JPH0515747A - Conjugate hollow fiber and production thereof - Google Patents
Conjugate hollow fiber and production thereofInfo
- Publication number
- JPH0515747A JPH0515747A JP26755391A JP26755391A JPH0515747A JP H0515747 A JPH0515747 A JP H0515747A JP 26755391 A JP26755391 A JP 26755391A JP 26755391 A JP26755391 A JP 26755391A JP H0515747 A JPH0515747 A JP H0515747A
- Authority
- JP
- Japan
- Prior art keywords
- polyolefin
- hollow fiber
- layer
- micropores
- composite hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Multicomponent Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ポリオレフィンよりな
る複合中空糸とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite hollow fiber made of polyolefin and a method for producing the same.
【0002】[0002]
【従来の技術】代表的な熱可塑性樹脂であるポリオレフ
ィンを溶融紡糸した後、延伸して多孔質中空糸が得られ
ることは既に公知である。2. Description of the Related Art It is already known that a polyolefin, which is a typical thermoplastic resin, is melt-spun and then stretched to obtain a porous hollow fiber.
【0003】例えば、USP4,055,696号明細
書には、ポリプロピレンにより200〜2000Åの範
囲に分布した微細孔を有する多孔質中空糸が開示されて
いる。これによれば膜厚17.5〜22.5μでガス透
過率は1.4 〜6.7 ×10-6(cc・cm/cm2 ・sec・
cmHg)であることが記載されている。For example, US Pat. No. 4,055,696 discloses a porous hollow fiber having fine pores distributed by polypropylene in the range of 200 to 2000 liters. According to this, the gas permeability is 1.4 to 6.7 × 10 −6 (cc · cm / cm 2 · sec ·
cmHg).
【0004】また、USP4,401,567号明細書
には、ポリエチレン製の多孔質中空糸が開示されてい
る。これによれば膜壁の厚さ50〜60μでN2 ガス透
過率は4.9〜7.2×105 (l/・m2・hr・7
60mmHg)、水の透過率は1900〜3200(m
l/m2 ・hr・mmHg)、アルブミンの透過率が1
00%であることが記載されている。US Pat. No. 4,401,567 discloses a polyethylene porous hollow fiber. According to this, when the thickness of the membrane wall is 50 to 60 μm, the N 2 gas permeability is 4.9 to 7.2 × 10 5 (l / · m 2 · hr · 7).
60 mmHg), the water transmittance is 1900 to 3200 (m
1 / m 2 · hr · mmHg), albumin permeability is 1
It is described to be 00%.
【0005】更に、USP3,423,491号明細書
では75%以上の塩排除率を示す浸透性微細孔をもった
ポリエチレン中空糸膜が、またUSP4,020,23
0号明細書ではおよそ30Åの自由回転半径をもつアル
ブミンの透過を約95%以上阻止できる有効最大微孔半
径が約50Å以下の多孔質ポリエチレンがそれぞれ製造
されることが示されている。Further, US Pat. No. 3,423,491 discloses a polyethylene hollow fiber membrane having permeable fine pores, which shows a salt rejection of 75% or more, and US Pat. No. 4,020,23.
No. 0 shows that porous polyethylene each having an effective maximum micropore radius of about 50 Å or less capable of blocking the permeation of albumin having a free rotation radius of about 30 Å by about 95% or more is produced.
【0006】更にまた、特定の物質を分離でき且つ透過
性のよい中空糸が特公昭62−44046号公報に開示
されている。Further, a hollow fiber capable of separating a specific substance and having good permeability is disclosed in Japanese Patent Publication No. 62-44046.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記U
SPの各明細書に開示された発明は微小孔径の分布が一
様なものばかりである。これら先行技術により開示され
ている中空糸は物質分離を機能とするものであり、機構
的には微小空孔の大きさと分離したい物質の幾何学的な
形態の差異によって特定の物質を透過させたり、阻止し
たりするものである。工業的見地に立てば透過性物質の
透過速度をできるだけ上げることも重要である。ところ
が、これら先行技術により開示されている中空糸では、
ある特定の物質を分離しようとすれば微小空孔の大きさ
を制限する必要があり、それだけ物質が移動する流路の
面積が減少し、透過性物質の透過速度を低下させること
になる。However, the above-mentioned U
The inventions disclosed in the respective specifications of SP are all uniform in the distribution of micropore diameters. The hollow fibers disclosed in these prior arts have a function of separating substances, and mechanically, a specific substance may be permeated depending on the size of micropores and the geometrical shape of the substance to be separated. , It is something to stop. From an industrial point of view, it is also important to increase the permeation rate of the permeable substance as much as possible. However, in the hollow fibers disclosed by these prior arts,
In order to separate a specific substance, it is necessary to limit the size of the micropores, which reduces the area of the flow path through which the substance moves, and reduces the permeation rate of the permeable substance.
【0008】一方、上記特公昭62−44046号公報
に開示されている方法では、溶融粘度の異なる高分子を
接合させて同時に溶融紡糸しているため、細化点がばら
つきやすく、内径、膜厚斑の大きい中空糸となりやす
い。また、内層と外層で結晶配向性、最大延伸倍率が異
なるため、延伸多孔化の過程で糸切れが多発し、安定に
製造することが困難である。On the other hand, in the method disclosed in the above Japanese Patent Publication No. 62-44046, since polymers having different melt viscosities are bonded and melt-spun at the same time, the thinning points are likely to vary and the inner diameter and the film thickness are easily varied. It tends to be a hollow fiber with large spots. Further, since the crystal orientation and the maximum draw ratio are different between the inner layer and the outer layer, yarn breakage frequently occurs during the process of stretched and porous, and stable production is difficult.
【0009】本発明は以上のような状況に鑑みなされた
ものであり、その目的は特定の物質を分離することがで
き且つ透過性に優れ、安定した製造ができる複合中空糸
及びその製造方法を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a composite hollow fiber capable of separating a specific substance, excellent in permeability, and stably manufactured, and a manufacturing method thereof. To provide.
【0010】[0010]
【課題を解決するための手段及び作用】かかる目的を達
成するため、本発明者等は上述の課題について鋭意検討
を重ねた結果、本発明に到達したものである。Means and Actions for Solving the Problems In order to achieve such an object, the present inventors have arrived at the present invention as a result of intensive studies on the above-mentioned problems.
【0011】本発明の複合中空糸は、一層がポリオレフ
ィンAからなり、他の一層がポリオレフィンAと同種で
且つポリオレフィンAより低融点であるポリオレフィン
BをポリオレフィンAに対して3〜40重量%含むポリ
オレフィンAとのブレンドポリマー又はポリオレフィン
Aからなり、他の一層がポリオレフィンAと同種で且つ
ポリオレフィンAより低MI値であるポリオレフィンC
に対してポリオレフィンBを3〜40重量%含むポリオ
レフィンCとのブレンドポリマーからなる二つの層が接
合された複合中空糸であって、異なる大きさの微小空孔
を有する二つの層からなり各々の層内及び層間の微小空
孔が互いに連通して、一方の表面から他方の表面までつ
ながった微小空孔を形成しており、該複合中空糸の、よ
り大きな微小空孔を有する層の厚さが、より小さな微小
空孔を有する層の厚さよりも厚い複合中空糸である。In the composite hollow fiber of the present invention, one layer is composed of polyolefin A, and the other layer is the same kind as polyolefin A and has a melting point lower than that of polyolefin A. Polyolefin C consisting of a blended polymer with A or polyolefin A, the other layer being the same kind as polyolefin A and having a lower MI value than polyolefin A
On the other hand, it is a composite hollow fiber in which two layers made of a blend polymer of polyolefin C containing 3 to 40% by weight of polyolefin B are joined, and each is composed of two layers having micropores of different sizes. The micropores in and between the layers are in communication with each other to form micropores connected from one surface to the other surface, and the thickness of the layer of the composite hollow fiber having larger micropores. Is a composite hollow fiber that is thicker than the thickness of the layer with smaller microvoids.
【0012】好適には、該複合中空糸は内径50〜10
00μ、各々の層の厚さを和した全体の層の厚さ5〜3
00μ、中空糸内部から外部への水透過速度が0.01
ml/m2 ・min・mmHg以上である。該複合中空
糸は同心円状に配置された二つの円管状の吐出口を有す
る中空糸製造用ノズルを用い、1つの吐出口にポリオレ
フィンAを他の吐出口にポリオレフィンAと同種で且つ
ポリオレフィンAより低融点であるポリオレフィンBを
ポリオレフィンAに対して3〜40重量%含むポリオレ
フィンAとのブレンドポリマー、又はポリオレフィンA
と同種でポリオレフィンAより低MI値であるポリオレ
フィンCに対してポリオレフィンBを3〜40重量%含
むポリオレフィンCとのブレンドポリマーを別々に供給
して溶融紡糸し、層の異なる二つの層を有する複合中空
糸を得、該複合中空糸をアニール処理した後、延伸、熱
セットすることにより製造される。[0012] Preferably, the composite hollow fiber has an inner diameter of 50 to 10
00μ, the total thickness of each layer is 5 to 3
00μ, the water permeation rate from the inside to the outside of the hollow fiber is 0.01
It is at least ml / m 2 · min · mmHg. This composite hollow fiber uses a hollow fiber manufacturing nozzle having two circular tubular discharge ports arranged concentrically, and uses polyolefin A for one discharge port and polyolefin A for the other discharge port, Blend polymer with polyolefin A containing 3 to 40% by weight of polyolefin B having a low melting point relative to polyolefin A, or polyolefin A
And a blended polymer of polyolefin C containing 3 to 40 wt% of polyolefin B to polyolefin C having the same MI value as that of polyolefin A but having a lower MI value than polyolefin A, melt-spun, and a composite having two different layers. It is produced by obtaining a hollow fiber, annealing the composite hollow fiber, and then stretching and heat setting.
【0013】本発明の複合繊維中空糸の一層を構成する
ポリオレフィンAとしては、例えばポリエチレン、ポリ
プロピレン、ポリ3−メチル−ブテン−1、ポリ4−メ
チルペンテン−1、或いはこれらの共重合体を挙げるこ
とができる。他の一層を構成するポリオレフィンとして
は、ポリオレフィンAと同種で且つ低融点であるポリオ
レフィンBをポリオレフィンAに対して3〜40重量
%、より好ましくは10〜30重量%含むポリオレフィ
ンからなる。ポリオレフィンAと同種で且つ低融点であ
るポリオレフィンBが、ポリオレフィンAに対して3重
量%未満の場合には二つの層の微小空孔の大きさに差が
生じない。また、ポリオレフィンAと同種で且つ低融点
であるポリオレフィンBが、ポリオレフィンAに対して
40重量%を超えると微小空孔が生じない。Examples of the polyolefin A constituting one layer of the hollow fiber of the present invention include polyethylene, polypropylene, poly-3-methyl-butene-1, poly-4-methylpentene-1, and copolymers thereof. be able to. The polyolefin constituting the other layer comprises 3 to 40% by weight, and more preferably 10 to 30% by weight, of polyolefin B, which is the same kind as polyolefin A and has a low melting point. When the content of polyolefin B, which is the same kind as polyolefin A and has a low melting point, is less than 3% by weight with respect to polyolefin A, there is no difference in the size of the micropores in the two layers. Further, if the content of the polyolefin B, which is the same kind as the polyolefin A and has a low melting point, exceeds 40% by weight with respect to the polyolefin A, micropores do not occur.
【0014】本発明において採用するポリオレフィンA
及びポリオレフィンCのMI値としては0.1〜50の
範囲にあるものが好ましく、0.5〜10であることが
より好ましい。MI値は、ASTM D−1238によ
って測定される値である。ポリオレフィンA及びポリオ
レフィンCのMI値が0.1以下では溶融粘度が高過
ぎ、安定した紡糸を行い難く、また50以上では溶融粘
度が低過ぎて、やはり安定した紡糸が行い難くなる。Polyolefin A used in the present invention
The MI value of the polyolefin C is preferably in the range of 0.1 to 50, more preferably 0.5 to 10. The MI value is a value measured by ASTM D-1238. If the MI values of the polyolefin A and the polyolefin C are 0.1 or less, the melt viscosity is too high, and stable spinning is difficult to perform. If the MI value is 50 or more, the melt viscosity is too low, and stable spinning is also difficult.
【0015】また、ポリオレフィンBのポリオレフィン
A又はポリオレフィンCとのブレンド比率は3〜40重
量%が好ましい。ポリオレフィンBのブレンド比率が3
%未満では、より大きな微小空孔とより小さな微小空孔
の孔径差が小さく、目標とする性能が得られない。ポリ
オレフィンBのブレンド比率が40%を超えると空孔の
形成が不可能となる。The blend ratio of polyolefin B with polyolefin A or polyolefin C is preferably 3 to 40% by weight. The blend ratio of polyolefin B is 3
If it is less than%, the difference in hole diameter between the larger micropores and the smaller micropores is small, and the target performance cannot be obtained. If the blending ratio of polyolefin B exceeds 40%, it becomes impossible to form pores.
【0016】本発明においては、かかるポリオレフィン
を中空糸製造用ノズルを用いて溶融紡糸し、異なる大き
さの微小空孔を有する二つの層からなる中空糸であって
各々の層内及び層間の微少空孔が互いに連通して一方の
表面から他の表面につながっており、より大きな微少空
孔を有する層の厚さがより小さな微少空孔を有する層の
厚さより厚い複合中空糸を製造する。ノズルは同心円上
に配置された二つの円管状の吐出口を有するものが望ま
しい。In the present invention, such a polyolefin is melt-spun by using a nozzle for producing a hollow fiber, and is a hollow fiber composed of two layers having fine pores of different sizes, which are minute in and between each layer. A composite hollow fiber is produced in which the pores are in communication with one another from one surface to the other and the layer with larger microvoids is thicker than the layer with smaller micropores. The nozzle preferably has two circular tubular discharge ports arranged concentrically.
【0017】該未延伸糸を融点以下でアニール処理した
後に延伸を行う。延伸は冷延伸に引き続き熱延伸を行う
二段又は熱延伸を更に多段に分割して行う多段延伸が好
ましい。冷延伸は比較的低い温度下で構造破壊を起こさ
せてミクロなクラッキングを発生させる工程であり、0
℃〜ポリマー融点より50℃低い温度(例えば、ポリエ
チレンでは0〜80℃)の比較的低温下で行うことが好
ましい。熱延伸は冷延伸で発生させたミクロクラッキン
グを拡大させ微小空孔を形成する工程であり、比較的高
温下で行うことが好ましいが、ポリオレフィンの融点を
超えない温度で行う方がよい。The undrawn yarn is annealed below its melting point and then drawn. The stretching is preferably a two-stage stretching in which cold stretching is followed by hot stretching or a multi-stage stretching in which hot stretching is further divided into multiple stages. Cold stretching is a process in which structural cracking occurs at a relatively low temperature to generate microcracking.
It is preferable to carry out at a relatively low temperature of 50 ° C. to 50 ° C. lower than the polymer melting point (for example, 0 to 80 ° C. for polyethylene). The hot drawing is a step of expanding microcracking generated by cold drawing to form micropores, and it is preferable to carry out at a relatively high temperature, but it is better to carry out at a temperature not exceeding the melting point of the polyolefin.
【0018】更に、製品の物理的な寸法安定性を保持す
るために定長もしくは弛緩させた状態で熱セットを行
う。熱セットを効果的に行うためには、熱セット温度は
延伸温度以上であることが好ましい。Further, in order to maintain the physical dimensional stability of the product, heat setting is performed in a fixed length or in a relaxed state. In order to effectively perform heat setting, the heat setting temperature is preferably equal to or higher than the stretching temperature.
【0019】複合中空糸の層のうちより薄い層により形
成される孔の大きさは、ポリオレフィンAと同種で且つ
低融点であるポリオレフィンBのポリオレフィンAに対
するブレンド比率及びポリオレフィンAとポリオレフィ
ンCのMI値の差の組合せを適宜選択することによって
決められる。The size of the pores formed by the thinner layer of the composite hollow fiber layer is such that the blend ratio of polyolefin B, which is of the same type as polyolefin A and has a low melting point, to polyolefin A, and the MI value of polyolefin A and polyolefin C. It is determined by appropriately selecting the combination of the differences.
【0020】[0020]
【実施例】以下、本発明を実施例に基づいて具体的に説
明する。なお、ラテックス標準粒子による捕捉粒子径の
測定は、次の方法による。「膜面積が約50cm2 の中
空糸膜が充填された容器をエタノールに浸漬した後、エ
タノールを水に置換することにより親水化し、更に0.
1wt%の界面活性剤(ポリエチレングリコール−p−
イソオクチルフェニルエーテル)水溶液で置換した後、
圧力0.7Kg/cm2 で0.1%の単一分散粒子径の
ポリスチレンラテックス粒子を濾過し、濾液のラテック
ス粒子の濃度を日立分光光度計(U−3400)により
320nmの波長の吸光度を測定し捕捉率を求めた。」
(実施例1)同心円状に配置された二つの円管状の吐出
口を有する中空糸製造用ノズルを用いて外側の吐出口か
ら密度0.968g/cm3 、MI値5.5、融点13
4℃の高密度ポリエチレン(Hizex 2200J、
三井石油化学(株)製)と密度0.920g/cm3 、
MI値8.0、融点120℃の低密度ポリエチレン(ウ
ルトゼックス20100J、三井石油化学(株)製)を
上記高密度ポリエチレンに対して15重量%ブレンドし
たポリエチレンを、内側の吐出口から前記高密度ポリエ
チレンを吐出量7.5g/min、吐出温度155℃、
前記高密度ポリエチレンと前記低密度ポリエチレンのブ
レンドポリマーを吐出量0.75g/min、吐出温度
155℃でそれぞれ吐出し、100m/minの巻取速
度で巻き取った。EXAMPLES The present invention will be specifically described below based on examples. In addition, the measurement of the trapped particle size using the latex standard particles is performed by the following method. "After a container filled with a hollow fiber membrane having a membrane area of about 50 cm 2 was immersed in ethanol, the ethanol was replaced with water to make it hydrophilic and further
1 wt% of surfactant (polyethylene glycol-p-
Isooctyl phenyl ether) aqueous solution,
Polystyrene latex particles having a monodisperse particle size of 0.1% are filtered at a pressure of 0.7 kg / cm 2 , and the concentration of latex particles in the filtrate is measured by a Hitachi spectrophotometer (U-3400) to measure the absorbance at a wavelength of 320 nm. Then, the capture rate was obtained. (Example 1) Using a hollow fiber manufacturing nozzle having two concentrically arranged circular tubular ejection ports, the density was 0.968 g / cm 3 , the MI value was 5.5, and the melting point was 13 from the outer ejection port.
High density polyethylene (Hizex 2200J, 4 ° C)
Mitsui Petrochemical Co., Ltd.) and a density of 0.920 g / cm 3 ,
15% by weight of low-density polyethylene (Ultzex 20100J, manufactured by Mitsui Petrochemical Co., Ltd.) having an MI value of 8.0 and a melting point of 120 ° C. was blended with the high-density polyethylene in an amount of 15% by weight. Polyethylene discharge rate 7.5g / min, discharge temperature 155 ℃,
The high density polyethylene and the low density polyethylene blend polymer were discharged at a discharge rate of 0.75 g / min and a discharge temperature of 155 ° C., respectively, and were wound at a winding speed of 100 m / min.
【0021】得られた未延伸糸をボビンに巻いたまま空
気中で110℃で12時間アニール処理を行った。更
に、このアニール処理糸を30℃以下に保たれたローラ
ー間で80%冷延伸し、引き続いて117℃に加熱され
た加熱函中で総延伸量が400%になるようにローラー
間熱延伸を行い、更に120℃に加熱した加熱函中で総
延伸量の25%緩和させた状態で熱セットを行い複合中
空糸を得た。The obtained undrawn yarn was annealed in air at 110 ° C. for 12 hours while being wound on a bobbin. Further, this annealed yarn is cold-stretched by 80% between rollers kept at 30 ° C. or lower, and then hot-rolled by rollers so that the total stretch amount becomes 400% in a heating box heated at 117 ° C. Then, heat setting was carried out in a heating box heated to 120 ° C. while relaxing 25% of the total stretched amount to obtain a composite hollow fiber.
【0022】得られた複合中空糸の内径は271μ、内
層と外層を合わせた膜厚は54μであり、走査型電子顕
微鏡による観察では内層の微小空孔の孔径が外層の微小
空孔の孔径より大きくなっており、ラテックス標準粒子
を99.5%以上阻止できる捕捉粒子径が0.088μ
であった。この複合中空糸の水フラックスは3.4 ml/
m2 ・hr・mmHg(at 25℃)であった。The inside diameter of the obtained composite hollow fiber was 271 μm, the total thickness of the inner layer and the outer layer was 54 μm, and the pore size of the micropores of the inner layer was smaller than that of the outer layer by observation with a scanning electron microscope. The size of the trapped particles is 0.088μ, which can prevent 99.5% or more of the latex standard particles.
Met. The water flux of this composite hollow fiber is 3.4 ml /
It was m 2 · hr · mmHg (at 25 ° C).
【0023】(実施例2)実施例1と同様にして但し使
用するポリマーを変更して、内側の吐出口から密度0.
968g/cm3 、MI値5.5、融点134℃の高密
度ポリエチレン(Hizex 2200J、三井石油化
学(株)製)、外側の吐出口から密度0.920 g/cm3 、M
I値8.0、融点120℃の低密度ポリエチレン(ウル
トゼックス20100J、三井石油化学(株)製)を密
度0.968g/cm3 、MI値0.7、融点134℃
の高密度ポリエチレン(三菱ポリエチ BU007U、
三菱化成(株)製)に15重量%ブレンドしたポリエチ
レンを使用して実施例1と同様にして複合中空糸を得
た。(Example 2) The same procedure as in Example 1 except that the polymer used was changed so that the density from the inner discharge port to 0.
968 g / cm 3, MI value 5.5, high density polyethylene having a melting point of 134 ℃ (Hizex 2200J, manufactured by Mitsui Petrochemical Co.), the density from the outside of the discharge port 0.920 g / cm 3, M
Low density polyethylene (Ultzex 20100J, manufactured by Mitsui Petrochemical Co., Ltd.) having an I value of 8.0 and a melting point of 120 ° C. has a density of 0.968 g / cm 3 , an MI value of 0.7 and a melting point of 134 ° C.
High density polyethylene (Mitsubishi Polyethylene BU007U,
A composite hollow fiber was obtained in the same manner as in Example 1 by using polyethylene blended with Mitsubishi Kasei Co., Ltd. at 15% by weight.
【0024】得られた複合中空糸の内径は275μ、内
層と外層を合わせた膜厚は53μであり、走査型電子顕
微鏡による観察では内層の微小空孔の孔径が外層の微小
空孔の孔径より大きくなっており、ラテックス標準粒子
を99.5%以上阻止できる捕捉粒子径が0.03μで
あった。この複合中空糸の水フラックスは2.8 ml/m
2 ・hr・mmHg(at 25℃)であった。The inner diameter of the obtained composite hollow fiber was 275 μ, the total thickness of the inner layer and the outer layer was 53 μ, and the pore size of the micropores of the inner layer was smaller than that of the micropore of the outer layer by observation with a scanning electron microscope. The size was large, and the trapped particle size capable of blocking the latex standard particles by 99.5% or more was 0.03 μ. The water flux of this composite hollow fiber is 2.8 ml / m.
It was 2 · hr · mmHg (at 25 ° C.).
【0025】(比較例1)一つの円管状の吐出口を有す
る中空糸製造用ノズルを用いて、密度0.968g/c
m3 、MI値5.5、融点134℃の高密度ポリエチレ
ン(Hizex2200J、三井石油化学(株)製)を
吐出量8.25g/min、吐出温度155℃で吐出
し、100m/minの巻取速度で巻き取った。(Comparative Example 1) A hollow fiber producing nozzle having a single tubular discharge port was used to obtain a density of 0.968 g / c.
High-density polyethylene (Hizex 2200J, manufactured by Mitsui Petrochemical Co., Ltd.) with m 3 , MI value of 5.5 and melting point of 134 ° C. was discharged at a discharge rate of 8.25 g / min and a discharge temperature of 155 ° C., and wound at 100 m / min. Winded at speed.
【0026】得られた未延伸糸をボビンに巻いたまま空
気中で95℃の12時間アニール処理を行った。更に、
このアニール処理糸を30℃以下に保たれたローラー間
で80%冷延伸し、引き続いて109℃に加熱された加
熱函中で総延伸量が400%になるようにローラー間熱
延伸を行い、更に120℃に加熱した加熱函中で総延伸
量の25%緩和させた状態で熱セットを行って複合中空
糸を得た。The obtained undrawn yarn was annealed in air at 95 ° C. for 12 hours while being wound on a bobbin. Furthermore,
This annealed yarn is 80% cold drawn between rollers kept at 30 ° C. or lower, and then hot drawn between rollers so that the total drawn amount is 400% in a heating box heated to 109 ° C. Further, heat setting was performed in a heating box heated to 120 ° C. in a state where the total stretched amount was relaxed by 25% to obtain a composite hollow fiber.
【0027】得られた中空糸の内径は284μ、内層と
外層を合わせた膜厚は59μであった。この中空糸の走
査型電子顕微鏡で観察した微小空孔の孔径は内層と外層
でほぼ同一で、実施例1で得られた複合中空糸の外層の
微小空孔の孔径とほぼ同一であり、ラテックス標準粒子
径を99.5%以上阻止できる捕捉粒子径が0.15μ
であった。この中空糸の水フラックスは、3.8ml/
m2 ・min・mmHg(at 25℃)であった。The hollow fiber obtained had an inner diameter of 284 μm and the total thickness of the inner layer and the outer layer was 59 μm. The micropores of this hollow fiber observed with a scanning electron microscope were almost the same in the inner layer and the outer layer, and were the same as the micropores in the outer layer of the composite hollow fiber obtained in Example 1, and the latex was Captured particle size of 0.15μ that can prevent standard particle size of 99.5% or more
Met. The water flux of this hollow fiber is 3.8 ml /
It was m 2 · min · mmHg (at 25 ° C.).
【0028】[0028]
【発明の効果】以上の説明から明らかなごとく本発明
は、異なる大きさの微小空孔を有する二つの層を有し、
特定の物質を分離することができ且つ透過性に優れ、し
かも安定して製造ができる複合中空糸とその製造方法が
実現される。As is clear from the above description, the present invention has two layers having micropores of different sizes,
A composite hollow fiber capable of separating a specific substance, excellent in permeability, and stably manufactured, and a manufacturing method thereof are realized.
Claims (6)
一層がポリオレフィンAと同種で且つポリオレフィンA
より低融点であるポリオレフィンBをポリオレフィンA
に対して3〜40重量%含むポリオレフィンAとのブレ
ンドポリマーからなる二つの層が接合された複合中空糸
であって、二つの層は異なる大きさの微小空孔を有し、
各々の層内及び層間の微小空孔が互いに連通して、一方
の表面から他方の表面までつながった微小空孔を形成し
ており、該複合中空糸の、より大きな微小空孔を有する
層の厚さが、より小さな微小空孔を有する層の厚さより
も厚いことを特徴とする複合中空糸。1. One layer comprises polyolefin A, the other layer is of the same type as polyolefin A and is polyolefin A.
Polyolefin B, which has a lower melting point, is
Is a composite hollow fiber in which two layers composed of a blended polymer with polyolefin A, which is contained in an amount of 3 to 40% by weight, are bonded to each other, and the two layers have micropores of different sizes,
The micropores in each layer and between the layers communicate with each other to form micropores connected from one surface to the other surface of the layer having larger micropores of the composite hollow fiber. A composite hollow fiber, characterized in that the thickness is greater than the thickness of the layer having smaller microvoids.
一層がポリオレフィンAと同種で且つポリオレフィンA
より低MI値であるポリオレフィンCに対して前記ポリ
オレフィンBを3〜40重量%含むポリオレフィンCと
のブレンドポリマーからなる二つの層が接合された複合
中空糸であって、二つの層は異なる大きさの微小空孔を
有し、各々の層内及び層間の微小空孔が互いに連通し
て、一方の表面から他方の表面までつながった微小空孔
を形成しており、該複合中空糸の、より大きな微小空孔
を有する層の厚さが、より小さな微小空孔を有する層の
厚さよりも厚いことを特徴とする請求項1記載の複合中
空糸。2. One layer comprises polyolefin A, the other layer is of the same type as polyolefin A and is polyolefin A.
A composite hollow fiber in which two layers made of a blend polymer of a polyolefin C containing 3 to 40% by weight of the polyolefin B with respect to a polyolefin C having a lower MI value are joined, and the two layers have different sizes. Micropores in each layer and the micropores between layers are in communication with each other to form micropores connected from one surface to the other surface. The composite hollow fiber according to claim 1, wherein the layer having large micropores is thicker than the layer having smaller micropores.
が密度0.960g/cm3 以上の高密度ポリエチレン
である請求項1又は2記載の複合中空糸。3. Polyolefin A and polyolefin C
Is a high density polyethylene having a density of 0.960 g / cm 3 or more, and the composite hollow fiber according to claim 1 or 2.
各々の層の厚さを和した全体の層の厚さ5〜300μ、
ラテックス標準粒子を99.5%以上阻止できる捕捉粒
子径が0.001〜0.5であり、内部から外部への水
透過速度が0.01ml/m2 ・min・mmHg以上
である請求項1または2記載の複合中空糸。4. The composite hollow fiber has an inner diameter of 50 to 1000 μm,
The total layer thickness of each layer is 5 to 300 μ,
The particle size of trapping particles that can prevent latex standard particles by 99.5% or more is 0.001 to 0.5, and the water permeation rate from the inside to the outside is 0.01 ml / m 2 · min · mmHg or more. Or the composite hollow fiber according to 2.
出口を有する中空糸製造用ノズルを用い、各々の吐出口
にポリオレフィンA及びポリオレフィンAと同種で且つ
ポリオレフィンAより低融点であるポリオレフィンBを
3〜40重量%含むポリオレフィンAとのブレンドポリ
マーを別々に供給して溶融紡糸し、前記ポリオレフィン
A及びポリオレフィンAとポリオレフィンBとのブレン
ドポリマーで構成された二つの層を有する複合中空糸を
得、該複合中空糸をアニール処理した後、延伸してより
厚い層により大きな微小空孔を、より薄い層により小さ
な微小空孔をそれぞれ形成するように、各層の内部に多
数の微小空孔を生じせしめ、しかる後、熱セットするこ
とを特徴とする請求項1記載の複合中空糸の製造方法。5. A hollow fiber producing nozzle having two concentrically arranged circular tubular ejection ports, wherein each of the ejection ports has a polyolefin A and a polyolefin of the same kind as polyolefin A and a melting point lower than that of polyolefin A. A composite hollow fiber having two layers composed of the polyolefin A and the blend polymer of the polyolefin A and the polyolefin B is separately supplied by melt-spinning by separately supplying the blend polymer with the polyolefin A containing 3 to 40% by weight of B. After the composite hollow fiber is annealed, it is drawn to form a large number of micropores in each layer so that larger micropores are formed in a thicker layer and smaller micropores are formed in a thinner layer. The method for producing a composite hollow fiber according to claim 1, characterized in that it is caused to occur and then heat-set.
ィンBとのブレンドポリマーに代えて、ポリオレフィン
Aと同種で且つポリオレフィンAより低MI値であるポ
リオレフィンCに対して前記ポリオレフィンBを3〜4
0重量%含むポリオレフィンCとのブレンドポリマーを
使用することを特徴とする請求項5記載の複合中空糸の
製造方法。6. In place of the blend polymer of the polyolefin A and the polyolefin B, the polyolefin B is 3 to 4 with respect to the polyolefin C which is the same kind as the polyolefin A and has a lower MI value than the polyolefin A.
The method for producing a composite hollow fiber according to claim 5, wherein a blended polymer with 0% by weight of polyolefin C is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26755391A JPH0515747A (en) | 1991-05-07 | 1991-10-16 | Conjugate hollow fiber and production thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10154791 | 1991-05-07 | ||
JP3-101547 | 1991-05-07 | ||
JP26755391A JPH0515747A (en) | 1991-05-07 | 1991-10-16 | Conjugate hollow fiber and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0515747A true JPH0515747A (en) | 1993-01-26 |
Family
ID=26442410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26755391A Pending JPH0515747A (en) | 1991-05-07 | 1991-10-16 | Conjugate hollow fiber and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0515747A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013199722A (en) * | 2012-03-26 | 2013-10-03 | Mitsubishi Rayon Co Ltd | Apparatus and method for winding hollow yarn |
-
1991
- 1991-10-16 JP JP26755391A patent/JPH0515747A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013199722A (en) * | 2012-03-26 | 2013-10-03 | Mitsubishi Rayon Co Ltd | Apparatus and method for winding hollow yarn |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4741829A (en) | Composite hollow fibers and method of making same | |
US6153133A (en) | Method of producing highly permeable microporous polyolefin membrane | |
JPH0122003B2 (en) | ||
JPS59196706A (en) | Heterogenous membrane and preparation thereof | |
WO1995019219A1 (en) | Composite microporous polyolefin film and process for producing the same | |
JPS60139815A (en) | Conjugate hollow yarn and production thereof | |
JPH0647066B2 (en) | Porous separation membrane and method for producing the same | |
JPH09108551A (en) | Water purifier | |
WO1999046034A1 (en) | Composite hollow fiber membrane and its manufacture | |
JPH11262764A (en) | Water purifier | |
JPH0515747A (en) | Conjugate hollow fiber and production thereof | |
JPS6342006B2 (en) | ||
JPH05311516A (en) | Conjugate hollow yarn and its production | |
JPS62269706A (en) | Composite membrane of porous hollow polyolefin yarn and its production | |
JP2954327B2 (en) | Porous hollow fiber membrane | |
JPS59229320A (en) | Preparation of heterogeneous film by melting, stretching | |
JP2592725B2 (en) | Manufacturing method of hollow fiber membrane | |
JPH119977A (en) | Polyethylene composite microporous hollow fiber membrane | |
JPS6240441B2 (en) | ||
JP2955779B2 (en) | Polyolefin composite microporous membrane and method for producing the same | |
JPH03293022A (en) | Porous hollow fiber membrane of poly-4-methylpentene-1 | |
JP2622629B2 (en) | Manufacturing method of hollow fiber membrane | |
JPS6375116A (en) | Production of conjugated hollow yarn membrane | |
JPH07155568A (en) | Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane | |
JP3383926B2 (en) | Manufacturing method of hollow fiber type heterogeneous membrane |