JPH0515740B2 - - Google Patents
Info
- Publication number
- JPH0515740B2 JPH0515740B2 JP62043756A JP4375687A JPH0515740B2 JP H0515740 B2 JPH0515740 B2 JP H0515740B2 JP 62043756 A JP62043756 A JP 62043756A JP 4375687 A JP4375687 A JP 4375687A JP H0515740 B2 JPH0515740 B2 JP H0515740B2
- Authority
- JP
- Japan
- Prior art keywords
- propylene homopolymer
- polymer
- viscoelastic
- bis
- propylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920001384 propylene homopolymer Polymers 0.000 claims description 53
- 239000000203 mixture Substances 0.000 claims description 41
- 229920000642 polymer Polymers 0.000 claims description 37
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 22
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 21
- 229910019142 PO4 Inorganic materials 0.000 claims description 18
- 239000010452 phosphate Substances 0.000 claims description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 16
- -1 phosphonate compound Chemical class 0.000 claims description 16
- 229940126062 Compound A Drugs 0.000 claims description 15
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000011256 inorganic filler Substances 0.000 claims description 8
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 5
- 239000000454 talc Substances 0.000 claims description 5
- 229910052623 talc Inorganic materials 0.000 claims description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 125000001118 alkylidene group Chemical group 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 239000005083 Zinc sulfide Substances 0.000 claims description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- 239000010425 asbestos Substances 0.000 claims description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 2
- 239000000378 calcium silicate Substances 0.000 claims description 2
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims description 2
- 229910052570 clay Inorganic materials 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 2
- 239000000347 magnesium hydroxide Substances 0.000 claims description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 239000010445 mica Substances 0.000 claims description 2
- 229910052618 mica group Inorganic materials 0.000 claims description 2
- 229910052895 riebeckite Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 239000010456 wollastonite Substances 0.000 claims description 2
- 229910052882 wollastonite Inorganic materials 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 17
- 229920001155 polypropylene Polymers 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 238000006116 polymerization reaction Methods 0.000 description 14
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000002667 nucleating agent Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 239000008188 pellet Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 238000007665 sagging Methods 0.000 description 7
- 239000012265 solid product Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- ZHROMWXOTYBIMF-UHFFFAOYSA-M sodium;1,3,7,9-tetratert-butyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].C1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C ZHROMWXOTYBIMF-UHFFFAOYSA-M 0.000 description 6
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000000071 blow moulding Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229940087101 dibenzylidene sorbitol Drugs 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- QSSJZLPUHJDYKF-UHFFFAOYSA-N methyl 4-methylbenzoate Chemical compound COC(=O)C1=CC=C(C)C=C1 QSSJZLPUHJDYKF-UHFFFAOYSA-N 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 239000002530 phenolic antioxidant Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- RGASRBUYZODJTG-UHFFFAOYSA-N 1,1-bis(2,4-ditert-butylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C=CC(=C1)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1)C(C)(C)C)C(C)(C)C RGASRBUYZODJTG-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- SAJOSZWPXBHRRU-UHFFFAOYSA-N 1-tert-butyl-3-(3-tert-butyl-5-methylphenyl)-5-methylbenzene Chemical group CC(C)(C)C1=CC(C)=CC(C=2C=C(C=C(C)C=2)C(C)(C)C)=C1 SAJOSZWPXBHRRU-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000156978 Erebia Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- ICGXPVHBUFIENI-UHFFFAOYSA-M lithium;1,3,7,9-tetratert-butyl-5-methyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Li+].CC1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C ICGXPVHBUFIENI-UHFFFAOYSA-M 0.000 description 1
- PEZYITXKFBTLBI-UHFFFAOYSA-M lithium;1,9-ditert-butyl-3,7-diethyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Li+].C1C2=CC(CC)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(CC)C=C2C(C)(C)C PEZYITXKFBTLBI-UHFFFAOYSA-M 0.000 description 1
- DOPGPJUHBPZWQJ-UHFFFAOYSA-M lithium;1,9-ditert-butyl-3,7-dimethyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Li+].C1C2=CC(C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C)C=C2C(C)(C)C DOPGPJUHBPZWQJ-UHFFFAOYSA-M 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- YWSUSMUSZKSAAQ-UHFFFAOYSA-M potassium;1,3,7,9-tetratert-butyl-5-methyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [K+].CC1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C YWSUSMUSZKSAAQ-UHFFFAOYSA-M 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- XEZJJVRUWKGVIA-UHFFFAOYSA-M sodium;1,3,7,9-tetraethyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].O1P([O-])(=O)OC2=C(CC)C=C(CC)C=C2CC2=CC(CC)=CC(CC)=C21 XEZJJVRUWKGVIA-UHFFFAOYSA-M 0.000 description 1
- DVSGVEPIPBNASD-UHFFFAOYSA-M sodium;1,3,7,9-tetramethyl-11-oxido-5-(2,4,4-trimethylpentan-2-yl)-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].O1P([O-])(=O)OC2=C(C)C=C(C)C=C2C(C(C)(C)CC(C)(C)C)C2=CC(C)=CC(C)=C21 DVSGVEPIPBNASD-UHFFFAOYSA-M 0.000 description 1
- SIJVPMATBIKDTJ-UHFFFAOYSA-M sodium;1,3,7,9-tetramethyl-11-oxido-5-propyl-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].O1P([O-])(=O)OC2=C(C)C=C(C)C=C2C(CCC)C2=CC(C)=CC(C)=C21 SIJVPMATBIKDTJ-UHFFFAOYSA-M 0.000 description 1
- LMQXJKGCJVYPNJ-UHFFFAOYSA-M sodium;1,3,7,9-tetratert-butyl-11-oxido-5-propyl-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].CCCC1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C LMQXJKGCJVYPNJ-UHFFFAOYSA-M 0.000 description 1
- IEFYQJPRHOKDLM-UHFFFAOYSA-M sodium;1,3,7,9-tetratert-butyl-5-methyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].CC1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C IEFYQJPRHOKDLM-UHFFFAOYSA-M 0.000 description 1
- UXBYXHNQMORKEI-UHFFFAOYSA-M sodium;1,9-ditert-butyl-3,7-diethyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].C1C2=CC(CC)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(CC)C=C2C(C)(C)C UXBYXHNQMORKEI-UHFFFAOYSA-M 0.000 description 1
- FIAYJSUZUBQZOW-UHFFFAOYSA-M sodium;1,9-ditert-butyl-3,7-dimethyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].C1C2=CC(C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C)C=C2C(C)(C)C FIAYJSUZUBQZOW-UHFFFAOYSA-M 0.000 description 1
- ZEYNWZNNZISTPU-UHFFFAOYSA-M sodium;1,9-ditert-butyl-5-methyl-11-oxido-3,7-dipropyl-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].CC1C2=CC(CCC)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(CCC)C=C2C(C)(C)C ZEYNWZNNZISTPU-UHFFFAOYSA-M 0.000 description 1
- SUVCPLZKTNXITH-UHFFFAOYSA-M sodium;3,7-di(butan-2-yl)-1,9-ditert-butyl-5-methyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].CC1C2=CC(C(C)CC)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C(C)CC)C=C2C(C)(C)C SUVCPLZKTNXITH-UHFFFAOYSA-M 0.000 description 1
- SNAQARSCIHDMGI-UHFFFAOYSA-M sodium;bis(4-tert-butylphenyl) phosphate Chemical compound [Na+].C1=CC(C(C)(C)C)=CC=C1OP([O-])(=O)OC1=CC=C(C(C)(C)C)C=C1 SNAQARSCIHDMGI-UHFFFAOYSA-M 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- IMEANYWCFSRHHC-UHFFFAOYSA-K trisodium;1-tert-butyl-3-(3-tert-butyl-5-methylphenyl)-5-methylbenzene;phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O.CC(C)(C)C1=CC(C)=CC(C=2C=C(C=C(C)C=2)C(C)(C)C)=C1 IMEANYWCFSRHHC-UHFFFAOYSA-K 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Graft Or Block Polymers (AREA)
Description
〔産業上の利用分野〕
本発明は、高剛性高溶融粘弾性プロピレン単独
重合体組成物に関する。さらに詳しくは、剛性お
よび耐熱剛性に著しく優れた高剛性高溶融粘弾性
プロピレン単独重合体組成物に関する。
〔従来の技術〕
一般にプロピレン系重合体は優れた加工性、耐
薬品性、電気的性質および機械的性質を有するの
で、射出成形品、ブロー成形品、フイルム、シー
ト、繊維等に加工されて各種の用途に用いられて
いる。しかしながらプロピレン系重合体を加工し
て製造されたシートは、2次加工のための加熱成
形時に該シートの垂れ下がりが早い、加工条件の
幅が狭い、成形効率が劣る、幅広シートでは前述
の垂れ下がりが大きい、2次加工品の厚みが不均
一になりやすいおよび重なりしわが発生しやすい
等の種々の問題点がある。このため小型の成形品
しか製造できないのが現状である。またプロピレ
ン系重合体をブロー成形に用いる場合には、次の
ような問題点がある。すなわち、成形時のパリ
ソンの垂れ下がりが大きいため成形品の肉厚が不
均一になる。このためブロー成形法は小型の商品
にしか適用できない。前述の垂れ下がりを防ぐ
ために高分子量のプロピレン系重合体を用いると
流動性不良、成形時の負荷大、エネルギー損失
大、機械的トラブルを引き起こす危険および成形
品の肌あれが激しく商品価値が失われる等の問題
点がある。
他方、プロピレン系重合体の各種の具体的用途
によつては、該プロピレン系重合体の性質が充分
とは云えない場合があり、その具体的用途の拡大
に制限を受けるという問題がある。とりわけ剛性
および耐熱剛性などの剛性面に関しては、ポリス
チレン、ABS樹脂、ポリエステルなどにくらべ
て劣るためプロピレン系重合体の用途拡大に際し
重大な隘路になつている。従つて、剛性面の向上
が可能となればその分だけ成形品の薄肉化を計る
ことができ省資源に寄与するばかりでなく、成形
時の得られた成形品の冷却速度も早くなるので単
位時間当りの成形速度を早くすることができ生産
性の向上にも寄与できるのである。
このため、従来よりプロピレン系重合体に係わ
る上述のシートの2次加工性およびブロー成形性
ならびに剛性面を向上する目的で、本願と同一出
願人の出願に係わる特開昭58−219207号公報にお
いて特定の分子量分布と特定のアイソタクチツク
ペンタツド分率を有するプロピレン単独重合体が
開示されている。また、前記公報においてさらに
剛性面を向上する目的で該プロピレン単独重合体
にp−t−ブチル安息香酸アルミニウムもしくは
1・3,2・4−ジベンジリデンソルビトールか
らなる有機造核剤を配合することが開示されてい
る。
〔発明が解決しようとする問題点〕
しかしながら、前記特開昭58−219207号公報に
開示された特定の分子量分布と特定のアイソタク
チツクペンタツド分率を有するプロピレン単独重
合体のシート2次加工性およびブロー成形性は実
用上充分満足できるものの、他方剛性面について
はかなり改善されるものの未だ充分満足できるも
のではない。また、前記の特定の分子量分布と特
定のアイソタクチツクペンタツド分率を有するプ
ロピレン単独重合体にp−t−ブチル安息香酸ア
ルミニウムもしくは1・3,2・4−ジベンジリ
デンソルビトールを配合してなるプロピレン単独
重合体組成物は、剛性面の改善効果がかなり認め
られるものの高度の剛性および耐熱剛性を要求さ
れる用途に使用する場合には未だ充分満足できる
ものではない。
本発明者らは、前述の各種造核剤を配合してな
るプロピレン系重合体組成物に関する上述の問題
点を解決するために鋭意研究した。その結果、特
定の分子量分布と特定のアイソタクチツクペンタ
ツド分率を有するプロピレン単独重合体に下記一
般式〔〕で示されるフオスフエート系化合物
(以下、化合物Aという。)を配合してなる組成物
が、上述のプロピレン系重合体組成物の問題点を
解決することができることを見い出し、この知見
に基づき本発明を完成した。
(但し、式中R1は直接結合、硫黄またはメチレ
ン基もしくは炭素数2〜4のアルキリデン基を、
R2およびR3はそれぞれ水素または炭素数1〜8
の同種もしくは異種のアルキル基を、Mは1価〜
3価の金属原子を、nは1〜3の整数を示す。)
以上の記述から明らかなように、本発明の目的
はシートにしたときの該シートの2次加工性およ
びブロー成形性ならびに剛性および耐熱剛性に著
しく優れたプロピレン単独重合体組成物を提供す
ることである。
〔問題点を解決するための手段〕
本発明は下記の構成を有する。
プロピレンを多段階に重合させ、その第1段階
目において全重合体量の35〜65重量%を、その第
2段階目以降において同じく65〜35重量%を重合
させ、該第1段階目と第2段階目以降で生成する
各重合体部分のうち、分子量の高い重合体部分の
極限粘度を〔η〕H、分子量の低い重合体部分の極
限粘度を〔η〕Lとするとき
3.0≦〔η〕H−〔η〕L≦6.5 ……(1)
なる各重合体部分の極限粘度値を有し、かつ、全
重合体のアイソタクチツクペンタツド分率(P)とメ
ルトフローレート(MFR;230℃における荷重
2.16Kgを加えたときの10分間の溶融樹脂の吐出
量)との関係が1.00≧P≧0.015logMFR+0.955
である結晶性プロピレン単独重合体100重量部に
対して、下記一般式〔〕で示されるフオスフエ
ート化合物(以下、化合物Aという。)を0.01〜
1重量部配合してなる高剛性高溶融粘弾性プロピ
レン単独重合体組成物。
(但し、式中R1は直接結合、硫黄またはメチレ
ン基もしくは炭素数2〜4のアルキリデン基を、
R2およびR3はそれぞれ水素または炭素数1〜8
の同種もしくは異種のアルキル基を、Mは1価〜
3価の金属原子を、nは1〜3の整数を示す。)
本発明に用いる結晶性プロピレン単独重合体
は、プロピレンを多段階に重合させ、その第1段
階目において全重合体量の35〜65重量%を、その
第2段階目以降において同じく65〜35重量%を重
合させ、該第1段階目と第2段階目以降で生成す
る各重合体部分のうち、分子量の高い重合体部分
の極限粘度を〔η〕H、分子量の低い重合体部分の
極限粘度を〔η〕Lとするとき
3.0≦〔η〕H−〔η〕L≦6.5 ……(1)
なる各重合体部分の極限粘度値を有し、かつ、全
重合体のアイソタクチツクペンタツド分率(P)とメ
ルトフローレート(MFR)との関係が1.00≧P
≧0.015logMFR+0.955である結晶性プロピレン
単独重合体である。このようなプロピレン単独重
合体は、本願と同一出願人の出願に係わる特開昭
58−219207号公報に記載された製造法によつて製
造される。すなわち、有機アルミニウム化合物
()例えばトリエチルアルミニウム、ジエチル
アルミニウムモノクロリドなど、もしくは有機ア
ルミニウム化合物()と電子供与体(A)例えばジ
イソアミルエーテルとの反応生成物()を四塩
化チタン(C)と反応させて得られる固体生成物
()に、さらに電子供与体(A)と電子受容体(B)例
えば四塩化チタンとを反応させて得られる固体生
成物()を有機アルミニウム化合物()例え
ばトリエチルアルミニウム、ジエチルアルミニウ
ムモノクロリドなどおよび芳香族カルボン酸エス
テル()例えばp−トルイル酸メチルと組合
せ、該芳香族カルボン酸エステル()と該固体
生成物()のモル比率/=0.1〜10.0とし
た触媒の存在下にプロピレンを多段階に重合させ
ることによつて得ることができる。この場合の1
段階とは、これらの単量体の連続的なもしくは1
時的な供給の1区分を意味する。以下最も簡単な
2段階重合について説明する。
本発明では、第1段階での重合体部分S1と第
2段階での該部分S2とは等量に近い量であるこ
とが望ましく、具体的にはS1およびS2は共にS1
+S2の合計量に対してそれぞれ35〜65重量%、
好ましくは40〜60重量%の範囲内でS1+S2の合
計量は100重量%である。S1+S2の量比が前記範
囲を越えて異なる結晶性プロピレン単独重合体で
は、充分な溶融流動性が得られず、また、造粒時
の混練効果が不充分となり、最終的に均質な成形
品が得難いのみならず、溶融粘弾性の向上度合い
も小さい。また、本発明で用いる結晶性プロピレ
ン単独重合体は両重合体部分の分子量格差も下式
(1)のような一定の範囲内になければならない。そ
のため重合条件は気相水素濃度の調整によつて行
う。今、高分子量部分の極限粘度(135℃、テト
ラリン溶液)を〔η〕H、低分子量部分の極限粘度
を〔η〕Lとすると両者は、
3.0≦〔η〕H−〔η〕L≦6.5 ……(1)
を満足しなければならない。この関係は、下式(2)
と実質的に対応する。
logHMFR−0.922logMFR≧1.44 ……(2)
ここでHMFRは温度230℃における荷重10.80
Kgを加えた場合の10分間の溶融樹脂の吐出量であ
る。すなわち、〔η〕H−〔η〕L<3.0ではlogHMFR
<0.922logMFR+1.44となり、該結晶性プロピレ
ン単独重合体を用いると溶融時における溶融流動
特性が不充分であり、溶融粘弾性の向上の度合も
不充分でありかかるプロピレン単独重合体を用い
て得られたシートでは2次加工時における垂れ下
がりが防止できない。反対に〔η〕H−〔η〕L>6.5
では前述のS1、S2両部分の分子量格差が過大と
なりすぎ、得られるプロピレン単独重合体粒子間
の分子量の不均一性が大きくなる結果、このよう
なプロピレン単独重合体からの成形品は表面の肌
荒れが顕著となる。以上のようにして得られる本
発明の結晶性プロピレン単独重合体のメルトフロ
ーレート(MFR)は0.03〜2.0g/10分が好まし
い。0.03未満では、造粒もしくは成形加工時の溶
融物の流動性が不良となり造粒機もしくは成形加
工機の動力を多く要し経済的でなく、また得られ
た成形品の表面の肌荒れが著しく商品価値を失
う。また、2.0を超えると製造したシートの2次
加工時の垂れ下がりが大きく該2次加工が困難と
なる。ちなみに前述の式(1)は結晶性プロピレン単
独重合体を用いたシートの熱成形時もしくは結晶
性プロピレン単独重合体を用いたブロー成形時の
成形材料の垂れ下がりの防止を可能にする粘弾性
を該結晶性プロピレン単独重合体に付与するため
に必要な重合体の設計方法を示すものである。同
様に前述の式(2)は結晶性プロピレン単独重合体の
流動性を示すものであり、式(1)の重合体の構造を
有する本発明の結晶性プロピレン単独重合体が式
(2)の条件を満足する。ここで、アイソタクチツク
ペンタツド分率とは、マクロモレキユールズ、6
巻、6号、11月〜12月、925〜926頁(1973年)
〔Macromolecules、Vol.6、No.、November−
December、925〜926(1973)〕に発表されている
方法、すなわち13C−NMRを使用して測定され
るプロピレン系重合体分子鎖中のペンタツド単位
でのアイソタクチツク分率である。言いかえると
該分率は、プロピレンモノマー単位が5個連続し
てアイソタクチツク結合したプロピレンモノマー
単位の分率を意味する。上述の13C−NMRを使
用した測定におけるスペクトルのピークの帰属決
定法は、マクロモレキユールズ、8巻、5号、9
月〜10月、687〜689頁(1975年)
〔Macromolecules、Vol.8、No.5、September−
October、687〜689(1975)〕に基づいた。ちなみ
に後述の実施例における13C−NMRによる測定
にはFT−NMRの270MHzの装置を用い、27000
回の積算測定により、シグナル検出限界をアイソ
タクチツクペンタツド分率で0.001にまで向上さ
せて行つた。上記アイソタクチツクペンタツド分
率(P)とメルトフローレート(MFR)との関係式
の要件は、一般にMFRの低いプロピレン単独重
合体は前記分率Pが低下するので、使用すべきプ
ロピレン単独重合体として、そのMFRに対応し
たPの下限値を限定することを構成要件としたも
のである。そして該Pは分率であるから1.00が上
限となる。前述の2段階重合におる極限粘度は、
テトラリン溶液中において135℃で測定する。但
し、第2段階の極限粘度〔η〕2は下式によつて求
めた。すなわち、第1段階の極限粘度〔η〕1、全
体すなわち第1段階と第2段階を通じて生成した
重合体の極限粘度〔η〕T、第1段階および第2段
階で生成した重合体部分の重合割合aおよびbを
測定し、
〔η〕T=a〔η〕1+b〔η〕2=a〔η〕1+(1−
a)〔η〕2
より求めた。前述のMFRはJIS K7210に準拠し、
230℃、荷重2.16Kgで、またHMFRはJIS K7210
に準拠し、230℃、荷重10.80Kgで測定する。
このとき該〔η〕1が〔η〕Lであつてもよくまた
〔η〕Hであつてもよい。
また本発明で用いる結晶性プロピレン単独重合
体にあつては、該単独重合体にプロピレンとエチ
レン、ブテン−1、ペンテン−1,4−メチル−
ペンテン−1、ヘキセン−1、オクテン−1など
のα−オレフインの1種もしくは2種以上との結
晶性ランダム共重合体もしくは結晶性ブロツク共
重合体、プロピレンとの酢酸ビニル、アクリル酸
エステルなどの共重合体もしくは該共重合体のケ
ン化物、プロピレンと不飽和カルボン酸もしくは
その無水物との共重合体、該共重合体と金属イオ
ン化合物との反応生成物など、またはプロピレン
系重合体に不飽和カルボン酸もしくはその誘導体
で変性した変性プロピレン系重合体などを混合し
た混合物を用いることもでき、また、各種合成ゴ
ム(例えばエチレン−プロピレン共重合体ゴム、
エチレン−プロピレン−非共役ジエン共重合体ゴ
ム、ポリブタジエン、ポリイソプレン、塩素化ポ
リエチレン、塩素化ポリプロピレン、スチレン−
ブタジエン系ゴム、スチレン−ブタジエン−スチ
レンブロツク共重合体、スチレン−イソプレン−
スチレンブロツク共重合体、スチレン−エチレン
−ブチレン−スチレンブロツク共重合体、スチレ
ン−プロピレン−ブチレン−スチレンブロツク共
重合体など)または熱可塑性合成樹脂(例えばポ
リエチレン、ポリブテン、ポリ−4−メチルペン
テン−1の如きプロピレン系重合体を除くポリオ
レフイン、ポリスチレン、スチレン−アクリロニ
トリル共重合体、アクリロニトリル−ブタジエン
−スチレン共重合体、ポリアミド、ポリエチレン
テレフタレート、ポリブチレンテレフタレート、
ポリ塩化ビニルなど)などを混合して用いること
もできる。このとき、該混合物が上述の式(1)を満
足し、かつ上述の1.00≧P≧0.015logMFR+
0.955を満足するものであればよい。
本発明で用いる化合物Aとしてはナトリウム−
2,2′−メチレン−ビス−(4,6−ジ−t−ブ
チルフエニル)フオスフエート、ナトリウム−
2,2′−エチリデン−ビス−(4,6−ジ−t−
ブチルフエニル)フオスフエート、リチウム−
2,2′−メチレン−ビス−(4,6−ジ−t−ブ
チルフエニル)フオスフエート、リチウム−2,
2′−エチリデン−ビス−(4,6−ジ−t−ブチ
ルフエニル)フオスフエート、ナトリウム−2,
2′−エチリデン−ビス−(4−i−プロピル−6
−t−ブチルフエニル)フオスフエート、リチウ
ム−2,2′−メチレン−ビス−(4−メチル−6
−t−ブチルフエニル)フオスフエート、リチウ
ム−2,2′−メチレン−ビス−(4−エチル−6
−t−ブチルフエニル)フオスフエート、カルシ
ウム−ビス−〔2,2′−チオビス−(4−メチル−
6−t−ブチルフエニル)フオスフエート〕、カ
ルシウム−ビス−〔2,2′−チオビス−(4−エチ
ル−6−t−ブチルフエニル)フオスフエート〕、
カルシウム−ビス−〔2,2′−チオビス−(4,6
−ジ−t−ブチルフエニル)フオスフエート〕、
マグネシウム−ビス−〔2,2′−チオビス−(4,
6−ジ−t−ブチルフエニル)フオスフエート〕、
マグネシウム−ビス−〔2,2′−チオビス−(4−
t−オクチルフエニル)フオスフエート〕、ナト
リウム−2,2′−ブチリデン−ビス−(4,6−
ジ−メチルフエニル)フオスフエート、ナトリウ
ム−2,2′−ブチリデン−ビス−(4,6−ジ−
t−ブチルフエニル)フオスフエート、ナトリウ
ム−2,2′−t−オクチルメチレン−ビス−(4,
6−ジ−メチルフエニル)フオスフエート、ナト
リウム−2,2′−t−オクチルメチレン−ビス−
(4,6−ジ−t−ブチルフエニル)フオスフエ
ート、カルシウム−ビス−〔2,2′−メチレン−
ビス−(4,6−ジ−t−ブチルフエニル)フオ
スフエート〕、マグネシウム−ビス−〔2,2′−メ
チレン−ビス−(4,6−ジ−t−ブチルフエニ
ル)フオスフエート〕、バリウム−ビス−〔2,
2′−メチレン−ビス−(4,6−ジ−t−ブチル
フエニル)フオスフエート〕、ナトリウム−2,
2′−メチレン−ビス−(4−メチル−6−t−ブ
チルフエニル)フオスフエート、ナトリウム−
2,2′−メチレン−ビス−(4−エチル−6−t
−ブチルフエニル)フオスフエート、ナトリウム
(4,4′−ジメチル−6,6′−ジ−t−ブチル−
2,2′−ビフエニル)フオスフエート、カルシウ
ム−ビス−〔(4,4′−ジメチル−6,6′−ジ−t
−ブチル−2,2′−ビフエニル)フオスフエー
ト〕、ナトリウム−2,2′−エチリデン−ビス−
(4−s−ブチル−6−t−ブチルフエニル)フ
オスフエート、ナトリウム−2,2′−メチレン−
ビス−(4,6−ジ−メチルフエニル)フオスフ
エート、ナトリウム−2,2′−メチレン−ビス−
(4,6−ジ−エチルフエニル)フオスフエート、
カリウム−2,2′−エチリデン−ビス−(4,6
−ジ−t−ブチルフエニル)フオスフエート、カ
ルシウム−ビス−〔2,2′−エチリデン−ビス−
(4,6−ジ−t−ブチルフエニル)フオスフエ
ート〕、マグネシウム−ビス−〔2,2′−エチリデ
ン−ビス−(4,6−ジ−t−ブチルフエニル)
フオスフエート〕、バリウム−ビス−〔2,2′−エ
チリデン−ビス−(4,6−ジ−tブチルフエニ
ル)フオスフエート〕、アルミニウム−トリス−
〔2,2′−メチレン−ビス−(4,6−ジ−t−ブ
チルフエニル)フオスフエート〕、アルミニウム
−トリス−〔2,2′−エチリデン−ビス−(4,6
−ジ−t−ブチルフエニル)フオスフエート〕ま
たはこれらの2種以上の混合物などを例示でき
る。特にナトリウム−2,2′−メチレン−ビス−
(4,6−ジ−t−ブチルフエニル)フオスフエ
ートが好ましい。該化合物Aの配合割合は、上述
の結晶性プロピレン単独重合体100重量部に対し
て0.01〜1重量部、好ましくは0.05〜0.5重量部で
ある。0.01重量部未満の配合では剛性および耐熱
剛性の改善効果が充分に発揮されず、また1重量
部を超えても構わないがそれ以上の改善効果の向
上が期待できず実際的でないばかりでなくまた不
経済である。
本発明の組成物にあつては、通常プロピレン系
重合体に添加される各種の添加剤例えばフエノー
ル系、チオエーテル系、リン系などの酸化防止
剤、光安定剤、透明化剤、造核剤、滑剤、帯電防
止剤、防曇剤、アンチブロツキング剤、無滴剤、
顔料、重金属不活性化剤(銅害防止剤)、過酸化
物の如きラジカル発生剤、金属石鹸類などの分散
剤もしくは中和剤、無機充填剤(例えばタルク、
マイカー、クレー、ウオラストナイト、ゼオライ
ト、アスベスト、炭酸カルシウム、水酸化アルミ
ニウム、水酸化マグネシウム、二酸化ケイ素、二
酸化チタン、酸化亜鉛、酸化マグネシウム、硫化
亜鉛、硫酸バリウム、ケイ酸カルシウム、ガラス
繊維、炭素繊維、カーボンブラツク、チタン酸カ
リウム、金属繊維など)もしくはカツプリング剤
(例えばシラン系、チタネート系、ボロン系、ア
ルミネート系、ジルコアルミネート系など)の如
き表面処理剤で表面処理された前記無機充填剤ま
たは有機充填剤(例えば木粉、パルプ、故紙、合
成繊維、天然繊維など)を本発明の目的を損なわ
ない範囲で併用することができる。特に無機充填
剤を併用すると、更に剛性および耐熱剛性が向上
するので併用することが好ましい。
本発明の組成物は前述の本発明に係わる結晶性
プロピレン単独重合体に対して、前記化合物Aな
らびに通常プロピレン系重合体に添加される前述
の各種添加剤の所定量を通常の混合装置例えばヘ
ンセルミキサー(商品名)、スーパーミキサー、
リボンブレンダー、バンバリミキサーなどを用い
て混合し、通常の単軸押出機、2軸押出機、ブラ
ベンダーまたはロールなどで、溶融混練温度170
℃〜300℃、好ましくは200℃〜250℃で溶融混練
ペレタイズすることにより得ることができる。得
られた組成物は射出成形法、押出成形法、ブロー
成形法などの各種成形法により目的とする成形品
の製造に供される。とりわけ本発明の組成物は2
次加工用シートおよびブロー成形品の製造に用い
た場合、本発明の効果が顕著となり好ましい。
〔作用〕
本発明において化合物Aで示されるフオスフエ
ート系化合物は特開昭58−1736号公報に開示され
た如く造核剤として剛性および耐熱剛性の改善に
作用することが一般に知られている。しかしなが
ら、前記化合物Aを本発明に係わる特定の分子量
分布と特定のアイソタクチツクペンタツド分率を
有するプロピレン単独重合体に配合することによ
り、従来公知の造核剤の配合からは到底予測でき
ない驚くべき相乗効果が発揮され、剛性および耐
熱剛性が著しく優れた組成物が得られる。
〔効果〕
本発明の組成物は、各種造核剤を配合してなる
プロピレン単独重合体組成物の従来公知の組成物
に比較して、(1)剛性および耐熱剛性が著しく優れ
ている。(2)成形品の薄肉化を計ることができ省資
源に寄与するばかりでなく、成形時の冷却速度も
早くなるので単位時間当りの成形速度を早くする
ことができ生産性の向上にも寄与できる。(3)従来
ポリスチレン、ABS樹脂、ポリエステルなどが
用いられていた用途にポリプロピレン樹脂を用い
ることが可能になり、ポリプロピレン樹脂の用途
の拡大が可能である。
〔実施例〕
以下、実施例、比較例および製造例によつて本
発明を具体的に説明するが、本発明によつて限定
されるものではない。
なお、実施例および比較例で用いた評価方法は
次の方法によつた。
() シートの2次加工性(加熱真空成形性);
得られたペレツトを用いて巾60cm、厚み0.4mm
のシートを押出成形法により作成し、該シート
の加熱真空成形性をモデル的に評価するため、
該シートを40cm×40cmに裁断し、40cm×40cmの
枠にぴんと張つた状態で固定し、200℃の恒温
室にいれる。やがて枠に固定されたシートは熱
せられて枠の中央部分が垂れ下がり始め、ある
時点からは熱収縮のため今度は逆に元の位置に
向けて戻り始める。その後再び垂れ下がり始め
るといつた挙動をとる。このときの(a)シートが
戻り始める直前の垂れ下がり量を最大垂下量と
して測定する(mm)。(b)シートが最大に垂れ下
がつた所から元の位置の方向へ最大に戻つた変
形量(mm)を測定し最大に戻つた変形量/最大
垂下量×100を最大戻り量(%)として記録す
る。(c)シートが最大に戻つたところから10mm再
度垂れ下がるまでの時間(秒)を測定し保持時
間とする。
以上の評価方法でシートの2次加工性(真空
成形性)が良好な材料とは、垂下最小、戻り最
大および保持時間の長いものをいう。
() 剛性;得られたペレツトを用いて巾60cm、
厚み0.4mmのシートを押出成形法により作成し、
該シートを用いて所定の試験片を調製し、ヤン
グ率の測定(ASTM D882に準拠)および引
張降伏強度の測定(ASTM D882に準拠)を
行うことにより剛性を評価した。高剛性の材料
とはヤング率および引張降伏強度の大きなもの
をいう。
なお、実施例および比較例はシートのMD
(タテ;押出方向)、TD(ヨコ;押出方向と直
角方向)の2種類の試験片を用いてヤング率お
よび引張降伏強度を測定し、その平均値で示し
た。
() 耐熱剛性;得られたペレツトを用いて長さ
130mm、巾13mm、厚み6.5mmの試験片を射出成形
法により作成し、該試験片を用いて熱変形温度
を測定(JIS K7207に準拠;4.6Kgf/cm2荷重)
とすることにより耐熱剛性を評価した。高耐熱
剛性の材料とは熱変形温度の高いものをいう。
製造例 1〜3(実施例および比較例で用いる結
晶性プロピレン単独重合体の製造例)
(1) 触媒の調製
n−ヘキサン600ml、ジエチルアルミニウム
モノクロリド(DEAC)0.50モル、ジイソアミ
ルエーテル1.20モルを25℃で1分間で混合し5
分間同温度で反応させて反応生成液()(ジ
イソアミルエーテル/DEACのモル比2.4)を
得た。窒素置換された反応器に四塩化チタン
4.0モルを入れ、35℃に加熱し、これに上記反
応生成液()の全量を180分間で滴下した後、
同温度に30分間保ち、75℃に昇温してさらに1
時間反応させ、室温(20℃)まで冷却し上澄液
を除き、n−ヘキサン4000mlを加えてデカンテ
ーシヨンで上澄液を除く操作を4回繰り返し
て、固体生成物()190gを得た。この固体
生成物()の全量をn−ヘキサン3000ml中に
懸濁させた状態で、20℃でジイソアミルエーテ
ル160gと四塩化チタン350gを室温にて約1分
間で加え65℃で1時間反応させた。反応終了
後、室温まで冷却し、上澄液をデカンテーシヨ
ンによつて除いた後、4000mlのn−ヘキサンを
加え10分間撹拌し、静置して上澄液を除く操作
を5回繰り返した後、減圧下で乾燥させ固体生
成物()を得た。
(2) 予備活性化触媒の調製
内容積20の傾斜羽根付きステンレス製反応
器を窒素ガスで置換した後、n−ヘキサン15
、ジエチルアルミニウムモノクロリド42g、
固体生成物()30gを室温で加えた後、水素
15Nを入れ、プロピレン分圧5Kg/cm2Gで5
分間反応させ、未反応プロピレン、水素および
n−ヘキサンを減圧で除去し、予備活性化触媒
()を粉粒体で得た(固体生成物()1g
当りプロピレン82.0g反応)。
(3) プロピレンの重合
窒素ガスで置換した内容積50の重合器内に
乾燥したn−ヘキサン20、ジエチルアルミニ
ウムモノクロリド8g、前記予備活性化触媒
()2gおよびp−トルイル酸メチル2.2gを
仕込み水素を加えて器内を70℃に保つた。つい
で該器内にプロピレンを供給し、器内の圧力を
10Kg/cm2G、気相部の水素濃度を製造例1とし
て11%、製造例2として5%および製造例3と
して14%そして温度を70℃として第1段階目の
重合を行つた。重合体量が3Kgに達した時点で
プロピレンの供給を停止し、器内温度を室温ま
で冷却し、水素と未反応のプロピレンを放出し
た。ついで重合スラリーの一部を抜き出し、
〔η〕1の測定および重合体中のチタン分の分析
を蛍光X線法により行い触媒単位重量当りの重
合体収量を求めるのに供した。
ついで重合器内を再度70℃に昇温し重合圧力
10Kg/cm2G、気相水素濃度を製造例1として
0.4%、製造例2として0.07%および製造例3
として0.08%に維持しつつ、第2段階目の重合
を行つた。第2段階目の重合体量が3Kgに達し
た時点でプロピレンの供給を停止し、器内温度
を室温まで冷却し、水素と未反応のプロピレン
を放出した。ついで重合スラリーの一部を抜き
出し、〔η〕Tの測定および重合体中のチタン分
の分析を蛍光X線法により行い触媒単位重量当
りの重合体収量を求め、前述の第1段階目の該
収量値を用いて第1段階目と第2段階目の重合
体量の比率を求め第2段階目の重合のみで得ら
れた重合体の極限粘度〔η〕2を計算より求め
た。前記抜き出し後の重合スラリーには5の
メタノールを加えて90℃で30分間撹拌した後20
重量%の水酸化ナトリウム水溶液40mlを加え、
さらに20分間撹拌した。つぎに室温まで冷却し
て水5を加え水洗と水分離を3回行つて得た
スラリーを濾過し、該濾過物を乾燥して白色の
重合体粉末を得た。重合体の分析結果を第1表
に示した。ここで〔η〕L=〔η〕1、〔η〕H=〔η〕
2である。
実施例1〜3、比較例1〜6
後述の第2表に示した製造例1〜3で製造した
各極限粘度、各メルトフローレート(MFR)、各
ハイメルトフローレート(HMFR)および各ア
イソタクチツクペンタツド分率(P)を有する粉末状
結晶性プロピレン単独重合体100重量部に、化合
物Aとしてナトリウム−2,2′−メチレン−ビス
−(4,6−ジ−t−ブチルフエニル)フオスフ
エートおよび他の添加剤のそれぞれ所定量を後述
の第2表に記載した配合割合でヘンセルミキサー
(商品名)に入れ、3分間撹拌混合した後口径40
mmの単軸押出機で200℃にて溶融混練処理してペ
レツト化した。また比較例1〜6として後述の第
2表に示した製造例1〜3で製造した各極限粘
度、各メルトフローレート、各ハイメルトフロー
レートおよび各アイソタクチツクペンタツド分率
を有する粉末状結晶性プロピレン単独重合体100
重量部に後述の第2表に記載の添加剤のそれぞれ
所定量を配合し、実施例1〜3に準拠して溶融混
練処理してペレツトを得た。
シートの2次加工性および剛性試験に用いるシ
ートは、得られたペレツトを樹脂温度250℃で押
出成形により調製した。また、耐熱剛性試験に用
いる試験片は、得られたペレツトを樹脂温度250
℃、金型温度50℃で射出成形により調製した。
得られたシートおよび試験片を用いて前記の試
験方法によりシートの2次加工性、剛性および耐
熱剛性の評価を行つた。これらの結果を第2表に
示した。
実施例4〜6、比較例7〜12
後述の第3表に示した製造例1〜3で製造した
各極限粘度、各メルトフローレート(MFR)、各
ハイルメルトフローレート(HMFR)および各
アイソタクチツクペンタツド分率(P)を有する粉末
状結晶性プロピレン単独重合体100重量部に、化
合物Aとしてナトリウム−2,2′−メチレン−ビ
ス−(4,6−ジ−t−ブチルフエニル)フオス
フエート、無機充填剤として平均粒径2〜3μの
微粒子タルクおよび他の添加剤のそれぞれ所定量
を後述の第3表に記載した配合割合でヘンセルミ
キサー(商品名)に入れ、3分間撹拌混合した後
口径40mmの単軸押出機で200℃にて溶融混練処理
してペレツト化した。また比較例7〜2として後
述の第3表に示した製造例1〜3で製造した各極
限粘度、各メルトフローレート、各ハイメルトフ
ローレートおよび各アイソタクチツクペンタツド
分率を有する粉末状結晶性プロピレン単独重合体
100重量部に後述の第3表に記載の添加剤のそれ
ぞれ所定量を配合し、実施例4〜6に準拠して溶
融混練処理してペレツトを得た。
シートの2次加工性および剛性試験に用いるシ
ートは、得られたペレツトを樹脂温度250℃で押
出成形により調製した。また、耐熱剛性試験に用
いる試験片は、得られたペレツトを樹脂温度250
℃、金型温度50℃で射出成形により調製した。
得られたシートおよび試験片を用いて前記の試
験方法によりシートの2次加工性、剛性および耐
熱剛性の評価を行つた。これらの結果を第3表に
示した。
第2〜3表に示される本発明に係わる化合物お
よび添加剤は下記の通りである。
化合物A;ナトリウム−2,2′−メチレン−ビス
−(4,6−ジ−t−ブチルフエニル)フオス
フエート〔アデカ・アーガス化学(株)製;
MARK NA−11〕
造核剤1;p−t−ブチル安息香酸アルミニウム
造核剤2;1・3,2・4−ジベンジリデンソル
ビトール
造核剤3;ナトリウム−ビス−(4−t−ブチル
フエニル)フオスフエート
フエノール系酸化防止剤1;2,6−ジ−t−ブ
チル−p−クレゾール
フエノール系酸化防止剤2;テトラキス〔メチレ
ン−3−(3′,5′−ジ−t−ブチル−4′−ヒドロ
キシフエニル)プロピオネート〕メタン
リン系酸化防止剤1;テトラキス(2,4−ジ−
t−ブチルフエニル)−4,4′−ビフエニレン
−ジ−フオスフオナイト
リン系酸化防止剤2;ビス(2,4−ジ−t−ブ
チルフエニル)−ペンタエリスリトール−ジフ
オスフアイト
Ca−St;ステアリン酸カルシウム
無機充填剤;タルク(平均粒径2〜3μ)
[Industrial Field of Application] The present invention relates to a highly rigid and highly melt viscoelastic propylene homopolymer composition. More specifically, the present invention relates to a high-rigidity, high-melt viscoelastic propylene homopolymer composition that is extremely superior in rigidity and heat-resistant rigidity. [Prior art] Propylene polymers generally have excellent processability, chemical resistance, electrical properties, and mechanical properties, so they are processed into injection molded products, blow molded products, films, sheets, fibers, etc. It is used for this purpose. However, sheets manufactured by processing propylene polymers tend to sag quickly during heat forming for secondary processing, the range of processing conditions is narrow, the forming efficiency is poor, and wide sheets suffer from the aforementioned sagging. There are various problems such as the large size, the tendency for the thickness of the secondary processed product to become uneven, and the tendency for overlapping wrinkles to occur. For this reason, the current situation is that only small molded products can be manufactured. Further, when a propylene polymer is used for blow molding, there are the following problems. That is, since the parison sags significantly during molding, the thickness of the molded product becomes uneven. For this reason, blow molding can only be applied to small products. If a high molecular weight propylene polymer is used to prevent the above-mentioned sagging, there will be poor fluidity, a large load during molding, a large energy loss, the risk of mechanical troubles, and the roughness of the molded product, resulting in a loss of commercial value, etc. There is a problem with this. On the other hand, depending on the various specific uses of the propylene polymer, the properties of the propylene polymer may not be sufficient, and there is a problem in that the expansion of its specific uses is limited. In particular, in terms of rigidity and heat resistance, it is inferior to polystyrene, ABS resin, polyester, etc., and this has become a serious bottleneck in expanding the use of propylene polymers. Therefore, if it is possible to improve the rigidity, the molded product can be made thinner to that extent, which not only contributes to resource conservation, but also increases the cooling rate of the molded product obtained during molding, so the unit The molding speed per hour can be increased, contributing to improved productivity. For this reason, for the purpose of improving the secondary processability, blow moldability, and rigidity of the above-mentioned sheets related to propylene polymers, Japanese Patent Laid-Open No. 58-219207 filed by the same applicant as the present application has been published. A propylene homopolymer having a specific molecular weight distribution and a specific isotactic pentad fraction is disclosed. Furthermore, in the above publication, an organic nucleating agent consisting of aluminum pt-butylbenzoate or 1,3,2,4-dibenzylidene sorbitol is added to the propylene homopolymer for the purpose of further improving the rigidity. Disclosed. [Problems to be Solved by the Invention] However, the sheet secondary processing of a propylene homopolymer having a specific molecular weight distribution and a specific isotactic pentad fraction disclosed in JP-A-58-219207 is Although the hardness and blow moldability are sufficiently satisfactory for practical purposes, the rigidity, although considerably improved, is still not fully satisfactory. Further, the propylene homopolymer having the above specific molecular weight distribution and specific isotactic pentad fraction is blended with aluminum pt-butylbenzoate or 1,3,2,4-dibenzylidene sorbitol. Although propylene homopolymer compositions have shown considerable improvement in stiffness, they are still not fully satisfactory when used in applications requiring high stiffness and heat-resistant stiffness. The present inventors have conducted extensive research in order to solve the above-mentioned problems regarding propylene-based polymer compositions containing the various nucleating agents described above. As a result, a composition obtained by blending a phosphate compound represented by the following general formula [] (hereinafter referred to as compound A) with a propylene homopolymer having a specific molecular weight distribution and a specific isotactic pentad fraction. However, it was discovered that the problems of the above-mentioned propylene-based polymer compositions could be solved, and the present invention was completed based on this knowledge. (However, in the formula, R 1 is a direct bond, sulfur, a methylene group, or an alkylidene group having 2 to 4 carbon atoms,
R 2 and R 3 are each hydrogen or carbon number 1 to 8
the same or different alkyl groups, M is monovalent to
n represents a trivalent metal atom, and n represents an integer of 1 to 3. ) As is clear from the above description, an object of the present invention is to provide a propylene homopolymer composition which, when formed into a sheet, has outstanding secondary processability, blow moldability, rigidity, and heat-resistant rigidity. It is. [Means for solving the problems] The present invention has the following configuration. Propylene is polymerized in multiple stages, and in the first stage, 35 to 65% by weight of the total polymer is polymerized, and in the second and subsequent stages, 65 to 35% by weight is polymerized. Among the polymer parts produced in the second and subsequent stages, when the intrinsic viscosity of the polymer part with high molecular weight is [η] H and the intrinsic viscosity of the polymer part with low molecular weight is [η] L , 3.0≦[η ] H − [η] L ≦6.5 ...(1) Each polymer portion has an intrinsic viscosity of Load at 230℃
The relationship between the amount of molten resin discharged in 10 minutes when 2.16Kg is added is 1.00≧P≧0.015logMFR+0.955
To 100 parts by weight of the crystalline propylene homopolymer, 0.01 to 100 parts of a phosphonate compound represented by the following general formula [] (hereinafter referred to as compound A) is added.
A highly rigid and highly melting viscoelastic propylene homopolymer composition containing 1 part by weight. (However, in the formula, R 1 is a direct bond, sulfur, a methylene group, or an alkylidene group having 2 to 4 carbon atoms,
R 2 and R 3 are each hydrogen or carbon number 1 to 8
the same or different alkyl groups, M is monovalent to
n represents a trivalent metal atom, and n represents an integer of 1 to 3. ) The crystalline propylene homopolymer used in the present invention is obtained by polymerizing propylene in multiple stages, and in the first stage, 35 to 65% by weight of the total polymer is added, and in the second and subsequent stages, the same amount is 65 to 35% by weight. Among the polymer parts produced in the first and second stages, the intrinsic viscosity of the polymer part with higher molecular weight is [η] H , and the limit viscosity of the polymer part with lower molecular weight is When the viscosity is [η] L , 3.0≦[η] H − [η] L ≦6.5 ...(1) The intrinsic viscosity of each polymer part is as follows, and the isotactic penta of the entire polymer is The relationship between the melt fraction (P) and melt flow rate (MFR) is 1.00≧P
It is a crystalline propylene homopolymer with ≧0.015logMFR+0.955. Such a propylene homopolymer is disclosed in Japanese Patent Application Laid-Open No.
It is manufactured by the manufacturing method described in Japanese Patent No. 58-219207. That is, an organoaluminum compound (), such as triethylaluminum, diethylaluminum monochloride, etc., or a reaction product () of an organoaluminum compound () and an electron donor (A), such as diisoamyl ether, is reacted with titanium tetrachloride (C). The solid product () obtained by reacting an electron donor (A) with an electron acceptor (B) such as titanium tetrachloride is then added to an organoaluminum compound () such as triethylaluminum. , diethylaluminum monochloride, etc., and an aromatic carboxylic acid ester (), for example, methyl p-toluate, in combination with the catalyst, the molar ratio of the aromatic carboxylic acid ester () and the solid product () being from 0.1 to 10.0. It can be obtained by polymerizing propylene in multiple stages in the presence of 1 in this case
A step is a successive or single step of these monomers.
It means a division of temporal supply. The simplest two-step polymerization will be explained below. In the present invention, it is desirable that the polymer portion S1 in the first step and the polymer portion S2 in the second step be in nearly equal amounts, and specifically, S1 and S2 are both S1
+35-65% by weight of the total amount of S2,
Preferably within the range 40-60% by weight, the total amount of S1+S2 is 100% by weight. If the crystalline propylene homopolymer has a different S1+S2 ratio beyond the above range, sufficient melt fluidity will not be obtained, and the kneading effect during granulation will be insufficient, resulting in a homogeneous molded product. Not only is it difficult to obtain, but the degree of improvement in melt viscoelasticity is also small. In addition, the crystalline propylene homopolymer used in the present invention has a molecular weight difference between both polymer parts as shown below.
It must be within a certain range as in (1). Therefore, the polymerization conditions are controlled by adjusting the gas phase hydrogen concentration. Now, if the intrinsic viscosity of the high molecular weight part (135℃, tetralin solution) is [η] H and the intrinsic viscosity of the low molecular weight part is [η] L , then both are 3.0≦[η] H − [η] L ≦6.5 ...(1) must be satisfied. This relationship is expressed by the following formula (2)
substantially corresponds to logHMFR−0.922logMFR≧1.44 ……(2) Here, HMFR is load 10.80 at temperature 230℃
This is the amount of molten resin discharged in 10 minutes when kg is added. That is, for [η] H − [η] L < 3.0, logHMFR
<0.922logMFR + 1.44, and the use of such a crystalline propylene homopolymer results in insufficient melt flow characteristics during melting and an insufficient degree of improvement in melt viscoelasticity. In the case of a sheet that has been folded, it is impossible to prevent the sheet from sagging during secondary processing. On the contrary, [η] H − [η] L >6.5
In this case, the molecular weight difference between the S1 and S2 portions described above becomes too large, and as a result, the non-uniformity of the molecular weight between the obtained propylene homopolymer particles becomes large, and as a result, molded products made from such propylene homopolymer have rough surfaces. becomes noticeable. The melt flow rate (MFR) of the crystalline propylene homopolymer of the present invention obtained as described above is preferably 0.03 to 2.0 g/10 minutes. If it is less than 0.03, the fluidity of the melt during granulation or molding will be poor, requiring a lot of power for the granulator or molding machine, making it uneconomical, and the surface of the resulting molded product will be extremely rough, making it difficult to manufacture products. lose value. Moreover, if it exceeds 2.0, the produced sheet will sag during secondary processing, making it difficult to perform the secondary processing. Incidentally, the above-mentioned equation (1) represents the viscoelasticity that makes it possible to prevent the molding material from sagging during thermoforming of sheets using crystalline propylene homopolymer or blow molding using crystalline propylene homopolymer. This shows a method for designing a polymer necessary for adding it to a crystalline propylene homopolymer. Similarly, the above formula (2) indicates the fluidity of the crystalline propylene homopolymer, and the crystalline propylene homopolymer of the present invention having the structure of the polymer of formula (1) has the formula
Satisfies condition (2). Here, the isotactic pentad fraction is macromolecules, 6
Volume, No. 6, November-December, pp. 925-926 (1973)
[Macromolecules, Vol.6, No., November−
December, 925-926 (1973)], that is, the isotactic fraction in pentad units in a propylene polymer molecular chain measured using 13 C-NMR. In other words, the fraction means the fraction of propylene monomer units in which five propylene monomer units are isotactically bonded consecutively. The method for determining the attribution of spectral peaks in measurements using 13 C-NMR described above is described in Macromolecules, Vol. 8, No. 5, 9.
Mon-October, pp. 687-689 (1975)
[Macromolecules, Vol.8, No.5, September-
October, 687-689 (1975)]. By the way, for the 13C -NMR measurement in the examples described later, a 270MHz FT-NMR device was used, and the 27000MHz
Through multiple integrated measurements, the signal detection limit was improved to 0.001 in isotactic pentad fraction. The requirements for the above relational expression between isotactic pentad fraction (P) and melt flow rate (MFR) are that propylene homopolymers with low MFR generally have a lower fraction P, so the propylene homopolymer to be used is As a combination, the configuration requirement is to limit the lower limit value of P corresponding to the MFR. Since P is a fraction, the upper limit is 1.00. The intrinsic viscosity in the two-step polymerization described above is
Measured in tetralin solution at 135°C. However, the second stage intrinsic viscosity [η] 2 was determined by the following formula. That is, the intrinsic viscosity of the first stage [η] 1 , the intrinsic viscosity of the entire polymer produced through the first and second stages [η] T , the polymerization of the polymer portion produced in the first and second stages Measure the ratios a and b, [η] T = a [η] 1 + b [η] 2 = a [η] 1 + (1-
a) [η] Determined from 2 . The MFR mentioned above complies with JIS K7210,
230℃, load 2.16Kg, and HMFR is JIS K7210
Measured at 230℃ and a load of 10.80Kg. In this case, the [η] 1 may be [η] L or [η] H. In addition, in the case of the crystalline propylene homopolymer used in the present invention, the homopolymer contains propylene and ethylene, butene-1, pentene-1,4-methyl-
Crystalline random copolymers or crystalline block copolymers with one or more α-olefins such as pentene-1, hexene-1, octene-1, vinyl acetate with propylene, acrylic esters, etc. Copolymers or saponified products of the copolymers, copolymers of propylene and unsaturated carboxylic acids or their anhydrides, reaction products of the copolymers with metal ion compounds, etc. Mixtures of modified propylene polymers modified with saturated carboxylic acids or derivatives thereof can also be used, and various synthetic rubbers (e.g. ethylene-propylene copolymer rubber,
Ethylene-propylene-nonconjugated diene copolymer rubber, polybutadiene, polyisoprene, chlorinated polyethylene, chlorinated polypropylene, styrene-
Butadiene rubber, styrene-butadiene-styrene block copolymer, styrene-isoprene-
styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-propylene-butylene-styrene block copolymer, etc.) or thermoplastic synthetic resins (such as polyethylene, polybutene, poly-4-methylpentene-1 Polyolefins, polystyrene, styrene-acrylonitrile copolymers, acrylonitrile-butadiene-styrene copolymers, polyamides, polyethylene terephthalate, polybutylene terephthalate, excluding propylene-based polymers such as
It is also possible to use a mixture of polyvinyl chloride, etc.). At this time, the mixture satisfies the above formula (1) and the above 1.00≧P≧0.015logMFR+
It is sufficient as long as it satisfies 0.955. Compound A used in the present invention is sodium-
2,2'-methylene-bis-(4,6-di-t-butylphenyl) phosphate, sodium-
2,2'-ethylidene-bis-(4,6-di-t-
butyl phenyl) phosphate, lithium
2,2'-methylene-bis-(4,6-di-t-butylphenyl)phosphate, lithium-2,
2'-ethylidene-bis-(4,6-di-t-butylphenyl) phosphate, sodium-2,
2'-ethylidene-bis-(4-i-propyl-6
-t-butylphenyl) phosphate, lithium-2,2'-methylene-bis-(4-methyl-6
-t-butylphenyl) phosphate, lithium-2,2'-methylene-bis-(4-ethyl-6
-t-butylphenyl) phosphate, calcium-bis-[2,2'-thiobis-(4-methyl-
6-t-butylphenyl) phosphate], calcium-bis-[2,2'-thiobis-(4-ethyl-6-t-butylphenyl) phosphate],
Calcium-bis-[2,2'-thiobis-(4,6
-di-t-butylphenyl) phosphate],
Magnesium-bis-[2,2'-thiobis-(4,
6-di-t-butylphenyl) phosphate],
Magnesium-bis-[2,2'-thiobis-(4-
t-octylphenyl) phosphate], sodium-2,2'-butylidene-bis-(4,6-
di-methylphenyl) phosphate, sodium-2,2'-butylidene-bis-(4,6-di-
t-butylphenyl) phosphate, sodium-2,2'-t-octylmethylene-bis-(4,
6-dimethylphenyl) phosphate, sodium-2,2'-t-octylmethylene-bis-
(4,6-di-t-butylphenyl)phosphate, calcium-bis-[2,2'-methylene-
Bis-(4,6-di-t-butylphenyl) phosphate], Magnesium-bis-[2,2'-methylene-bis-(4,6-di-t-butylphenyl) phosphate], Barium-bis-[2 ,
2'-methylene-bis-(4,6-di-t-butylphenyl) phosphate], sodium-2,
2'-methylene-bis-(4-methyl-6-t-butylphenyl) phosphate, sodium-
2,2'-methylene-bis-(4-ethyl-6-t
-butylphenyl) phosphate, sodium (4,4'-dimethyl-6,6'-di-t-butyl-
2,2'-biphenyl) phosphate, calcium bis-[(4,4'-dimethyl-6,6'-di-t
-butyl-2,2'-biphenyl) phosphate], sodium-2,2'-ethylidene-bis-
(4-s-butyl-6-t-butylphenyl) phosphate, sodium-2,2'-methylene-
Bis-(4,6-di-methylphenyl)phosphate, sodium-2,2'-methylene-bis-
(4,6-di-ethylphenyl) phosphate,
Potassium-2,2'-ethylidene-bis-(4,6
-di-t-butylphenyl) phosphate, calcium-bis-[2,2'-ethylidene-bis-
(4,6-di-t-butylphenyl) phosphate], magnesium-bis-[2,2'-ethylidene-bis-(4,6-di-t-butylphenyl)
phosphate], barium-bis-[2,2'-ethylidene-bis-(4,6-di-t-butylphenyl) phosphate], aluminum-tris-
[2,2'-methylene-bis-(4,6-di-t-butylphenyl) phosphate], aluminum-tris-[2,2'-ethylidene-bis-(4,6
-di-t-butylphenyl) phosphate] or a mixture of two or more thereof. Especially sodium-2,2'-methylene-bis-
(4,6-di-t-butylphenyl) phosphate is preferred. The blending ratio of the compound A is 0.01 to 1 part by weight, preferably 0.05 to 0.5 part by weight, based on 100 parts by weight of the above-mentioned crystalline propylene homopolymer. If the amount is less than 0.01 part by weight, the effect of improving stiffness and heat resistance stiffness will not be sufficiently exhibited, and if it is more than 1 part by weight, no further improvement can be expected and it is not only impractical but also It is uneconomical. In the composition of the present invention, various additives that are usually added to propylene polymers, such as phenol-based, thioether-based, phosphorus-based antioxidants, light stabilizers, clarifying agents, nucleating agents, Lubricants, antistatic agents, antifogging agents, antiblocking agents, non-drop agents,
Pigments, heavy metal deactivators (copper inhibitors), radical generators such as peroxides, dispersants or neutralizing agents such as metal soaps, inorganic fillers (e.g. talc,
Mica, clay, wollastonite, zeolite, asbestos, calcium carbonate, aluminum hydroxide, magnesium hydroxide, silicon dioxide, titanium dioxide, zinc oxide, magnesium oxide, zinc sulfide, barium sulfate, calcium silicate, glass fiber, carbon fiber , carbon black, potassium titanate, metal fibers, etc.) or coupling agents (for example, silane-based, titanate-based, boron-based, aluminate-based, zircoaluminate-based, etc.). Alternatively, organic fillers (for example, wood flour, pulp, waste paper, synthetic fibers, natural fibers, etc.) may be used in combination without impairing the purpose of the present invention. In particular, when an inorganic filler is used in combination, the rigidity and heat-resistant rigidity are further improved, so it is preferable to use the inorganic filler in combination. The composition of the present invention is prepared by adding predetermined amounts of the compound A and the various additives usually added to propylene polymers to the crystalline propylene homopolymer according to the present invention using a conventional mixing device, such as a mixing device. Cell Mixer (product name), Super Mixer,
Mix using a ribbon blender, Banbury mixer, etc., and melt and knead with a normal single screw extruder, twin screw extruder, Brabender or roll, etc. at a melt kneading temperature of 170°C.
It can be obtained by melt-kneading and pelletizing at a temperature of .degree. C. to 300.degree. C., preferably 200.degree. C. to 250.degree. The obtained composition is used to produce a desired molded article by various molding methods such as injection molding, extrusion molding, and blow molding. In particular, the composition of the invention has 2
When used in the production of sheets for subsequent processing and blow-molded products, the effects of the present invention will be significant, which is preferable. [Function] In the present invention, the phosphate compound represented by Compound A is generally known to act as a nucleating agent to improve stiffness and heat-resistant stiffness, as disclosed in JP-A-58-1736. However, by blending the compound A with the propylene homopolymer having a specific molecular weight distribution and a specific isotactic pentad fraction according to the present invention, an unexpected surprise that cannot be predicted from the blending of conventionally known nucleating agents can be obtained. A synergistic effect is exhibited, and a composition with extremely excellent stiffness and heat-resistant stiffness is obtained. [Effects] The composition of the present invention is significantly superior in (1) rigidity and heat-resistant rigidity compared to conventionally known compositions of propylene homopolymer compositions containing various nucleating agents. (2) Not only can the molded product be made thinner, contributing to resource conservation, but also the cooling rate during molding is faster, which increases the molding speed per unit time, contributing to improved productivity. can. (3) Polypropylene resin can now be used in applications where polystyrene, ABS resin, polyester, etc. have traditionally been used, and the applications of polypropylene resin can be expanded. [Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, Comparative Examples, and Production Examples, but the present invention is not limited by the present invention. The evaluation method used in Examples and Comparative Examples was as follows. () Secondary processability of sheet (heat vacuum formability);
Using the obtained pellets, width 60cm, thickness 0.4mm
In order to create a sheet by extrusion molding method and evaluate the heat vacuum formability of the sheet using a model,
The sheet is cut to 40 cm x 40 cm, fixed tightly in a 40 cm x 40 cm frame, and placed in a constant temperature room at 200°C. Eventually, the sheet fixed to the frame will heat up and the center of the frame will begin to sag, and at a certain point, due to heat contraction, it will begin to return to its original position. After that, it starts to droop again and behaves as if it were sagging. At this time, (a) measure the amount of sagging just before the sheet starts to return as the maximum amount of sagging (mm). (b) Measure the amount of deformation (mm) at which the sheet returned to its original position from the point where it sank to the maximum, and calculate the amount of deformation returned to the maximum / maximum amount of droop x 100 as the maximum amount of return (%) Record as. (c) Measure the time (seconds) from when the sheet returns to its maximum position until it hangs down 10mm again and use this as the holding time. A material with good secondary processability (vacuum formability) of a sheet according to the above evaluation method refers to a material with minimum droop, maximum return, and long holding time. () Rigidity: Using the obtained pellets, width 60cm,
A sheet with a thickness of 0.4 mm was created by extrusion molding,
Predetermined test pieces were prepared using the sheet, and rigidity was evaluated by measuring Young's modulus (based on ASTM D882) and measuring tensile yield strength (based on ASTM D882). A highly rigid material is one that has a high Young's modulus and a high tensile yield strength. In addition, the examples and comparative examples are sheet MD
Young's modulus and tensile yield strength were measured using two types of test specimens: (vertical; extrusion direction) and TD (horizontal; direction perpendicular to the extrusion direction), and the average values are shown. () Heat resistance rigidity;
A test piece of 130 mm, width 13 mm, and thickness 6.5 mm was created by injection molding, and the heat distortion temperature was measured using the test piece (based on JIS K7207; 4.6 Kgf/cm 2 load).
The heat resistance rigidity was evaluated by: A material with high heat resistance and rigidity is one that has a high heat deformation temperature. Production Examples 1 to 3 (Production Examples of Crystalline Propylene Homopolymers Used in Examples and Comparative Examples) (1) Preparation of Catalyst 600 ml of n-hexane, 0.50 mol of diethylaluminum monochloride (DEAC), and 1.20 mol of diisoamyl ether. Mix for 1 minute at 25°C.
The mixture was allowed to react at the same temperature for minutes to obtain a reaction product solution (2.4 molar ratio of diisoamyl ether/DEAC). Titanium tetrachloride in a reactor purged with nitrogen.
4.0 mol was added, heated to 35°C, and the entire amount of the reaction product solution () was added dropwise over 180 minutes.
Keep at the same temperature for 30 minutes, then raise the temperature to 75℃ and continue for 1 hour.
The reaction was allowed to proceed for an hour, cooled to room temperature (20°C), the supernatant liquid was removed, 4000 ml of n-hexane was added, and the supernatant liquid was removed by decantation. This operation was repeated four times to obtain 190 g of a solid product (). . The entire amount of this solid product () was suspended in 3000 ml of n-hexane, and 160 g of diisoamyl ether and 350 g of titanium tetrachloride were added at 20°C over about 1 minute at room temperature and reacted at 65°C for 1 hour. Ta. After the reaction was completed, the mixture was cooled to room temperature, the supernatant liquid was removed by decantation, 4000 ml of n-hexane was added, the mixture was stirred for 10 minutes, and the operation of standing still and removing the supernatant liquid was repeated 5 times. After that, it was dried under reduced pressure to obtain a solid product (). (2) Preparation of preactivated catalyst After purging a stainless steel reactor with internal volume 20 with inclined blades with nitrogen gas, 15
, 42g of diethylaluminum monochloride,
After adding 30 g of solid product () at room temperature, hydrogen
Add 15N, propylene partial pressure 5Kg/cm 2 G to 5
After reacting for 1 minute, unreacted propylene, hydrogen and n-hexane were removed under reduced pressure to obtain a preactivated catalyst () in the form of powder (1 g of solid product ()).
82.0g of propylene per reaction). (3) Polymerization of propylene 20 g of dried n-hexane, 8 g of diethylaluminum monochloride, 2 g of the preactivated catalyst (2), and 2.2 g of methyl p-toluate were placed in a polymerization vessel with an internal volume of 50 g purged with nitrogen gas. Hydrogen was added to maintain the inside of the vessel at 70°C. Next, propylene is supplied into the vessel to reduce the pressure inside the vessel.
The first stage polymerization was carried out at 10 Kg/cm 2 G, hydrogen concentration in the gas phase of 11% as in Production Example 1, 5% as Production Example 2 and 14% as Production Example 3, and a temperature of 70°C. When the amount of polymer reached 3 kg, the supply of propylene was stopped, the temperature inside the vessel was cooled to room temperature, and unreacted propylene with hydrogen was discharged. Then, a part of the polymerization slurry is extracted,
Measurement of [η] 1 and analysis of the titanium content in the polymer were carried out by fluorescent X-ray method to determine the polymer yield per unit weight of catalyst. Then, the temperature inside the polymerization vessel was raised to 70℃ again and the polymerization pressure was increased.
10Kg/cm 2 G, gas phase hydrogen concentration as Production Example 1
0.4%, 0.07% as Production Example 2 and Production Example 3
The second stage of polymerization was carried out while maintaining the concentration at 0.08%. When the amount of polymer in the second stage reached 3 kg, the supply of propylene was stopped, the temperature inside the vessel was cooled to room temperature, and unreacted propylene with hydrogen was discharged. Next, a part of the polymerization slurry is extracted, and [η] T is measured and the titanium content in the polymer is analyzed by fluorescent X-ray method to determine the polymer yield per unit weight of catalyst. Using the yield value, the ratio of the amount of polymer in the first stage and the second stage was determined, and the intrinsic viscosity [η] 2 of the polymer obtained only in the second stage polymerization was determined by calculation. After adding methanol from step 5 to the polymerization slurry after the extraction, stirring at 90°C for 30 minutes,
Add 40ml of sodium hydroxide aqueous solution of wt%,
Stirred for an additional 20 minutes. Next, the mixture was cooled to room temperature, water 5 was added thereto, water washing and water separation were performed three times, and the resulting slurry was filtered, and the filtrate was dried to obtain a white polymer powder. The analysis results of the polymer are shown in Table 1. Here, [η] L = [η] 1 , [η] H = [η]
It is 2 . Examples 1 to 3, Comparative Examples 1 to 6 Each intrinsic viscosity, each melt flow rate (MFR), each high melt flow rate (HMFR), and each isoproduced in Production Examples 1 to 3 shown in Table 2 below. Sodium-2,2'-methylene-bis-(4,6-di-t-butylphenyl) phosphate as compound A was added to 100 parts by weight of a powdered crystalline propylene homopolymer having a tactical pentad fraction (P). and other additives in the proportions listed in Table 2 below in a Hensel mixer (trade name), stirred and mixed for 3 minutes, and then
The mixture was melt-kneaded at 200°C using a single-screw extruder (mm) to form pellets. In addition, as Comparative Examples 1 to 6, powders having each intrinsic viscosity, each melt flow rate, each high melt flow rate, and each isotactic pentad fraction manufactured in Production Examples 1 to 3 shown in Table 2 below. Crystalline propylene homopolymer 100
Predetermined amounts of additives listed in Table 2 below were added to the parts by weight, and the mixture was melt-kneaded in accordance with Examples 1 to 3 to obtain pellets. The sheet used for the sheet secondary processability and rigidity tests was prepared by extrusion molding the obtained pellets at a resin temperature of 250°C. In addition, the test piece used for the heat resistance stiffness test was obtained by heating the pellets at a resin temperature of 250.
It was prepared by injection molding at a temperature of 50°C and a mold temperature of 50°C. Using the obtained sheet and test piece, the sheet's secondary processability, rigidity, and heat-resistant rigidity were evaluated by the test method described above. These results are shown in Table 2. Examples 4 to 6, Comparative Examples 7 to 12 Each intrinsic viscosity, each melt flow rate (MFR), each Heil melt flow rate (HMFR) and each isoproduced in Production Examples 1 to 3 shown in Table 3 below. Sodium-2,2'-methylene-bis-(4,6-di-t-butylphenyl) phosphate as compound A was added to 100 parts by weight of a powdered crystalline propylene homopolymer having a tactical pentad fraction (P). , predetermined amounts of particulate talc with an average particle size of 2 to 3 μm as an inorganic filler and other additives were placed in a Hensel mixer (trade name) at the mixing ratios listed in Table 3 below, and mixed by stirring for 3 minutes. The mixture was melt-kneaded at 200°C using a single-screw extruder with a rear diameter of 40 mm to form pellets. In addition, as Comparative Examples 7 to 2, powders having each intrinsic viscosity, each melt flow rate, each high melt flow rate, and each isotactic pentad fraction manufactured in Production Examples 1 to 3 shown in Table 3 below. Crystalline propylene homopolymer
Predetermined amounts of the additives listed in Table 3 below were added to 100 parts by weight, and the mixture was melt-kneaded in accordance with Examples 4 to 6 to obtain pellets. The sheet used for the sheet secondary processability and rigidity tests was prepared by extrusion molding the obtained pellets at a resin temperature of 250°C. In addition, the test piece used for the heat resistance stiffness test was obtained by heating the pellets at a resin temperature of 250.
It was prepared by injection molding at a temperature of 50°C and a mold temperature of 50°C. Using the obtained sheet and test piece, the sheet's secondary processability, rigidity, and heat-resistant rigidity were evaluated by the test method described above. These results are shown in Table 3. The compounds and additives according to the present invention shown in Tables 2 and 3 are as follows. Compound A: Sodium-2,2'-methylene-bis-(4,6-di-t-butylphenyl) phosphate [manufactured by Adeka Argus Chemical Co., Ltd.;
MARK NA-11] Nucleating agent 1; Aluminum pt-butylbenzoate Nucleating agent 2; 1,3,2,4-dibenzylidene sorbitol Nucleating agent 3; Sodium-bis-(4-t-butylphenyl) Phosphate phenolic antioxidant 1; 2,6-di-t-butyl-p-cresol phenolic antioxidant 2; Tetrakis[methylene-3-(3',5'-di-t-butyl-4 '-Hydroxyphenyl)propionate] Methaneline antioxidant 1; Tetrakis(2,4-di-
t-butylphenyl)-4,4'-biphenylene-di-phosphonitophosphorous antioxidant 2; bis(2,4-di-t-butylphenyl)-pentaerythritol-diphosphite Ca-St; calcium stearate inorganic filler ; Talc (average particle size 2-3μ)
【表】【table】
【表】【table】
【表】【table】
【表】
第2表に記載の実施例および比較例は、プロピ
レン系重合体として各極限粘度、各メルトフロー
レート、各ハイメルトフローレートおよび各アイ
ソタクチツクペンタツド分率を有する結晶性プロ
ピレン単独重合体を用いた場合である。第2表か
らわかるように、実施例1〜3は本発明の範囲内
にある分子量分布およびアイソタクチツクペンタ
ツド分率を有する結晶性プロピレン単独重合体に
化合物Aを配合したものであり、実施例1〜3と
比較例1〜3(本発明の範囲内にある分子量分布
およびアイソタクチツクペンタツド分率を有する
結晶性プロピレン単独重合体に、有機造核剤を用
いないもの)をくらべてみると、実施例1〜3お
よび比較例1〜3ともシートの2次加工性は同程
度であるものの、比較例1〜3は剛性および耐熱
剛性の改善効果は未だ充分ではない。さらに、比
較例1〜3の剛性および耐熱剛性を改善するため
に本発明の範囲内にある分子量分布およびアイソ
タクチツクペンタツド分率を有する結晶性プロピ
レン単独重合体に化合物A以外の化合物からなる
有機造核剤を用いた比較例4〜6と実施例1〜3
をくらべると、比較例4〜6は剛性および耐熱剛
性の改善効果はかなり認められるものの未だ充分
ではなく、実施例1〜3が著しく剛性および耐熱
剛性が優れており、化合物Aを用いることにより
顕著な相乗効果が認められることがわかる。すな
わち、本発明で得られる剛性および耐熱剛性は、
本発明において限定された範囲内にあるアイソタ
クチツクペンタツド分率を有する結晶性プロピレ
ン単独重合体に化合物Aを用いたときにみられる
特有の効果であるといえる。
第3表は第2表において用いたプロピレン系重
合体に、更に無機充填剤としてタルクを併用した
ものであり、これについても上述と同様の効果が
確認された。
このことから本発明の組成物が、従来から知ら
れた結晶性プロピレン単独重合体に単に造核剤を
配合してなる組成物にくらべて、シートの2次加
工性ならびに剛性および耐熱剛性の点で著しく優
れていることがわかり本発明組成物の顕著な効果
が確認された。[Table] The Examples and Comparative Examples listed in Table 2 are crystalline propylene alone having various intrinsic viscosities, various melt flow rates, various high melt flow rates, and various isotactic pentad fractions as propylene polymers. This is the case when a polymer is used. As can be seen from Table 2, in Examples 1 to 3 Compound A was blended with a crystalline propylene homopolymer having a molecular weight distribution and an isotactic pentad fraction within the range of the present invention. Comparison of Examples 1 to 3 and Comparative Examples 1 to 3 (crystalline propylene homopolymer having a molecular weight distribution and isotactic pentad fraction within the range of the present invention without using an organic nucleating agent) As can be seen, although the secondary processability of the sheets in Examples 1 to 3 and Comparative Examples 1 to 3 is comparable, Comparative Examples 1 to 3 still have insufficient effects of improving rigidity and heat-resistant rigidity. Furthermore, in order to improve the rigidity and heat-resistant rigidity of Comparative Examples 1 to 3, a compound other than Compound A was added to a crystalline propylene homopolymer having a molecular weight distribution and an isotactic pentad fraction within the range of the present invention. Comparative Examples 4 to 6 and Examples 1 to 3 using organic nucleating agents
Comparing Comparative Examples 4 to 6, although the improvement effect on stiffness and heat resistance stiffness is considerably recognized, it is still not sufficient. It can be seen that a synergistic effect is observed. That is, the rigidity and heat-resistant rigidity obtained by the present invention are as follows:
This can be said to be a unique effect observed when Compound A is used in a crystalline propylene homopolymer having an isotactic pentad fraction within a limited range in the present invention. Table 3 shows the results in which the propylene polymer used in Table 2 was further combined with talc as an inorganic filler, and the same effect as described above was confirmed with this as well. This shows that the composition of the present invention has better sheet fabrication properties, stiffness, and heat-resistant stiffness than conventionally known compositions made by simply blending a nucleating agent with a crystalline propylene homopolymer. It was found that the composition of the present invention had a remarkable effect on the composition of the present invention.
Claims (1)
階目において全重合体量の35〜65重量%を、その
第2段階目以降において同じく65〜35重量%を重
合させ、該第1段階目と第2段階目以降で生成す
る各重合体部分のうち、分子量の高い重合体部分
の極限粘度を〔η〕H、分子量の低い重合体部分の
極限粘度を〔η〕Lとするとき 3.0≦〔η〕H−〔η〕L≦6.5 ……(1) なる各重合体部分の極限粘度値を有し、かつ、全
重合体のアイソタクチツクペンタツド分率(P)とメ
ルトフローレート(MFR;230℃における荷重
2.16Kgを加えたときの10分間の溶融樹脂の吐出
量)との関係が1.00≧P≧0.015logMFR+0.955
である結晶性プロピレン単独重合体100重量部に
対して、下記一般式〔〕で示されるフオスフエ
ート系化合物(以下、化合物Aという。)を0.01
〜1重量部配合してなる高剛性高溶融粘弾性プロ
ピレン単独重合体組成物。 (但し、式中R1は直接結合、硫黄またはメチレ
ン基もしくは炭素数2〜4のアルキリデン基を、
R2およびR3はそれぞれ水素または炭素数1〜8
の同種もしくは異種のアルキル基を、Mは1価〜
3価の金属原子を、nは1〜3の整数を示す。) 2 結晶性プロピレン単独重合体のメルトフロー
レート(MFR)が0.03〜2.0g/10分である特許
請求の範囲第1項に記載の高剛性高溶融粘弾性プ
ロピレン単独重合体組成物。 3 結晶性プロピレン単独重合体のハイメルトフ
ローレート(HMFR;230℃における荷重10.80
Kgを加えた場合の10分間の溶融樹脂の吐出量)と
メルトフローレート(MFR)の関係が logHMFR−0.922logMFR≧1.44 ……(2) を満足する(HMFR)および(MFR)を有する
結晶性プロピレン単独重合体を用いる特許請求の
範囲第1項に記載の高剛性高溶融粘弾性プロピレ
ン単独重合体組成物。 4 一般式〔〕において、R1がメチレン基、
R2およびR3で示されるアルキル基がt−ブチル
基である特許請求の範囲第1項〜第3項のいずれ
か1項に記載の高剛性高溶融粘弾性プロピレン単
独重合体組成物。 5 化合物Aとしてナトリウム−2,2′−メチレ
ン−ビス−(4,6−ジ−t−ブチルフエニル)
フオスフエートを配合してなる特許請求の範囲第
1項〜第3項のいずれか1項に記載の高剛性高溶
融粘弾性プロピレン単独重合体組成物。 6 無機充填剤を配合してなる特許請求の範囲第
1項〜第3項のいずれか1項に記載の高剛性高溶
融粘弾性プロピレン単独重合体組成物。 7 無機充填剤としてタルク、マイカ、クレー、
ウオラストナイト、ゼオライト、アスベスト、炭
酸カルシウム、水酸化アルミニウム、水酸化マグ
ネシウム、二酸化ケイ素、二酸化チタン、酸化亜
鉛、酸化マグネシウム、硫化亜鉛、硫酸バリウ
ム、ケイ酸カルシウム、ガラス繊維、炭素繊維、
カーボンブラツク、チタン酸カリウムおよび金属
繊維から選ばれた1種または2種以上のものを用
いる特許請求の範囲第6項に記載の高剛性高溶融
粘弾性プロピレン単独重合体組成物。[Scope of Claims] 1. Polymerizing propylene in multiple stages, in which 35 to 65% by weight of the total polymer is polymerized in the first stage, and 65 to 35% by weight in the second and subsequent stages, Among the polymer parts produced in the first stage and the second stage, the intrinsic viscosity of the polymer part with a high molecular weight is [η] H , and the intrinsic viscosity of the polymer part with a low molecular weight is [η] L. When 3.0≦[η] H − [η] L ≦6.5 ...(1) Each polymer portion has an intrinsic viscosity of and melt flow rate (MFR; load at 230℃)
The relationship between the amount of molten resin discharged in 10 minutes when 2.16Kg is added is 1.00≧P≧0.015logMFR+0.955
To 100 parts by weight of crystalline propylene homopolymer, 0.01 parts of a phosphonate compound represented by the following general formula [] (hereinafter referred to as compound A) was added.
A highly rigid and highly melting viscoelastic propylene homopolymer composition containing ~1 part by weight. (However, in the formula, R 1 is a direct bond, sulfur, a methylene group, or an alkylidene group having 2 to 4 carbon atoms,
R 2 and R 3 are each hydrogen or carbon number 1 to 8
the same or different alkyl groups, M is monovalent to
n represents a trivalent metal atom, and n represents an integer of 1 to 3. 2. The high-rigidity, high-melt viscoelastic propylene homopolymer composition according to claim 1, wherein the crystalline propylene homopolymer has a melt flow rate (MFR) of 0.03 to 2.0 g/10 minutes. 3 High melt flow rate (HMFR; load 10.80 at 230℃ of crystalline propylene homopolymer)
Crystallinity with (HMFR) and (MFR) that satisfy the relationship between melt flow rate (MFR) and melt flow rate (MFR) (discharge amount of molten resin in 10 minutes when Kg is added) The high rigidity and high melt viscoelastic propylene homopolymer composition according to claim 1, which uses a propylene homopolymer. 4 In the general formula [], R 1 is a methylene group,
The highly rigid and highly melting viscoelastic propylene homopolymer composition according to any one of claims 1 to 3, wherein the alkyl groups represented by R 2 and R 3 are t-butyl groups. 5 Sodium-2,2'-methylene-bis-(4,6-di-t-butylphenyl) as compound A
A highly rigid and highly melting viscoelastic propylene homopolymer composition according to any one of claims 1 to 3, which contains a phosphate. 6. The highly rigid and highly melting viscoelastic propylene homopolymer composition according to any one of claims 1 to 3, which contains an inorganic filler. 7 Talc, mica, clay, as inorganic fillers
Wollastonite, zeolite, asbestos, calcium carbonate, aluminum hydroxide, magnesium hydroxide, silicon dioxide, titanium dioxide, zinc oxide, magnesium oxide, zinc sulfide, barium sulfate, calcium silicate, glass fiber, carbon fiber,
7. The highly rigid and highly melting viscoelastic propylene homopolymer composition according to claim 6, which uses one or more selected from carbon black, potassium titanate, and metal fibers.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043756A JPS63210152A (en) | 1987-02-26 | 1987-02-26 | High-rigidity and high-melt viscoelasticity propylene homopolymer composition |
CA000559463A CA1318056C (en) | 1987-02-26 | 1988-02-22 | High stiffness propylene polymer composition |
EP19880102820 EP0280297B1 (en) | 1987-02-26 | 1988-02-25 | High stiffness propylene polymer composition |
DE19883855317 DE3855317T2 (en) | 1987-02-26 | 1988-02-25 | Propylene polymer composition with high rigidity |
KR1019880001962A KR970000207B1 (en) | 1987-02-26 | 1988-02-26 | Propylene polymer composition having a high stiffness and highmelt viscoelasticity composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043756A JPS63210152A (en) | 1987-02-26 | 1987-02-26 | High-rigidity and high-melt viscoelasticity propylene homopolymer composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63210152A JPS63210152A (en) | 1988-08-31 |
JPH0515740B2 true JPH0515740B2 (en) | 1993-03-02 |
Family
ID=12672604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62043756A Granted JPS63210152A (en) | 1987-02-26 | 1987-02-26 | High-rigidity and high-melt viscoelasticity propylene homopolymer composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS63210152A (en) |
KR (1) | KR970000207B1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243152A (en) * | 1987-03-31 | 1988-10-11 | Idemitsu Petrochem Co Ltd | Propylene polymer composition |
JPH0655871B2 (en) * | 1989-03-25 | 1994-07-27 | 出光石油化学株式会社 | Propylene polymer composition |
JPH0343437A (en) * | 1989-07-11 | 1991-02-25 | Mitsui Toatsu Chem Inc | Polypropylene resin composition |
JPH0959453A (en) * | 1995-08-23 | 1997-03-04 | Tonen Chem Corp | Polypropylene resin composition |
BR112020015491B1 (en) | 2018-02-15 | 2022-10-25 | Adeka Corporation | PARTICULATE NUCLEATING AGENT, RESIN COMPOSITION, MOLDED PRODUCT, AND METHOD FOR PRODUCTION THEREOF |
JP6397153B1 (en) | 2018-05-18 | 2018-09-26 | 株式会社Adeka | Granular nucleating agent, resin composition, molded article and method for producing the same |
JP6423982B1 (en) | 2018-07-04 | 2018-11-14 | 株式会社Adeka | Granular nucleating agent, resin composition, molded article and method for producing the same |
WO2021149524A1 (en) | 2020-01-20 | 2021-07-29 | 株式会社Adeka | Method for producing resin composition and method for producing molded article |
JP6731128B1 (en) | 2020-03-16 | 2020-07-29 | 株式会社Adeka | Granular nucleating agent, resin composition, method for producing the same, and molded article |
-
1987
- 1987-02-26 JP JP62043756A patent/JPS63210152A/en active Granted
-
1988
- 1988-02-26 KR KR1019880001962A patent/KR970000207B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPS63210152A (en) | 1988-08-31 |
KR970000207B1 (en) | 1997-01-06 |
KR880010049A (en) | 1988-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910005690B1 (en) | Polyolefin composition | |
JPH0515739B2 (en) | ||
KR20000068860A (en) | Polypropylene/propylene-ethylene copolymer composition and process for the preparation thereof | |
EP1108733B1 (en) | Propylene-ethylene block copolymer, resin composition, and blow-molded article | |
EP0280297B1 (en) | High stiffness propylene polymer composition | |
JPH0515740B2 (en) | ||
JPH0931266A (en) | Polyethylene-based resin material and its production | |
EP0255693B1 (en) | High stiffness propylene polymer compositions | |
KR20160039406A (en) | Polypropylene resin composition having high impact resistance and high stiffness and process for their manufacture and molded article produced with the same | |
JP2607099B2 (en) | High rigidity ethylene-propylene block copolymer composition | |
JPH0670161B2 (en) | High rigidity and high melt viscoelasticity ethylene-propylene block copolymer composition | |
JPH083009B2 (en) | Highly rigid propylene homopolymer composition | |
JP2574168B2 (en) | Propylene polymer composition | |
JPS6337152A (en) | High-rigidity ethylene-propylene block copolymer composition | |
JPS63260943A (en) | Polyolefin composition | |
JP2000053726A (en) | Propylene-based resin for forming sheet and resin composition | |
JP2562915B2 (en) | High rigidity and high melt viscoelasticity ethylene-propylene block copolymer composition | |
JPH0788450B2 (en) | High rigidity and high melt viscoelastic propylene homopolymer composition | |
JPH0521934B2 (en) | ||
JPH0515738B2 (en) | ||
JPS63260944A (en) | Polyolefin composition | |
JPH07118486A (en) | Crystalline propylene polymer composition | |
JPS63284243A (en) | High-rigidity high-melt viscoelasticity propylene homopolymer composition | |
JPH07242793A (en) | Crystalline propylene polymer composition | |
JPS63284242A (en) | High-rigidity propylene homopolymer composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |