Nothing Special   »   [go: up one dir, main page]

JPH05167100A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH05167100A
JPH05167100A JP33059191A JP33059191A JPH05167100A JP H05167100 A JPH05167100 A JP H05167100A JP 33059191 A JP33059191 A JP 33059191A JP 33059191 A JP33059191 A JP 33059191A JP H05167100 A JPH05167100 A JP H05167100A
Authority
JP
Japan
Prior art keywords
semiconductor
protective layer
layer
light emitting
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33059191A
Other languages
Japanese (ja)
Other versions
JP3140121B2 (en
Inventor
Katsunobu Kitada
勝信 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33059191A priority Critical patent/JP3140121B2/en
Publication of JPH05167100A publication Critical patent/JPH05167100A/en
Application granted granted Critical
Publication of JP3140121B2 publication Critical patent/JP3140121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To prevent cracks from being generated in semiconductor layers 2-6 and prevent the life time of a light emitting element from decreasing. CONSTITUTION:A semiconductor light emitting element wherein on a semiconductor substrate 1, at least two layers of semiconductor layers 2-6 having different conductive types from each other are provided in the form of an island, and a protective layer 7 is deposited on the surface extending from the ones of the semiconductor layers 2-6 to the one of the semiconductor substrate 1, and further, a hole 7a, which is bored in the protective layer 7 deposited on the semiconductor layers 2-6, is used as the part for connecting the layers 2-6 with an electrode 8. The protective layer 7 is formed out of a silicon nitride film containing hydrogen element, and the hydrogen content is made to change in the protective layer 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子に関し、
特に半導体基板上に導電型の異なる少なくとも二層の半
導体層を島状に形成した半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device,
In particular, the present invention relates to a semiconductor light emitting device in which at least two semiconductor layers having different conductivity types are formed in an island shape on a semiconductor substrate.

【0002】[0002]

【従来の技術】従来の半導体発光素子を図1に基づいて
説明する。図1は、従来の半導体発光素子を示す断面図
であり、1は例えばシリコンなどから成る半導体基板、
2はガリウム砒素などから成るバッファ層、3は半導体
基板1と同じ導電型を呈するアルミニウムガリウム砒素
などから成る第一の半導体層、4は第一の半導体層3と
は逆導電型を呈するアルミニウムガリウム砒素などから
成る第二の半導体層、5はバンドギャップを大きくする
ために半導体の混晶比を変えたアルミニウムガリウム砒
素などから成る第三の半導体層、6は上部電極8とオー
ミックコンタクトをとるために逆導電型不純物を多量に
含むガリウム砒素などから成るオーミックコンタクト
層、7は例えば窒化シリコン(SiNx )などから成る
保護層である。オーミックコンタクト層6上の保護層7
には、孔7aが形成されており、この孔7aを介してオ
ーミックコンタクト層6と上部電極8が接続されてい
る。また、半導体基板1の裏面側には、半導体基板1と
オーミックコンタクトをとるための下部電極9が設けら
れている。なお、上記半導体基板1および半導体層2〜
6、全て単結晶のものである。
2. Description of the Related Art A conventional semiconductor light emitting device will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a conventional semiconductor light emitting device, wherein 1 is a semiconductor substrate made of, for example, silicon,
2 is a buffer layer made of gallium arsenide or the like, 3 is a first semiconductor layer made of aluminum gallium arsenide having the same conductivity type as that of the semiconductor substrate 1, 4 is aluminum gallium having an opposite conductivity type to the first semiconductor layer 3. A second semiconductor layer made of arsenic or the like, 5 is a third semiconductor layer made of aluminum gallium arsenide or the like in which the mixed crystal ratio of the semiconductor is changed to increase the band gap, and 6 is to make ohmic contact with the upper electrode 8. In addition, an ohmic contact layer made of gallium arsenide or the like containing a large amount of impurities of the opposite conductivity type, and 7 is a protective layer made of, for example, silicon nitride (SiNx). Protective layer 7 on ohmic contact layer 6
A hole 7a is formed in the hole, and the ohmic contact layer 6 and the upper electrode 8 are connected via the hole 7a. A lower electrode 9 for making ohmic contact with the semiconductor substrate 1 is provided on the back surface side of the semiconductor substrate 1. The semiconductor substrate 1 and the semiconductor layers 2 to
6, all single crystal.

【0003】このように構成された半導体発光素子の動
作を説明すると、上部電極8を負、下部電極9を正とし
て順バイアス方向に電圧を印加すると、逆導電型を呈す
る第二の半導体層4へ、第一の半導体層3から少数キャ
リアが注入され、第二の半導体層4と第一の半導体層3
の界面である半導体接合部の第二の半導体層4側界面に
て、キャリアが再結合して発光する。発光した光は、第
三の半導体層5、オーミックコンタクト層6、および保
護層7を通り、外部へ取り出される。
The operation of the semiconductor light emitting device having such a structure will be described. When a voltage is applied in the forward bias direction with the upper electrode 8 being negative and the lower electrode 9 being positive, a second semiconductor layer 4 having a reverse conductivity type is provided. Minority carriers are injected from the first semiconductor layer 3 into the second semiconductor layer 4 and the first semiconductor layer 3
Carriers are recombined and emit light at the interface of the semiconductor junction portion on the second semiconductor layer 4 side, which is the interface. The emitted light passes through the third semiconductor layer 5, the ohmic contact layer 6, and the protective layer 7, and is extracted to the outside.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の半導体
発光素子では、シリコン基板1上に、MOCVD法など
で所定の温度を加えながら複数の半導体層2〜6を堆積
させるが、シリコン基板1上にガリウム砒素層を形成す
ると、109 dyne/cm2 程度の引っ張り応力が発
生する。すなわち、シリコン基板1上に、厚み2μm
(2×10-4cm)のガリウム砒素層2〜6を堆積する
と、このシリコン基板1とガリウム砒素層2〜6には、
109 dyne/cm2 ×(2×10-4cm)=2×1
5 dyne/cmの絶対応力(全応力)が存在し、膜
厚の薄いガリウム砒素層2〜6にクラックが発生した
り、内部応力に起因して半導体発光素子の寿命が短くな
るという問題を誘発する。
In the conventional semiconductor light emitting device described above, a plurality of semiconductor layers 2 to 6 are deposited on the silicon substrate 1 by applying a predetermined temperature by the MOCVD method or the like. When a gallium arsenide layer is formed on the substrate, a tensile stress of about 10 9 dyne / cm 2 is generated. That is, a thickness of 2 μm on the silicon substrate 1.
When (2 × 10 −4 cm) gallium arsenide layers 2 to 6 are deposited, the silicon substrate 1 and the gallium arsenide layers 2 to 6 are
10 9 dyne / cm 2 × (2 × 10 -4 cm) = 2 × 1
There is a problem that an absolute stress (total stress) of 0 5 dyne / cm exists, cracks are generated in the thin gallium arsenide layers 2 to 6 and the life of the semiconductor light emitting device is shortened due to internal stress. Induce.

【0005】そこで、ガリウム砒素層2〜6上に、プラ
ズマCVD法などで形成される窒化シリコン膜などから
成る保護層7を被着させると、窒化シリコン膜7自体は
圧縮応力を有することから、この圧縮応力と、上述のシ
リコン基板1およびガリウム砒素層2〜6の引っ張り応
力とを相殺させて、クッラクの発生や素子の短命化を低
減しようとするものであるが、従来は、保護層7を形成
する際に、最初から最後まで同じ条件で窒化シリコン膜
7を形成することから、保護層7として、圧縮応力の小
さい窒化シリコン膜を用いた場合は上述のような効果が
期待できず、また圧縮応力の大きい窒化シリコン膜を用
いた場合は、保護層7からガリウム砒素層2〜6に過剰
な圧縮応力が印加されてクラックを発生させるなど、保
護層7の選定と形成が非常に困難であるという問題があ
った。
Therefore, when a protective layer 7 made of a silicon nitride film or the like formed by plasma CVD or the like is deposited on the gallium arsenide layers 2 to 6, the silicon nitride film 7 itself has a compressive stress. This compressive stress and the tensile stress of the above-described silicon substrate 1 and gallium arsenide layers 2 to 6 are offset to reduce the occurrence of cracking and the shortening of the device life. Since the silicon nitride film 7 is formed under the same conditions from the beginning to the end when forming, the above effect cannot be expected when a silicon nitride film having a small compressive stress is used as the protective layer 7. Further, when a silicon nitride film having a large compressive stress is used, excessive compressive stress is applied from the protective layer 7 to the gallium arsenide layers 2 to 6 to cause cracks. There is a problem that is very difficult.

【0006】[0006]

【課題を解決するための手段】本発明に係る半導体発光
素子は、このような従来技術の問題点を解決するために
なされたものであり、その特徴とするところは、半導体
基板上に導電型の異なる少なくとも二層の半導体層を島
状に設け、この半導体層上から半導体基板上にかけて保
護層を被着するとともに、この半導体層上の前記保護層
に孔を設け、この孔を電極との接続部とした半導体発光
素子において、前記保護層を、水素元素を含有する窒化
シリコン膜で形成するとともに、この水素元素の含有量
を保護層内において変化させた点にあり、さらに前記水
素元素の含有量を保護層の層上側に向かうにつれて徐々
に少なくすると好適である。
The semiconductor light emitting device according to the present invention has been made in order to solve the above-mentioned problems of the prior art, and is characterized in that it has a conductive type on a semiconductor substrate. Of at least two different semiconductor layers are provided in an island shape, a protective layer is deposited from the semiconductor layer to the semiconductor substrate, and a hole is formed in the protective layer on the semiconductor layer. In the semiconductor light emitting element used as the connecting portion, the protective layer is formed of a silicon nitride film containing a hydrogen element, and the content of the hydrogen element is changed in the protective layer. It is preferable that the content is gradually reduced toward the upper side of the protective layer.

【0007】[0007]

【作用】上記のように構成すると、保護層を構成する窒
化シリコン膜は、層内の領域ごとに圧縮応力が変化し、
もって半導体基板上に形成された少なくとも二層の半導
体層に、急激な圧縮応力を加えることなく充分な圧縮応
力を加えることができ、もって半導体層にクラックが発
生したり、発光素子が短命化することが防止される。
With the above-mentioned structure, the silicon nitride film forming the protective layer has a compressive stress which varies in each region within the layer.
Therefore, sufficient compressive stress can be applied to at least two semiconductor layers formed on the semiconductor substrate without applying sudden compressive stress, and thus cracks occur in the semiconductor layer or the life of the light emitting element is shortened. Is prevented.

【0008】[0008]

【実施例】以下、本発明の実施例を詳細に説明する。本
発明に係る半導体発光素子の構造自体は、図1に示す従
来の半導体発光素子と同一であるので、図1を参照しな
がら製造方法を中心に説明する。
EXAMPLES Examples of the present invention will be described in detail below. Since the structure itself of the semiconductor light emitting device according to the present invention is the same as the conventional semiconductor light emitting device shown in FIG. 1, the manufacturing method will be mainly described with reference to FIG.

【0009】本発明に係る半導体発光素子では、半導体
基板1として、例えば(100)面から(001)面に
2°オフして切り出した単結晶シリコン基板などが用い
られ、アンチモン(Sb)などから成るドナーを1019
個/cm3 程度含有させた半導体基板が用いられる。
In the semiconductor light emitting device according to the present invention, as the semiconductor substrate 1, for example, a single crystal silicon substrate cut off by 2 ° off from the (100) plane to the (001) plane is used, and from antimony (Sb) or the like. 10 19
A semiconductor substrate containing about pcs / cm 3 is used.

【0010】半導体基板1上に、一導電型、例えばn型
不純物を含有するバッファ層2を形成する。このバッフ
ァ層2は、例えばGaAsなどのIII-V族化合物半導膜
などから成る。このバッファ層2は、シリコン(Si)
などから成るドナーを1018個/cm3 程度含有し、二
段階成長法や熱サイクル法を適宜採用したMOCVD法
で厚み1〜1.5μm程度に形成される。すなわち、M
OCVD装置内を900〜1000℃で一旦加熱した後
に、400〜450℃に下げてTMGaガス、AsH3
ガス、および半導体用不純物元素源となるSiH4 ガス
を用いたMOCVD法によりGaAs膜を成長させると
ともに、600〜650℃に上げてGaAs膜を成長
(二段階成長法)させ、次に300〜900℃で温度を
上下させ(熱サイクル法)、熱膨張係数の相違に起因す
る内部応力を発生させ、シリコン基板1とGaAs層2
の格子定数の相違に起因するミスフィット転移を低減さ
せるように形成する。
On the semiconductor substrate 1, a buffer layer 2 containing one conductivity type, for example, n-type impurities is formed. The buffer layer 2 is made of, for example, a III-V group compound semiconductor film such as GaAs. This buffer layer 2 is made of silicon (Si)
About 10 18 donors / cm 3 are formed and are formed to a thickness of about 1 to 1.5 μm by the MOCVD method that appropriately adopts the two-step growth method or the thermal cycle method. That is, M
After heating the inside of the OCVD device once at 900 to 1000 ° C., the temperature is lowered to 400 to 450 ° C. and TMGa gas, AsH 3
Gas and a GaAs film is grown by the MOCVD method using SiH 4 gas which is an impurity element source for semiconductors, and the temperature is raised to 600 to 650 ° C. to grow the GaAs film (two-step growth method), and then 300 to 900. The temperature is raised and lowered at ℃ (thermal cycle method) to generate internal stress due to the difference in thermal expansion coefficient, and the silicon substrate 1 and the GaAs layer 2
Are formed so as to reduce the misfit transition due to the difference in the lattice constants of.

【0011】バッファ層2上に、一導電型不純物を含有
する第一の半導体層3を形成する。この第一の半導体層
3は、例えばAlX Ga1-X Asなどから成り、シリコ
ンなどから成るドナーを1017個/cm3 程度含有して
いる。このAlX Ga1-X Asなどから成る第一の半導
体層3は、TMAlガス、TMGaガス、AsH3
ス、および半導体用不純物元素となるSiH4 ガスを用
いたMOCVD法により形成され、Alの混晶比Xは、
例えば0.3または0.65などに設定される。
A first semiconductor layer 3 containing an impurity of one conductivity type is formed on the buffer layer 2. The first semiconductor layer 3 is made of, for example, Al x Ga 1 -x As, and contains about 10 17 donors / cm 3 of silicon or the like. The first semiconductor layer 3 made of Al X Ga 1-X As or the like is formed by the MOCVD method using TMAl gas, TMGa gas, AsH 3 gas, and SiH 4 gas as an impurity element for semiconductor, and The mixed crystal ratio X is
For example, it is set to 0.3 or 0.65.

【0012】第一の半導体層3上に、第二の半導体層4
を形成する。この第二の半導体層4は、例えばAly
1-y Asなどから成り、逆導電型、例えばp型半導体
用不純物となる亜鉛(Zn)などのアクセプタを1017
個/cm3 程度含有させる。このAly Ga1-y Asな
どから成る第二の半導体層4は、TMAlガス、TMG
aガス、AsH3 ガス、および半導体用不純物元素源と
なるDMZnガスを用いたMOCVD法により形成さ
れ、700nm程度の波長を有する光を発光するために
Alの混晶比yは、例えば0.3などに設定される。前
述の第一の半導体層3とこの第二の半導体層4とで半導
体接合部が形成され、発光部が形成される。
A second semiconductor layer 4 is formed on the first semiconductor layer 3.
To form. The second semiconductor layer 4 is made of, for example, Al y G.
a 1-y As made such, opposite conductivity type, for example, zinc as a p-type semiconductor impurity (Zn) acceptor 10 17, such as
Includes about 1 piece / cm 3 . The second semiconductor layer 4 made of Al y Ga 1-y As or the like is TMAl gas, TMG.
The mixed crystal ratio y of Al is, for example, 0.3 in order to emit light having a wavelength of about 700 nm, which is formed by the MOCVD method using a gas, AsH 3 gas, and DMZn gas serving as an impurity element source for semiconductors. Is set to. The first semiconductor layer 3 and the second semiconductor layer 4 described above form a semiconductor junction portion and a light emitting portion.

【0013】第二の半導体層4上に、第三の半導体層5
を形成する。この第三の半導体層5は、例えばAlz
1-z Asなどから成り、厚みは1μm程度に形成され
る。このAlz Ga1-z Asなどから成る第三の半導体
層5も、TMAlガス、TMGaガス、AsH3 ガス、
および逆導電型、例えばp型を呈する半導体用不純物元
素源となるDMZnガスを用いたMOCVD法により形
成される。この第三の半導体層5のAlz Ga1-z As
のAlの混晶比zは、バンドギャップを大きくするため
に、例えばz=0.65などに設定して形成される。
A third semiconductor layer 5 is formed on the second semiconductor layer 4.
To form. This third semiconductor layer 5 is made of, for example, Al z G
It is made of a 1-z As or the like and has a thickness of about 1 μm. The third semiconductor layer 5 made of Al z Ga 1-z As or the like is also used for the TMAl gas, TMGa gas, AsH 3 gas,
And an MOCVD method using DMZn gas which is an impurity element source for semiconductors having an opposite conductivity type, for example, p-type. Al z Ga 1-z As of the third semiconductor layer 5
The mixed crystal ratio z of Al is set to, for example, z = 0.65 in order to increase the band gap.

【0014】第三の半導体層5上に、逆導電型不純物を
多量に含有するオーミックコンタクト層6を形成する。
このオーミックコンタクト層6は、例えばGaAsなど
のIII-V族化合物半導体で構成され、上部電極7とオー
ミックコンタクトをとるために、亜鉛(Zn)などから
成る逆導電型不純物を高濃度に含有させる。
An ohmic contact layer 6 containing a large amount of impurities of opposite conductivity type is formed on the third semiconductor layer 5.
The ohmic contact layer 6 is made of, for example, a III-V group compound semiconductor such as GaAs, and has a high concentration of a reverse conductivity type impurity such as zinc (Zn) in order to make an ohmic contact with the upper electrode 7.

【0015】半導体基板1上のバッファ層2、第一ない
し第三の半導体層3、4、5、およびオーミックコンタ
クト層6は、発光素子の輪郭形状を形成するようにエッ
チングなどによって島状に形成する。
The buffer layer 2, the first to third semiconductor layers 3, 4, 5 and the ohmic contact layer 6 on the semiconductor substrate 1 are formed in an island shape by etching or the like so as to form the contour shape of the light emitting element. To do.

【0016】半導体基板1および島状に形成した複数の
半導体層2〜6上に、保護層7を形成する。この保護層
7は、例えば水素元素の含有量が層上側に向かうにつれ
て徐々に少なくなる窒化シリコン膜(SiNX )で形成
される。水素元素を含有する窒化シリコン膜は、例えば
シランガス(SiH4 )、アンモニアガス(NH3 )、
および水素ガス(H2 )を用いたプラズマCVD法で形
成される。この場合、例えばシランガスの流量を14s
ccm、アンモニアガスの流量を123sccm、水素
ガスの流量を73〜173sccmなどに設定して、3
00Wの高周波電源を用いて、150〜200Å/分程
度の速度で形成される。窒化シリコン膜7中の水素元素
の含有量は、水素ガスの流量を徐々に変えることによ
り、変えることができる。本発明に係る半導体発光素子
では、半導体基板1上に複数の半導体層2〜6を島状に
形成することから、この保護層7は比較的薄いもので済
み、5000Å程度の厚みに形成すれば、半導体基板1
と半導体層2〜6の引っ張り応力を相殺できる。
A protective layer 7 is formed on the semiconductor substrate 1 and the plurality of island-shaped semiconductor layers 2 to 6. The protective layer 7 is formed of, for example, a silicon nitride film (SiN x ) in which the content of hydrogen element gradually decreases toward the upper side of the layer. The silicon nitride film containing the hydrogen element is formed of, for example, silane gas (SiH 4 ), ammonia gas (NH 3 ),
And a plasma CVD method using hydrogen gas (H 2 ). In this case, for example, the flow rate of silane gas is set to 14 s
ccm, the flow rate of ammonia gas is set to 123 sccm, the flow rate of hydrogen gas is set to 73 to 173 sccm, and the like.
It is formed at a speed of about 150 to 200Å / min using a high frequency power source of 00W. The content of hydrogen element in the silicon nitride film 7 can be changed by gradually changing the flow rate of hydrogen gas. In the semiconductor light emitting device according to the present invention, since the plurality of semiconductor layers 2 to 6 are formed on the semiconductor substrate 1 in an island shape, the protective layer 7 may be relatively thin and can be formed to a thickness of about 5000Å. , Semiconductor substrate 1
And the tensile stress of the semiconductor layers 2 to 6 can be offset.

【0017】図2に、窒化シリコン膜7を形成する際の
水素ガスの流量と窒化シリコン膜の内部応力の関係を示
す。なお、図2に示す窒化シリコン膜は、シランガスの
流量を14sccm、アンモニアガスの流量を123s
ccmに設定して、300Wの高周波電源を用いて、1
70Å/分の速度で形成したものである。図2で明らか
なように、水素の流量が73sccmのときは、窒化シ
リコン膜は−1×109 dyne/cm2 の内部応力を
有し、水素の流量が123sccmのときは、窒化シリ
コン膜は−3×108 dyne/cm2 の内部応力を有
し、水素の流量が173sccmのときは、窒化シリコ
ン膜は−1×107 dyne/cm2 の内部応力を有す
る。すなわち、水素の流量が少なくなるにつれて、圧縮
応力は大きくなる。したがって、水素の流量を徐々に少
なくして窒化シリコン膜7を形成すると、ガリウム砒素
膜2〜6に急激な衝撃を与えることなく、しかもガリウ
ム砒素膜2〜6の引っ張り応力を完全に相殺するように
窒化シリコン膜7を形成することができる。なお、水素
ガスの流量を徐々に減少させれば、窒化シリコン膜中の
水素元素の含有量も徐々に少なくなる。
FIG. 2 shows the relationship between the flow rate of hydrogen gas and the internal stress of the silicon nitride film when forming the silicon nitride film 7. The silicon nitride film shown in FIG. 2 has a silane gas flow rate of 14 sccm and an ammonia gas flow rate of 123 s.
Set to ccm and use high frequency power of 300W, 1
It was formed at a speed of 70Å / min. As is clear from FIG. 2, when the flow rate of hydrogen is 73 sccm, the silicon nitride film has an internal stress of -1 × 10 9 dyne / cm 2 , and when the flow rate of hydrogen is 123 sccm, the silicon nitride film is When the hydrogen has a flow rate of 173 sccm, the silicon nitride film has an internal stress of -3 × 10 8 dyne / cm 2 and an internal stress of -1 × 10 7 dyne / cm 2 . That is, the compressive stress increases as the flow rate of hydrogen decreases. Therefore, when the silicon nitride film 7 is formed by gradually reducing the flow rate of hydrogen, the tensile stress of the gallium arsenide films 2 to 6 can be completely canceled without giving a sharp impact to the gallium arsenide films 2 to 6. Then, the silicon nitride film 7 can be formed. Note that if the flow rate of hydrogen gas is gradually reduced, the content of hydrogen element in the silicon nitride film is also gradually reduced.

【0018】また、上記したように、窒化シリコン膜7
中の水素元素の含有量を層上側に向かうにつれて徐々に
少なくする場合に限らず、層上側に向かうにつれて段階
的に少なくなるようにしてもよく、また水素元素の含有
量が多い領域と少ない領域を交互に設けるようにしても
よい。
Further, as described above, the silicon nitride film 7
It is not limited to the case where the content of the hydrogen element in the layer gradually decreases toward the upper side of the layer, but it may be gradually decreased toward the upper side of the layer. May be provided alternately.

【0019】図1に示すように、オーミックコンタクト
層6上の保護層7に孔7aを形成して、この孔7a部分
に、上部電極8を形成する。また、半導体基板1の裏面
側に、下部電極9を形成する。この上部電極8と下部電
極9とは、Ag、Ag/Zn、或いはAu/Crなどか
ら成り、蒸着法などで厚み5000Å程度に形成され
る。なお、本発明では、バッファ層2、第一の半導体層
3、第二半導体層4、第三の半導体層5、およびオーミ
ックコンタクト層6から成る複数の半導体層を設けた
が、この例に限定されるものではなく、半導体接合部を
形成できる少なくとも二層の半導体層があればよい。ま
た、半導体基板1上の保護層7に孔を設けて、半導体基
板1の表面側に下部電極9を形成してもよい。
As shown in FIG. 1, a hole 7a is formed in the protective layer 7 on the ohmic contact layer 6, and an upper electrode 8 is formed in the hole 7a. Further, the lower electrode 9 is formed on the back surface side of the semiconductor substrate 1. The upper electrode 8 and the lower electrode 9 are made of Ag, Ag / Zn, Au / Cr, or the like, and are formed to a thickness of about 5000Å by a vapor deposition method or the like. In the present invention, a plurality of semiconductor layers including the buffer layer 2, the first semiconductor layer 3, the second semiconductor layer 4, the third semiconductor layer 5, and the ohmic contact layer 6 are provided, but the present invention is not limited to this example. However, it is sufficient that there are at least two semiconductor layers capable of forming a semiconductor junction. Further, a hole may be provided in the protective layer 7 on the semiconductor substrate 1 and the lower electrode 9 may be formed on the front surface side of the semiconductor substrate 1.

【0020】[0020]

【発明の効果】以上のように、本発明に係る半導体発光
素子によれば、半導体基板上に導電型の異なる少なくと
も二層の半導体層を島状に設けて、この半導体層上から
半導体基板上にかけて保護層を被着するとともに、この
半導体層上の前記保護層に孔を設け、この孔を電極との
接続部とした半導体発光素子において、前記保護層を、
水素元素を含有する窒化シリコン膜で形成するととも
に、この水素元素の含有量を保護層内において変化させ
たことから、保護層を構成する窒化シリコン膜は、層内
の領域ごとに圧縮応力が変化し、もって半導体基板上に
形成された少なくとも二層の半導体層に、急激な圧縮応
力が加わることがなく、もって半導体層にクラックが発
生したり、発光素子が短命化することが防止される。
As described above, according to the semiconductor light emitting device of the present invention, at least two semiconductor layers having different conductivity types are provided in an island shape on a semiconductor substrate, and the semiconductor layer is formed on the semiconductor substrate. While depositing a protective layer over the, to provide a hole in the protective layer on the semiconductor layer, in the semiconductor light-emitting device using the hole as a connection portion with an electrode, the protective layer,
Since the silicon nitride film containing a hydrogen element was formed and the content of this hydrogen element was changed in the protective layer, the compressive stress of the silicon nitride film forming the protective layer changes in each region of the layer. Therefore, sudden compressive stress is not applied to at least two semiconductor layers formed on the semiconductor substrate, and thus cracks in the semiconductor layer and shortening of the life of the light emitting element are prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体発光素子の断面を示す図である。FIG. 1 is a diagram showing a cross section of a semiconductor light emitting device.

【図2】窒化シリコン膜を形成する際の水素ガスの流量
と内部応力との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a flow rate of hydrogen gas and internal stress when forming a silicon nitride film.

【符号の説明】[Explanation of symbols]

1・・・半導体基板、2〜6半導体層、7・・・保護
層、8、9・・・電極。
1 ... Semiconductor substrate, 2-6 semiconductor layers, 7 ... Protective layer, 8, 9 ... Electrodes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に導電型の異なる少なくと
も二層の半導体層を島状に設け、この半導体層上から半
導体基板上にかけて保護層を被着するとともに、この半
導体層上の前記保護層に孔を設け、この孔を電極との接
続部とした半導体発光素子において、前記保護層を、水
素元素を含有する窒化シリコン膜で形成するとともに、
この水素元素の含有量を保護層内において変化させたこ
とを特徴とする半導体発光素子。
1. At least two semiconductor layers having different conductivity types are provided in an island shape on a semiconductor substrate, a protective layer is deposited from the semiconductor layer to the semiconductor substrate, and the protective layer is provided on the semiconductor layer. In the semiconductor light emitting element having a hole provided in, and using the hole as a connection portion with an electrode, the protective layer is formed of a silicon nitride film containing a hydrogen element,
A semiconductor light-emitting device characterized in that the content of the hydrogen element is changed in the protective layer.
【請求項2】 前記水素元素の含有量を保護層の層上側
に向かうにつれて徐々に少なくしたことを特徴とする請
求項1に記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the content of the hydrogen element is gradually reduced toward the upper side of the protective layer.
JP33059191A 1991-12-13 1991-12-13 Semiconductor light emitting device Expired - Lifetime JP3140121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33059191A JP3140121B2 (en) 1991-12-13 1991-12-13 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33059191A JP3140121B2 (en) 1991-12-13 1991-12-13 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH05167100A true JPH05167100A (en) 1993-07-02
JP3140121B2 JP3140121B2 (en) 2001-03-05

Family

ID=18234369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33059191A Expired - Lifetime JP3140121B2 (en) 1991-12-13 1991-12-13 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3140121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564308A (en) * 2016-08-05 2019-04-02 日本电气硝子株式会社 Wavelength conversion member and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564308A (en) * 2016-08-05 2019-04-02 日本电气硝子株式会社 Wavelength conversion member and its manufacturing method

Also Published As

Publication number Publication date
JP3140121B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
KR100448662B1 (en) Nitride semiconductor device and method for manufacturing the same
US4928154A (en) Epitaxial gallium arsenide semiconductor on silicon substrate with gallium phosphide and superlattice intermediate layers
JP2666237B2 (en) Group III nitride semiconductor light emitting device
US6221684B1 (en) GaN based optoelectronic device and method for manufacturing the same
US8664687B2 (en) Nitride semiconductor light-emitting device and process for producing the same
TWI469187B (en) Iii-v compound semiconductor epitaxy using lateral overgrowth
KR100295165B1 (en) Nitride group III-V compound semiconductor device and its manufacturing method
JP2626431B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH1093137A (en) Iii-v nitride semiconductor element
US10593831B2 (en) Nitride semiconductor multilayer film reflector and light-emitting device using the same
JPH1051030A (en) Group iii nitride semiconductor light-emitting element
JPH1032347A (en) Semiconductor light emitting element of compound of nitrogen and group iii element
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JP3571401B2 (en) Manufacturing method of semiconductor light emitting device
JP3705637B2 (en) Group 3 nitride semiconductor light emitting device and method of manufacturing the same
JP3140121B2 (en) Semiconductor light emitting device
JP3140123B2 (en) Semiconductor light emitting device
JPH05243613A (en) Light-emitting device and its manufacture
JP3236649B2 (en) Semiconductor light emitting device
JPH05235406A (en) Semiconductor light-emitting device
JP3564811B2 (en) Group III nitride semiconductor light emitting device
JP2003133584A (en) Semiconductor light emitting element
JP2948967B2 (en) Semiconductor light emitting device
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2001284650A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

EXPY Cancellation because of completion of term