.
【0025】実施例5:MDOとグリコリドとからの開
環重合によるポリエステルの合成 20mlの反応容器にMDO2.60g(20ミリモル)、
グリコリド(デュポン社製)2.32g(20ミリモル)お
よびジブチルスズオキシド0.0167g(0.067 ミリモル)
を入れ、窒素雰囲気下150℃で2時間、ついで190
℃で2時間反応させ生成したポリマーをすべて実施例1
と同じ方法で処理し標題のポリマー2.17g(収率 76.7
%)を得た(MDO部 49.3 %、L−ラクチド部 50.7
%)。Example 5: Synthesis of polyester by ring-opening polymerization of MDO and glycolide 2.60 g (20 mmol) of MDO in a 20 ml reaction vessel,
2.32 g (20 mmol) of glycolide (manufactured by DuPont) and 0.0167 g (0.067 mmol) of dibutyltin oxide
In a nitrogen atmosphere at 150 ° C. for 2 hours, then 190
All the polymers produced by the reaction at 0 ° C. for 2 hours were used in Example 1.
2.17 g of the title polymer (yield 76.7
%) (MDO part 49.3%, L-lactide part 50.7)
%).
【0026】 1H−NMR(400MHz,CDCl3 )δp
pm:MDO部 1.15〜1.32(3H,m)、2.33〜2.53(1H,m)、2.53
〜2.76(1H,m)、3.55〜3.77(2H,m)、3.86〜3.99(1H,m)、
4.10〜4.33(2H,m);グリコリド部 4.60〜4.90(2H,m); IR(cm-1):2970、1750、1425、1170、1095; Mw:34000 ; Mn:18400 ; Tg:−7℃; Tm:41℃; TG:280℃。 1 H-NMR (400 MHz, CDCl 3 ) δp
pm: MDO part 1.15 to 1.32 (3H, m), 2.33 to 2.53 (1H, m), 2.53
~ 2.76 (1H, m), 3.55 ~ 3.77 (2H, m), 3.86 ~ 3.99 (1H, m),
4.10 to 4.33 (2H, m); glycolide portion 4.60 to 4.90 (2H, m); IR (cm -1 ): 2970, 1750, 1425, 1170, 1095; Mw: 34000; Mn: 18400; Tg: -7 ° C Tm: 41 ° C; TG: 280 ° C.
【0027】生分解性試験 試験例1 高砂香料工業(株)平塚工場での使用汚泥の馴養種(好
気性汚泥)を、500ppm(600ml)、pH 6.0
〜7.0 、30℃の条件で用い、実施例3で得られたポリ
マーの1cm×2cm、厚さ0.05〜0.1 mmの薄膜(ポ
リマーを、クロロホルムに溶かし、シャーレに流し込
み、溶媒を蒸発させることによってフィルム化したも
の)について20〜30mgを50mlのフラスコに入
れ、タイテック(株)社製、振盪恒温水槽を用いて試験
を行なった。1週間経過毎にポリマーの重量を測定する
ことにより残存重量率を求めた。その結果を図1に示
す。この結果より実施例3のポリマーフィルムは4週間
後に約5%分解していることがわかった。Biodegradability Test Test Example 1 The acclimatized species (aerobic sludge) of sludge used at Takasago International Corporation's Hiratsuka Plant was 500 ppm (600 ml), pH 6.0.
A thin film of 1 cm × 2 cm of the polymer obtained in Example 3 and having a thickness of 0.05 to 0.1 mm (the polymer is dissolved in chloroform, poured into a petri dish, and the solvent is evaporated to evaporate the solvent). 20 to 30 mg was put in a 50 ml flask, and the test was conducted using a shaking constant temperature water bath manufactured by Titec Co., Ltd. The residual weight ratio was determined by measuring the weight of the polymer every one week. The result is shown in FIG. From this result, it was found that the polymer film of Example 3 was decomposed by about 5% after 4 weeks.
【0028】試験例2 実施例5で得られたポリマーにつき、試験例1と同様に
して生分解性試験を行なった。その結果を図1に示す。
この結果より実施例5のポリマーフィルムは4週間後に
5.9%分解していることがわかった。Test Example 2 The polymer obtained in Example 5 was subjected to a biodegradability test in the same manner as in Test Example 1. The result is shown in FIG.
From this result, it is confirmed that the polymer film of Example 5 was used after 4 weeks.
It was found to have decomposed by 5.9%.
【図1】試験例1および2におけるポリマー残存重量率
の経時変化を示すグラフである。FIG. 1 is a graph showing changes over time in the residual polymer weight ratio in Test Examples 1 and 2.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 隆 神奈川県平塚市西八幡1丁目5番1号 株 式会社高砂リサーチ,インステイテュート 平塚分室内 (72)発明者 坂口 民三 神奈川県平塚市西八幡1丁目5番1号 株 式会社高砂リサーチ,インステイテュート 平塚分室内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takashi Imai 1-5-1, Nishi-Hachiman, Hiratsuka City, Kanagawa Prefecture Takasago Research, Inc. Hiratsuka Branch Office (72) Inventor Minzo Sakaguchi Hiratsuka City, Kanagawa Prefecture Nishihachiman 1-5-1 Takasago Research Co., Ltd., Institute Hiratsuka Branch
Claims (5)
ル基を表わす。)で示される化合物より選ばれる少なく
とも1種のラクチド類と一般式(III) 【化2】 (式中、Rは炭素数1〜5のアルキル基を表わす。)で
示される光学活性7−置換−1,4−ジオキセパン−5
−オンとを開環共重合させて得られる一般式(I) 【化3】 (式中、RおよびR1 は前記と同じ意味を表わし、mお
よびnは自然数を表わす。)で示される光学活性ポリマ
ー。1. The following general formula (II): (In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and at least one lactide selected from compounds represented by the general formula (III): (In the formula, R represents an alkyl group having 1 to 5 carbon atoms.) Optically active 7-substituted-1,4-dioxepane-5
General formula (I) obtained by ring-opening copolymerization of -one with (In the formula, R and R 1 have the same meanings as described above, and m and n represent natural numbers.).
わすグリコリドと、一般式(III) で示される光学活性7
−置換−1,4−ジオキセパン−5−オンとを開環共重
合させて得られる請求項1に記載の光学活性ポリマー。2. A glycolide represented by the general formula (II) in which R 1 represents a hydrogen atom, and an optically active compound 7 represented by the general formula (III).
The optically active polymer according to claim 1, which is obtained by ring-opening copolymerization with -substituted-1,4-dioxepan-5-one.
わすラクチドと、一般式(III) で示される光学活性7−
置換−1,4−ジオキセパン−5−オンとを開環共重合
させて得られる請求項1に記載の光学活性ポリマー。3. A lactide represented by the general formula (II) in which R 1 represents a methyl group, and an optically active compound represented by the general formula (III):
The optically active polymer according to claim 1, which is obtained by ring-opening copolymerization with a substituted-1,4-dioxepan-5-one.
れる化合物より選ばれる少なくとも1種のラクチド類と
一般式(III) 【化5】 (式中、Rは請求項1と同じ意味を表わす。)で示され
る光学活性7−置換−1,4−ジオキセパン−5−オン
を、有機スズ化合物より選ばれる少なくとも1種の触媒
の存在下に開環共重合させることを特徴とする一般式
(I) 【化6】 (式中、RおよびR1 は前記と同じ意味を表わし、mお
よびnは請求項1と同じ意味を表わす。)で示される光
学活性ポリマーの製造方法。4. The following general formula (II): (Wherein R 1 has the same meaning as in claim 1) and at least one lactide selected from the compounds represented by the general formula (III): (Wherein R has the same meaning as in claim 1), and the optically active 7-substituted-1,4-dioxepan-5-one is present in the presence of at least one catalyst selected from organotin compounds. General formula characterized by ring-opening copolymerization
(I) [Chemical 6] (Wherein R and R 1 have the same meanings as described above, and m and n have the same meanings as in claim 1.).
ド、塩化第一スズ、トリブチルスズメトキシド、オクチ
ル酸スズ、ラウリル酸スズおよびテトラフェニルスズの
1種以上から選択されるものである請求項4に記載の光
学活性ポリマーの製造方法。5. The optical according to claim 4, wherein the organotin compound is selected from one or more of dibutyltin oxide, stannous chloride, tributyltin methoxide, tin octylate, tin laurate and tetraphenyltin. Process for producing active polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35070891A JP2826921B2 (en) | 1991-12-12 | 1991-12-12 | Biodegradable optically active polymer and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35070891A JP2826921B2 (en) | 1991-12-12 | 1991-12-12 | Biodegradable optically active polymer and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05163332A true JPH05163332A (en) | 1993-06-29 |
JP2826921B2 JP2826921B2 (en) | 1998-11-18 |
Family
ID=18412314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35070891A Expired - Fee Related JP2826921B2 (en) | 1991-12-12 | 1991-12-12 | Biodegradable optically active polymer and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2826921B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0795573A3 (en) * | 1996-03-15 | 1998-12-30 | Ethicon, Inc. | Absorbable copolymers and blends of 6,6-dialkyl-1,4-dioxepan-2-one and its cyclic dimer |
-
1991
- 1991-12-12 JP JP35070891A patent/JP2826921B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0795573A3 (en) * | 1996-03-15 | 1998-12-30 | Ethicon, Inc. | Absorbable copolymers and blends of 6,6-dialkyl-1,4-dioxepan-2-one and its cyclic dimer |
Also Published As
Publication number | Publication date |
---|---|
JP2826921B2 (en) | 1998-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3241505B2 (en) | Biodegradable optically active copolymer and method for producing the same | |
JP3673711B2 (en) | Polyhydroxyalkanoate and its production method using microorganism | |
JP3263710B2 (en) | Biodegradable optically active polymer and method for producing the same | |
JP2884123B2 (en) | Biodegradable optically active polymer, intermediate oligomer thereof, and production method thereof | |
CN106947067B (en) | Preparation method of polyester | |
JPH057492A (en) | Production of copolymer | |
EP0601885B1 (en) | Biodegradable optically active polymer of lactones and process for production thereof | |
US5840811A (en) | Optically active block polyester copolymer and method for production thereof | |
JP2826921B2 (en) | Biodegradable optically active polymer and method for producing the same | |
CN109749065A (en) | A kind of macrolide copolymer high-efficiency preparation method of binary catalyst catalysis | |
JP3047199B2 (en) | Biodegradable optically active polymer having (R) -3-hydroxyalkanoic acid unit, intermediate oligomer thereof, and method for producing them | |
US7642075B2 (en) | Process of preparing a biodegradable polymer using an enzyme catalyst and a biodegradable polymer prepared through the process | |
JP3665819B2 (en) | Method for producing polyester using rare earth metal compound catalyst | |
CN110078634B (en) | Preparation method and application of stannous amino acid complex | |
JP2794353B2 (en) | Biodegradable optically active polymer and method for producing the same | |
JPH06256482A (en) | Production of poly (3-hydroxybutyric acid) | |
JP2717889B2 (en) | Optically active ether lactones, optically active polymer thereof and method for producing the polymer | |
JP3142658B2 (en) | Biodegradable optically active polyester and method for producing the same | |
CN114797971B (en) | Organic base catalyst and method for catalyzing polycaprolactone alcoholysis by using same | |
CN113185678B (en) | Preparation method of aliphatic polycarbonate polyester copolymer with zero catalyst addition | |
JP4147225B2 (en) | Polyhydroxyalkanoate and its production method using microorganism | |
JP3345631B2 (en) | Method for producing biodegradable resin | |
Hori et al. | Ring-Opening Copolymerization of Optically Active β-Butyrolactone with Several Lactones: Synthesis of New Biodegradable Polyesters | |
JP3217142B2 (en) | Biodegradable optically active polymer, intermediate prepolymer thereof, and methods for producing them | |
CN118440307A (en) | Side chain sulfur atom-containing recyclable polyester, and preparation method, recycling method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |