JPH0514457Y2 - - Google Patents
Info
- Publication number
- JPH0514457Y2 JPH0514457Y2 JP1984079886U JP7988684U JPH0514457Y2 JP H0514457 Y2 JPH0514457 Y2 JP H0514457Y2 JP 1984079886 U JP1984079886 U JP 1984079886U JP 7988684 U JP7988684 U JP 7988684U JP H0514457 Y2 JPH0514457 Y2 JP H0514457Y2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cell stack
- liquid
- cooler
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 121
- 239000007788 liquid Substances 0.000 claims description 54
- 239000000446 fuel Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000003780 insertion Methods 0.000 claims description 10
- 230000037431 insertion Effects 0.000 claims description 10
- 239000000110 cooling liquid Substances 0.000 claims description 8
- 238000009413 insulation Methods 0.000 description 19
- 238000005192 partition Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000002826 coolant Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Description
【考案の詳細な説明】
〔考案の属する技術分野〕
本考案は高電圧燃料電池セルスタツク、ことに
液冷形燃料電池の冷却構造に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a cooling structure for a high voltage fuel cell stack, particularly a liquid-cooled fuel cell.
燃料電池とセルスタツクは、たとえばりん酸形
燃料電池の場合、りん酸電解質を担持したマトリ
ツクスとこのマトリツクスの両側に密接して配さ
れたガス拡散性を有する正極および負極と、正極
および負極にそれぞれ燃料ガスおよび酸化ガスを
供給する溝を有する分離板とからなる単電池を多
数積み重ねるとともに、積層面に所定の締付荷重
を加えて積層面の電気的接触を高め、単電池を縦
続接続するよう構成されており、反応ガスを前記
セルスタツクに流すことにより電気化学反応によ
り直流電力を発生する。このとき、電気化学反応
の副産物として廃熱が生成するので、セルスタツ
クに冷却器を設けて排熱を除去し、セルスタツク
を化学反応に適した温度に維持する必要がある。
For example, in the case of a phosphoric acid fuel cell, a fuel cell and a cell stack are composed of a matrix supporting a phosphoric acid electrolyte, a positive electrode and a negative electrode having gas diffusivity arranged closely on both sides of this matrix, and a fuel cell at each of the positive and negative electrodes. A structure in which a large number of cells consisting of gas and separation plates with grooves for supplying gas and oxidizing gas are stacked, and a predetermined tightening load is applied to the stacked surfaces to enhance electrical contact between the stacked surfaces, thereby connecting the cells in cascade. DC power is generated by an electrochemical reaction by flowing a reactive gas through the cell stack. At this time, waste heat is generated as a byproduct of the electrochemical reaction, so it is necessary to provide a cooler in the cell stack to remove the waste heat and maintain the cell stack at a temperature suitable for the chemical reaction.
第4図は従来の液冷形燃料電池セルスタツクの
冷却構造を示す概略構成図である。図において、
1は多数の単電池2の積層体からなるセルスタツ
クで、所定数の単電池を積層するごとに黒鉛また
は炭素板等からなる導電性の冷却板3が単電池間
に介装されており、各冷却板3に形成された複数
の溝または孔にはそれぞれ冷却管4が挿通され、
複数の冷却管4は冷却液を導く供給側導液手段5
および収集側導液手段6とに図示しない管継手を
介して連結されている。また導液手段5および6
はいずれも金属管からなり、その一方の端部5A
および6Aは図示しない冷却液の循環および冷却
装置に接続されて冷却液9が各冷却管4に供給さ
れるとともに、導液手段は接地されて大地電位に
保持される。またセルスタツク1の両端子7Aお
よび7Bは出力回路10に接続されるとともに低
圧側端子7Bは接地されている。 FIG. 4 is a schematic diagram showing the cooling structure of a conventional liquid-cooled fuel cell stack. In the figure,
Reference numeral 1 denotes a cell stack consisting of a stack of a large number of single cells 2. Each time a predetermined number of single cells are stacked, a conductive cooling plate 3 made of graphite or carbon plate is interposed between the single cells. Cooling pipes 4 are inserted into each of the plurality of grooves or holes formed in the cooling plate 3,
A plurality of cooling pipes 4 serve as supply side liquid guiding means 5 for guiding the cooling liquid.
and the collecting side liquid guiding means 6 via a pipe joint (not shown). Also, the liquid guiding means 5 and 6
are both made of metal tubes, one end of which is 5A.
and 6A are connected to a cooling liquid circulation and cooling device (not shown) to supply the cooling liquid 9 to each cooling pipe 4, and the liquid guiding means is grounded and held at ground potential. Further, both terminals 7A and 7B of the cell stack 1 are connected to the output circuit 10, and the low voltage side terminal 7B is grounded.
上述のように構成された液冷形燃料電池セルス
タツクにおいては、冷却管4および導液手段とセ
ルスタツクの一方の端子7Bがともに接地されて
いるために、単電池間に介装された冷却板3と冷
却管4との間に電位差を生じ、その電位差は高圧
側端子7Aに近づく程高くなり、高電圧大容量の
セルスタツクにおいては最大電位差は数千ボルト
に達する場合がある。第4図の場合、この電位差
を保持する絶縁はそれぞれの冷却管4の表面に被
着された絶縁被覆8に頼つており、当然のことな
がら高電圧端子7Aに近い位置にある冷却管程厚
い絶縁被覆を必要とし、たとえば出力電圧4000V
のセルスタツクの場合絶縁被覆8の厚みは0.5mm
前後にもなる。したがつて、熱良導体からなる冷
却板3と冷却管4との間に熱伝導率が低く厚い絶
縁被覆8が介在するために冷却性能が低下すると
ともに、電位差に相応した絶縁被覆厚とすれば冷
却性能に位置による差が生じ、燃料電池の変換効
率に影響をおよぼすという問題が生ずる。また絶
縁被覆と冷却板がいずれか一個所ででも絶縁破壊
を生じた場合には、セルスタツクの一部分が短絡
状態になる。上述の問題点を改善した装置とし
て、たとえば、特公昭58−33670号公報が知られ
ている。 In the liquid-cooled fuel cell stack configured as described above, since the cooling pipe 4, the liquid guide means, and one terminal 7B of the cell stack are both grounded, the cooling plate 3 interposed between the cells A potential difference is generated between the cooling pipe 4 and the high-voltage side terminal 7A, and the potential difference increases as it approaches the high-voltage side terminal 7A, and in a high-voltage, large-capacity cell stack, the maximum potential difference may reach several thousand volts. In the case of FIG. 4, the insulation that maintains this potential difference relies on the insulation coating 8 deposited on the surface of each cooling pipe 4, and naturally the cooling pipe located closer to the high voltage terminal 7A is thicker. Requires insulation coating, e.g. output voltage 4000V
In the case of the cell stack, the thickness of the insulation coating 8 is 0.5 mm.
It also becomes before and after. Therefore, the cooling performance decreases because the thick insulation coating 8 with low thermal conductivity is interposed between the cooling plate 3 made of a good thermal conductor and the cooling pipe 4, and if the insulation coating thickness is adjusted to match the potential difference, A problem arises in that the cooling performance differs depending on the position, which affects the conversion efficiency of the fuel cell. Furthermore, if dielectric breakdown occurs at even one point between the insulation coating and the cooling plate, a portion of the cell stack will become short-circuited. For example, Japanese Patent Publication No. 58-33670 is known as a device that has improved the above-mentioned problems.
第5図は特公昭58−33670号公報に示された液
冷形燃料電池セルスタツクの冷却構造の概念図で
ある。図において、セルスタツクは複数の積層体
1A,1B,1C等に区分され、それぞれの積層
体に複数の冷却管挿入溝を有する分離板13A,
13B,13C、挿入溝それぞれに挿入された絶
縁被覆を有する冷却管複数本を両端部で相互に連
結した冷却器14、および複数の冷却器14A,
14B,14Cに誘電性壁部18を介して連通し
た入口空間15、出口空間16が設けられ、空間
部15,16には各積層体の一方端の電位、たと
えば積層体1Aには高圧端7Aの電位が給電線1
9により与えられている。また入口空間15、出
口空間16はそれぞれ誘電性隔壁28を介して大
地電位にある冷却水の供給ライン25および収集
ライン26に連結されており、冷却器14に冷却
水を循環するよう構成されてる。このように、空
間15,16に積層体の一方端の電位を与え、か
つ各冷却器との間に絶縁隔壁18を設けたことに
より、各積層体1A,1B,1Cにおける冷却器
14A,14B,14Cの絶縁は主に誘電性隔壁
18により保持されるので、冷却板13と冷却器
14との間の電位差を充分小さくできる。したが
つて冷却管の絶縁被覆を冷却管の電気化学的腐食
を防ぐ程度に極めて薄くでき、燃料電池の排熱を
効率よく除去することができる。しかしながら、
このような構成では、各積層体1A,1B,1C
に冷却液を循環する供給および収集ライン25お
よび26が接地されているために、各積層体の一
方端の電位が与えられている出入口空間15,1
6の対地電位差が誘電性隔壁28とその内部の冷
却液により負担されることになり、高電圧燃料電
池においては数千ボルトの電位差が誘電性隔壁2
8に印加されることになる。この電位差は一般に
誘電性隔壁18が負担する電位差の数倍から10倍
にも達する。また誘電性隔壁28の内径は誘電性
隔壁18の内径より大きくなるので、誘電性隔壁
28内の冷却液を介して大地にもれる電流の大き
さが無視できない大きさに達し、この部分の絶縁
の信頼性が低くなるという問題がある。さらに、
第5図のように構成された装置においては、誘電
性隔壁18,28の数が多いので、たとえば誘電
性隔壁として絶縁ホースを使用したと仮定する
と、絶縁ホースと金属パイプとの接続部における
冷却液の漏れを防ぐために特段の注意を必要と
し、かつ漏れの点検ならびに保守作業量の増大を
もたらすという問題点がある。 FIG. 5 is a conceptual diagram of the cooling structure of a liquid-cooled fuel cell stack disclosed in Japanese Patent Publication No. 58-33670. In the figure, the cell stack is divided into a plurality of stacked bodies 1A, 1B, 1C, etc., and each stacked body has a separating plate 13A, which has a plurality of cooling pipe insertion grooves,
13B, 13C, a cooler 14 in which a plurality of cooling tubes each having an insulating coating inserted into each insertion groove are interconnected at both ends, and a plurality of coolers 14A,
14B and 14C are provided with an inlet space 15 and an outlet space 16 that communicate with each other via a dielectric wall 18, and the spaces 15 and 16 have a potential at one end of each laminate, for example, the high voltage end 7A for the laminate 1A. The potential of feed line 1
9. The inlet space 15 and the outlet space 16 are connected to a cooling water supply line 25 and a collection line 26, respectively, which are at ground potential via a dielectric partition wall 28, and are configured to circulate cooling water to the cooler 14. . In this way, by applying the potential at one end of the stacked body to the spaces 15 and 16 and providing the insulating partition wall 18 between each cooler, the coolers 14A and 14B in each stacked body 1A, 1B, and 1C are , 14C is maintained mainly by the dielectric partition wall 18, so that the potential difference between the cooling plate 13 and the cooler 14 can be made sufficiently small. Therefore, the insulation coating of the cooling tube can be made extremely thin to the extent that electrochemical corrosion of the cooling tube is prevented, and exhaust heat from the fuel cell can be efficiently removed. however,
In such a configuration, each laminate 1A, 1B, 1C
The inlet and outlet spaces 15, 1 are provided with a potential at one end of each stack due to the supply and collection lines 25 and 26 that circulate the cooling liquid being grounded.
6 is borne by the dielectric partition wall 28 and the coolant inside it, and in a high voltage fuel cell, a potential difference of several thousand volts is borne by the dielectric partition wall 28
8 will be applied. This potential difference generally reaches several to ten times the potential difference borne by the dielectric barrier ribs 18. Furthermore, since the inner diameter of the dielectric partition wall 28 is larger than the inner diameter of the dielectric partition wall 18, the magnitude of the current leaking to the ground via the cooling liquid in the dielectric partition wall 28 reaches a size that cannot be ignored, and the insulation of this part There is a problem that the reliability of moreover,
In the device configured as shown in FIG. 5, there are many dielectric partitions 18, 28, so if we assume that an insulated hose is used as the dielectric partition, cooling at the connection between the insulated hose and the metal pipe is There are problems in that special care is required to prevent liquid leakage, and the amount of leakage inspection and maintenance work increases.
本考案は前述の状況に鑑みてなされたもので、
冷却板と冷却管との間の電位差ならびに絶縁ホー
スに加わる電位差が少なく、高い絶縁の信頼性な
らびに漏れ電流の防止性能を有する液冷形燃料電
池セルスタツクを提供することを目的とする。
This idea was created in view of the above-mentioned situation.
It is an object of the present invention to provide a liquid-cooled fuel cell stack having a small potential difference between a cooling plate and a cooling pipe and a potential difference applied to an insulating hose, high insulation reliability, and leakage current prevention performance.
上記目的を達成するために本考案は、単電池複
数個の積層体からなり所定数の単電池ごとに単電
池間に介装された複数の冷却管挿入部を有する導
電性の冷却板と、この挿入部に挿通された絶縁被
覆を有する冷却管複数個を両端部で互いに並列に
連結してなる冷却器と、この冷却器と外部冷却液
循環装置とに連通する供給側および収集側導液手
段50および51とを備えたセルスタツクであつ
て、前記セルスタツクの積層方向に複数組に区分
された冷却器組34と、各冷却器組中の各冷却器
の入口側および出口側にそれぞれ並列に連通され
た一対の組内導液管部35および36と、接続管
41および42および組間導液管部45および4
6とからなる複数個の冷却ユニツト30を備え、
前記各組間導液管部45および46はセルスタツ
クの積層方向に連通しかつ各冷却ユニツトの組内
導液管部35および36にそれぞれ前記接続管4
1および42を介して連通してなる液冷形燃料電
池セルスタツクにおいて、前記冷却ユニツト30
の各組間導液管部45および46相互間ならびに
低電圧側であるセルスタツク最下部冷却ユニツト
の組間導液管部45Cおよび46Cと前記供給側
および収集側導液手段50および51とを縦続連
結する絶縁管48と、前記各冷却ユニツトが配設
された部分の単電池積層体のほぼ中間位置にある
冷却板33Bの一つにそれぞれ導電接続された冷
却管とを有してなるものとする。
In order to achieve the above object, the present invention includes a conductive cooling plate which is composed of a stack of a plurality of unit cells and has a plurality of cooling pipe insertion portions interposed between the unit cells for each predetermined number of unit cells; A cooler formed by connecting a plurality of cooling pipes with insulating coatings inserted into the insertion portion in parallel with each other at both ends, and a supply side and a collection side liquid conduit that communicate with this cooler and an external coolant circulation device. A cell stack comprising means 50 and 51, a cooler set 34 divided into a plurality of sets in the stacking direction of the cell stack, and a cooler set 34 arranged in parallel on the inlet side and outlet side of each cooler in each cooler set, respectively. A pair of intra-group liquid conduit pipe parts 35 and 36, connecting pipes 41 and 42, and inter-group liquid conduit pipe parts 45 and 4 are connected to each other.
The cooling unit 30 includes a plurality of cooling units 30 consisting of
The inter-assembly liquid guide pipe sections 45 and 46 communicate with each other in the stacking direction of the cell stacks, and are connected to the connecting pipes 4 and 46 respectively to the intra-assembly liquid guide pipe sections 35 and 36 of each cooling unit.
1 and 42, the cooling unit 30
The supply side and collection side liquid guide means 50 and 51 are connected in cascade between each of the inter-set liquid guide pipe sections 45 and 46 and between the inter-set liquid guide pipe sections 45C and 46C of the lowermost cooling unit of the cell stack on the low voltage side. It has a connecting insulating tube 48 and a cooling tube conductively connected to one of the cooling plates 33B located approximately in the middle of the unit cell stack in the portion where each of the cooling units is disposed. do.
即ち、本考案の液冷形燃料電池セルスタツク
は、単電池間に介装された複数の冷却板および冷
却器を単電池の積層方向にN組に区分し、上記構
成とすることにより、同一組内の冷却板と冷却器
との間の電位差をセルスタツクの出力電圧の1/
2N以下に、それぞれの絶縁ホースが分担する電
位差をセルスタツクの出力電圧の1/N以下にそ
れぞれ低減するようにしたものである。 That is, in the liquid-cooled fuel cell stack of the present invention, the plurality of cooling plates and coolers interposed between the cells are divided into N groups in the stacking direction of the cells, and by having the above structure, the same group can be separated. The potential difference between the cooling plate and the cooler in the cell stack is set to 1/1 of the output voltage of the cell stack.
The potential difference shared by each insulating hose is reduced to 1/N or less of the output voltage of the cell stack.
以下本考案を一実施例に基づいて説明する。 The present invention will be explained below based on one embodiment.
第1図は本考案の実施例を示す液冷形燃料電池
セルスタツクの冷却システムの構成図である。図
において、1A,1B,1CはN組に区分された
冷却ユニツトにより冷却されるセルスタツクの範
囲を示しており、範囲1A,1B,1Cにはそれ
ぞれ、冷却板33A,33B,33C等の複数の
冷却板33と、34A,34B,34C等の複数
の冷却器34と、冷却器34A,34B,34C
の端部に連通した組内導液管部35および36
と、接続管41および42を介して組内導液管部
35および36に連通した供給側の組間導液管部
45Aおよび収集側の組間導液管部46Aとを含
む冷却ユニツト30が配設されている。冷却ユニ
ツト30の各部はいずれも熱伝導性および耐蝕性
のよい金属パイプで形成され、相互に溶接または
図示しない管継手により連結されるとともに、冷
却板33A,33B,33Cのうち中間電位に近
い位置にある冷却板33Bと冷却器34Bとを導
電接触させることにより、冷却ユニツト全体の電
位が区分されたセルスタツク1Aのほぼ中間電位
に保たれている。区分されたセルスタツク1B,
1C等についても同様で、組間導液管部45B、
46Bにはセルスタツク1B部分の中間電位が、
組間導液管部45C、46Cにはセルスタツク1
C部分の中間電位が与えられる。48は隣接する
組間導液管部相互間ならびに、供給側および収集
側導液手段としての外部冷却液循環装置の接地さ
れた導液管部50および51と、低電圧側である
セルスタツク最下部冷却ユニツトの組間導液管部
45Cおよび46Cとの間を連結する絶縁管で、
たとえば耐熱性、耐水性および耐内圧性ならびに
可とう性のよいポリテトラフロロエチレン等から
なる絶縁ホースが使用される。また冷却器34B
の冷却管部分には単電池の電解質および作動温度
に耐える導電性の皮膜58が被着されて冷却板3
3Bとの電気的接触が保たれるとともに、その他
の冷却管たとえば34A,34C等には電解質お
よび高温に耐える絶縁被覆たとえばパーフロロエ
チルエーテル−ポリテトラフロロエチレン共重合
体(PFAとよぶ)フイルム等からなる絶縁被覆
38が施され、冷却板33A,33C等との間の
絶縁が保たれるよう構成されている。 FIG. 1 is a block diagram of a cooling system for a liquid-cooled fuel cell stack showing an embodiment of the present invention. In the figure, 1A, 1B, and 1C indicate the range of the cell stack cooled by the cooling units divided into N groups, and the ranges 1A, 1B, and 1C each include a plurality of cooling plates 33A, 33B, 33C, etc. A cooling plate 33, a plurality of coolers 34 such as 34A, 34B, and 34C, and coolers 34A, 34B, and 34C.
The internal liquid guide pipe portions 35 and 36 communicate with the ends of the
The cooling unit 30 includes an inter-assembly liquid conduit pipe section 45A on the supply side and an inter-assembly liquid conduit tube section 46A on the collection side, which communicate with the intra-assembly liquid conduit tube sections 35 and 36 via connection pipes 41 and 42. It is arranged. Each part of the cooling unit 30 is formed of a metal pipe with good thermal conductivity and corrosion resistance, and is connected to each other by welding or a pipe joint (not shown), and is connected to a position near the intermediate potential among the cooling plates 33A, 33B, and 33C. By bringing the cooling plate 33B and cooler 34B into conductive contact, the potential of the entire cooling unit is maintained at approximately the midpoint potential of the divided cell stacks 1A. Sectioned cell stack 1B,
The same applies to 1C etc., and the inter-assembly liquid conduit section 45B,
46B has the intermediate potential of the cell stack 1B part,
Cell stack 1 is installed in the inter-assembly liquid guide pipe portions 45C and 46C.
An intermediate potential of the C portion is given. Reference numeral 48 indicates between the liquid guide pipe parts between adjacent sets, the grounded liquid guide pipe parts 50 and 51 of the external coolant circulation device as supply side and collection side liquid guide means, and the lowest part of the cell stack which is the low voltage side. An insulated pipe connecting between the interassembly liquid guiding pipe parts 45C and 46C of the cooling unit,
For example, an insulated hose made of polytetrafluoroethylene or the like, which has good heat resistance, water resistance, internal pressure resistance, and flexibility, is used. Also cooler 34B
A conductive film 58 that can withstand the electrolyte and operating temperature of the cell is deposited on the cooling pipe portion of the cooling plate 3.
In addition to maintaining electrical contact with 3B, other cooling pipes such as 34A and 34C are coated with an electrolyte and an insulating coating that can withstand high temperatures, such as perfluoroethyl ether-polytetrafluoroethylene copolymer (referred to as PFA) film, etc. An insulating coating 38 consisting of the cooling plates 33A, 33C, etc. is provided to maintain insulation between the cooling plates 33A, 33C, etc.
第2図は前述の実施例におけるセルスタツクの
構成を示す要部の斜視図で、リブ付電極方式のり
ん酸形燃料電池を例として示したものである。図
において、62は電解質を担持したマトリツク
ス、63は空気電極、64は水素電極、65は空
気供給用のリブを有する空気電極側電極基板、6
6は水素供給用のリブを有する水素電極側電極基
板であり、このようにして形成された単電池はセ
パレータ67を介して複数層積層されてセルスタ
ツクが形成されるとともに、所定数の単電池ごと
に冷却板33が介装される。冷却板33は、セパ
レータと同質の炭素系または黒鉛系の板状体であ
り、冷却板33の一方の面には冷却管を挿入する
挿入部(溝)68が互いに間隔をおいて複数個設
けられている。このように冷却板33とセパレー
タ67を別体することにより、冷却管挿入部の数
に制約がなく、かつ冷却板の製作が容易になる利
点が得られる。また冷却板33にセパレータの役
割を兼ねるよう構成してもよく、この場合はセパ
レータを一部省略することができる。 FIG. 2 is a perspective view of essential parts showing the structure of the cell stack in the above-described embodiment, and shows a ribbed electrode type phosphoric acid fuel cell as an example. In the figure, 62 is a matrix supporting an electrolyte, 63 is an air electrode, 64 is a hydrogen electrode, 65 is an air electrode side electrode substrate having ribs for air supply, 6
Reference numeral 6 denotes a hydrogen electrode side electrode substrate having ribs for supplying hydrogen, and the unit cells thus formed are stacked in multiple layers with a separator 67 in between to form a cell stack, and each unit cell is stacked in multiple layers with a separator 67 in between. A cooling plate 33 is interposed therein. The cooling plate 33 is a carbon-based or graphite-based plate-like body having the same quality as the separator, and a plurality of insertion portions (grooves) 68 into which cooling pipes are inserted are provided at intervals on one surface of the cooling plate 33. It is being By separating the cooling plate 33 and the separator 67 in this way, there is an advantage that there is no restriction on the number of cooling pipe insertion portions, and the cooling plate can be manufactured easily. Further, the cooling plate 33 may be configured to also serve as a separator, and in this case, the separator can be partially omitted.
第3図は前述の実施例における冷却器部分の斜
視図で、絶縁被覆38を有する複数の冷却管71
は、両端部が連結管72により互いに並列に連結
されて冷却器34が形成され、冷却板33の冷却
管挿入部68に収納されるとともに、その両端部
は組内導液管部35および36に連結される。第
3図の場合、冷却管71をそれぞれU字状に折り
曲げ、連結管72および組内導液管部35,36
をセルスタツクの一方の側方に配置した例を示し
たが、冷却管71を直線状として、組内導液管部
35および36をセルスタツクの両側に配置する
よう構成してもよい。 FIG. 3 is a perspective view of the cooler section in the above-described embodiment, showing a plurality of cooling pipes 71 each having an insulating coating 38.
The cooler 34 is formed by connecting both ends in parallel to each other by a connecting pipe 72, and is housed in the cooling pipe insertion part 68 of the cooling plate 33, and the both ends are connected to the internal liquid guide pipe parts 35 and 36. connected to. In the case of FIG. 3, the cooling pipes 71 are each bent into a U-shape, and the connecting pipe 72 and the internal liquid guiding pipe portions 35, 36 are bent.
Although an example has been shown in which the cooling pipes 71 are arranged on one side of the cell stack, it is also possible to arrange the cooling pipes 71 in a straight line and the internal liquid guide pipe sections 35 and 36 on both sides of the cell stack.
つぎに、第1図から第3図のように構成された
冷却システムの機能について説明する。いま仮に
セルスタツクの高低圧端子7A,7B間の電位差
を4000V、冷却ユニツト30の組数Nを10組と仮
定すると、第1図における1A,1B,1Cなど
冷却ユニツトによつて区分されたスタツク部分の
電位差はそれぞれ400Vになる。また冷却ユニツ
トがそれぞれスタツク部分の中間電位点に導電接
続されているので、冷却ユニツト30内冷却器た
とえば34A,34Cと冷却板33A,33Cと
の間の電位差を400Vの1/2以下すなわち第4図の
従来構造における電位差の1/20以下に低減できる
ことになり、冷却管の絶縁被覆を極めて薄くする
ことを可能にする。一方冷却ユニツトの組間導液
管部相互間ならびに、セルスタツク最下部冷却ユ
ニツトの組間導液管部と供給側および収集側導液
手段とを縦続接続する絶縁管48それぞれが負担
する電位差は400Vとなり、たとえば第5図の従
来構造のそれの1/10に低減される。したがつて冷
却システムに供給される冷却液9をスタツクの動
作温度における固有抵抗が105Ω−cm程度の冷却
水を使用した場合、複数個の絶縁管内の冷却水を
介して大地に流れる漏れ電流をたとえば第5図の
従来構造におけるそれの1/10以下に低減すること
ができる。また絶縁管48をセルスタツクの積層
方向に並行して直列に配された組間導液管部を縦
続接続するよう介装したので、絶縁管48の長さ
を長くしてもセルスタツクの設置スペースに影響
を及ぼさないので、漏れ電流をさらに低減できる
とともに、絶縁管部分の絶縁の信頼性を高めるこ
とができる。さらに漏れ電流が減少することによ
り、絶縁管との接合部における組間導液管の電気
化学的腐食が低減され、導液管の防食構造を簡単
化することができる。さらにまた、冷却ユニツト
が各冷却器に対応する絶縁管を含まず、かつ冷却
器間絶縁管48がセルスタツクの最も外側に配さ
れることにより、液もれの点検および整備を容易
にすることができる。 Next, the functions of the cooling system configured as shown in FIGS. 1 to 3 will be explained. Assuming that the potential difference between the high and low voltage terminals 7A and 7B of the cell stack is 4000 V and the number N of cooling units 30 is 10, the stack portions divided by cooling units such as 1A, 1B, and 1C in FIG. The potential difference is 400V each. Furthermore, since the cooling units are each conductively connected to the intermediate potential point of the stack portion, the potential difference between the coolers in the cooling unit 30, for example, 34A, 34C and the cooling plates 33A, 33C, is kept below 1/2 of 400V, that is, the fourth The potential difference can be reduced to less than 1/20 of the conventional structure shown in the figure, making it possible to make the insulation coating of the cooling pipe extremely thin. On the other hand, the potential difference borne by each of the insulating tubes 48 that cascade connects the inter-assembly liquid guiding pipe sections of the cooling unit and the inter-assembling liquid guiding pipe section of the lowest cooling unit of the cell stack and the supply side and collection side liquid guiding means is 400V. For example, it is reduced to 1/10 of that of the conventional structure shown in FIG. Therefore, if the coolant 9 supplied to the cooling system is a coolant with a specific resistance of about 10 5 Ω-cm at the operating temperature of the stack, there will be a leakage that flows to the ground via the coolant in the multiple insulated pipes. The current can be reduced to less than 1/10 of that in the conventional structure shown in FIG. 5, for example. Furthermore, since the insulating tubes 48 are interposed so as to cascade connect the inter-assembly liquid guide tubes arranged in series in parallel with the stacking direction of the cell stacks, even if the length of the insulating tubes 48 is increased, the installation space of the cell stacks can be saved. Since no influence is exerted, the leakage current can be further reduced and the reliability of the insulation of the insulating tube portion can be improved. Further, by reducing the leakage current, electrochemical corrosion of the inter-assembly liquid guide pipe at the joint with the insulating pipe is reduced, and the corrosion-protective structure of the liquid guide pipe can be simplified. Furthermore, since the cooling unit does not include insulating tubes corresponding to each cooler, and the inter-cooler insulating tube 48 is disposed at the outermost side of the cell stack, inspection and maintenance for liquid leaks can be facilitated. can.
本考案は前述のように、単電池複数個の積層体
からなり所定数の単電池ごとに単電池間に介装さ
れた複数の冷却管挿入部を有する導電性の冷却板
と、この挿入部に挿通された絶縁被覆を有する冷
却管複数個を両端部で互いに並列に連結してなる
冷却器と、この冷却器と外部冷却液循環装置とに
連通する供給側および収集側導液手段50および
51とを備えたセルスタツクであつて、前記セル
スタツクの積層方向に複数組に区分された冷却器
組34と、各冷却器組中の各冷却器の入口側およ
び出口側にそれぞれ並列に連通された一対の組内
導液管部35および36と、接続管41および4
2および組間導液管部45および46とからなる
複数個の冷却ユニツト30を備え、前記各組間導
液管部45および46はセルスタツクの積層方向
に連通しかつ各冷却ユニツトの組内導液管部35
および36にそれぞれ前記接続管41および42
を介して連通してなる液冷形燃料電池セルスタツ
クにおいて、前記冷却ユニツト30の各組間導液
管部45および46相互間ならびに低電圧側であ
るセルスタツク最下部冷却ユニツトの組間導液管
部45Cおよび46Cと前記供給側および収集側
導液手段50および51とを縦続連結する絶縁管
48と、前記各冷却ユニツトが配設された部分の
単電池積層体のほぼ中間位置にある冷却板33B
の一つにそれぞれ導電接続された冷却管とを有し
てなるように構成した。その結果、冷却ユニツト
内冷却器と冷却器を収納する冷却板との間の電位
差をセルスタツクの出力電圧の1/2Nに低減で
きるとともに、絶縁管それぞれが分担する電位差
を1/Nに低減することができ、従来技術に比べ
て冷却板と冷却管との間の絶縁の信頼性と絶縁管
の絶縁の信頼性とを同時に向上でき、冷却管の絶
縁被覆厚を薄くできるために冷却性能が高く、か
つ絶縁筒内冷却水を介して流れる漏れ電流の少な
い液冷形燃料電池セルスタツクを提供することが
できる。またセルスタツクの積層方向に並行して
配された組間導液管部を同心状に縦続接続する部
分にのみ絶縁筒を配したので、セルスタツクの積
層方向と垂直な方向に二重に絶縁管(誘電性隔
部)を配設する従来技術における絶縁管の配設ス
ペースを排除することができるので、セルスタツ
クの設置スペースを縮小することができるととも
に、絶縁管を充分長くすることにより絶縁信頼性
の向上と漏れ電流の低減を積極的に行うことがで
きる。さらに使用する絶縁管の数が少なく、かつ
絶縁管をセルスタツクの側方の見易い位置に配設
できるので、絶縁管接続部の点検と設備を容易化
できる利点が得られる。
As described above, the present invention includes a conductive cooling plate that is made of a stack of a plurality of single cells and has a plurality of cooling pipe insertion parts interposed between the single cells for each predetermined number of single cells, and A cooler formed by connecting a plurality of cooling pipes having insulating coatings inserted in the cooling pipes in parallel to each other at both ends thereof, a supply side and a collection side liquid guiding means 50 communicating with the cooler and an external cooling liquid circulation device, and 51, the cell stack is equipped with a cooler set 34 divided into a plurality of sets in the stacking direction of the cell stack, and a cooler set 34 connected in parallel to the inlet side and the outlet side of each cooler in each cooler set, respectively. A pair of internal liquid guiding pipe parts 35 and 36 and connecting pipes 41 and 4
2 and inter-assembly liquid guide pipe sections 45 and 46, each of the inter-assembly liquid guide pipe sections 45 and 46 communicates in the stacking direction of the cell stacks and connects to the intra-assembly guide of each cooling unit. Liquid pipe section 35
and 36, respectively, the connecting pipes 41 and 42.
In a liquid-cooled fuel cell cell stack, the inter-assembly liquid conduit pipe sections 45 and 46 of the cooling unit 30 communicate with each other, and the inter-assembly liquid conduit tube section of the lowest cooling unit of the cell stack on the low voltage side. 45C and 46C and the supply side and collection side liquid guiding means 50 and 51 are connected in series, and an insulating pipe 48 and a cooling plate 33B located approximately in the middle of the unit cell stack in the portion where each of the cooling units is disposed.
cooling pipes each having a conductive connection to one of the cooling pipes. As a result, the potential difference between the cooler in the cooling unit and the cooling plate housing the cooler can be reduced to 1/2N of the output voltage of the cell stack, and the potential difference shared by each insulating tube can be reduced to 1/N. Compared to conventional technology, the reliability of the insulation between the cooling plate and the cooling tube and the reliability of the insulation of the insulation tube can be improved at the same time, and the thickness of the insulation coating of the cooling tube can be reduced, resulting in high cooling performance. In addition, it is possible to provide a liquid-cooled fuel cell stack in which the leakage current that flows through the insulated cylinder cooling water is small. In addition, insulating tubes were placed only in the parts where the inter-assembly liquid conduit tubes arranged parallel to the stacking direction of the cell stacks were concentrically cascaded. This eliminates the space needed to install insulating tubes in the conventional technology, which requires dielectric partitions (dielectric partitions), thereby reducing the installation space for cell stacks and improving insulation reliability by making the insulating tubes sufficiently long. It is possible to actively improve the performance and reduce leakage current. Furthermore, since the number of insulating tubes used is small and the insulating tubes can be arranged at easily visible positions on the sides of the cell stack, there is an advantage that inspection and equipment of the insulating tube joints can be facilitated.
第1図は本考案の実施例を示す液冷形燃料電池
セルスタツクの冷却システムの概念図、第2図は
第1図の実施例における冷却板の配置例を示すセ
ルスタツクの構成図、第3図は第1図の実施例に
おける冷却器部分の斜視図、第4図は従来の冷却
システムを示す構造図、第5図は改良された従来
の冷却システムを示す構造図である。
1……セルスタツク、2……単電池、3,1
3,33……冷却板、4,14,34……冷却
器、8,38……冷却管の絶縁被覆、30……冷
却ユニツト、35,36……組内導液管部、45
A,45B,45C……供給側の組間導液管部、
46A,46B,46C……収集側の組間導液管
部、41,42……接続管、48……絶縁管、5
8……導電被覆、9……冷却液、50,51……
供給側および収集側導液手段、62……マトリツ
クス、63,64……電極、65,66……リブ
付セパレータ、18,28……誘電性壁部。
Fig. 1 is a conceptual diagram of a cooling system for a liquid-cooled fuel cell stack showing an embodiment of the present invention, Fig. 2 is a configuration diagram of a cell stack showing an example of the arrangement of cooling plates in the embodiment of Fig. 1, and Fig. 3 1 is a perspective view of a cooler portion in the embodiment of FIG. 1, FIG. 4 is a structural diagram showing a conventional cooling system, and FIG. 5 is a structural diagram showing an improved conventional cooling system. 1...Cell stack, 2...Single battery, 3,1
3, 33... Cooling plate, 4, 14, 34... Cooler, 8, 38... Insulating coating of cooling pipe, 30... Cooling unit, 35, 36... Intra-assembly liquid guiding pipe section, 45
A, 45B, 45C... Supply side interassembly liquid conduit pipe section,
46A, 46B, 46C... Collection side interassembly liquid conduit pipe section, 41, 42... Connection pipe, 48... Insulation pipe, 5
8... Conductive coating, 9... Cooling liquid, 50, 51...
Supply side and collection side liquid guiding means, 62... matrix, 63, 64... electrode, 65, 66... ribbed separator, 18, 28... dielectric wall.
Claims (1)
電池ごとに単電池間に介装された複数の冷却管
挿入部を有する導電性の冷却板と、この挿入部
に挿通された絶縁被覆を有する冷却管複数個を
両端部で互いに並列に連結してなる冷却器と、
この冷却器と外部冷却液循環装置とに連通する
供給側および収集側導液手段50および51と
を備えたセルスタツクであつて、前記セルスタ
ツクの積層方向に複数組に区分された冷却器組
34と、各冷却器組中の各冷却器の入口側およ
び出口側にそれぞれ並列に連通された一対の組
内導液管部35および36と、接続管41およ
び42および組間導液管部45および46とか
らなる複数個の冷却ユニツト30を備え、前記
各組間導液管部45および46はセルスタツク
の積層方向に連通しかつ各冷却ユニツトの組内
導液管部35および36にそれぞれ前記接続管
41および42を介して連通してなる液冷形燃
料電池セルスタツクにおいて、前記冷却ユニツ
ト30の各組間導液管部45および46相互間
ならびに低電圧側であるセルスタツク最下部冷
却ユニツトの組間導液管部45Cおよび46C
と前記供給側および収集側導液手段50および
51とを縦続連結する絶縁管48と、前記各冷
却ユニツトが配設された部分の単電池積層体の
ほぼ中間位置にある冷却板33Bの一つにそれ
ぞれ導電接続された冷却管とを有することを特
徴とする液冷形燃料電池セルスタツク。 2) 実用新案登録請求の範囲第1項記載のもの
において、冷却ユニツトに導電接続される冷却
板に収納される冷却器の冷却管の少なくとも一
部分に導電性被覆が施され、この導電性被覆を
介して前記冷却板と冷却管とが導電接続された
ことを特徴とする液冷形燃料電池セルスタツ
ク。[Scope of Claim for Utility Model Registration] 1) An electrically conductive cooling plate comprising a laminate of a plurality of unit cells and having a plurality of cooling pipe insertion portions interposed between the units for each predetermined number of units; a cooler formed by connecting a plurality of cooling tubes each having an insulating coating inserted into an insertion portion in parallel with each other at both ends;
This cell stack is equipped with supply side and collection side liquid guide means 50 and 51 communicating with this cooler and an external cooling liquid circulation device, and includes a cooler set 34 divided into a plurality of sets in the stacking direction of the cell stack. , a pair of intra-set liquid guide pipe sections 35 and 36, connecting pipes 41 and 42, and an inter-set liquid guide pipe section 45 and 36 connected in parallel to the inlet and outlet sides of each cooler in each cooler set, respectively. 46, each of the inter-assembly liquid guide pipe sections 45 and 46 communicates in the stacking direction of the cell stack and is connected to the intra-assembly liquid guide pipe sections 35 and 36 of each cooling unit, respectively. In a liquid-cooled fuel cell stack formed by communicating via pipes 41 and 42, the liquid guide pipe portions 45 and 46 between each set of the cooling unit 30 and between the lowermost cooling unit of the cell stack on the low voltage side. Liquid guide pipe parts 45C and 46C
and one of the cooling plates 33B located approximately in the middle of the unit cell stack in the portion where the respective cooling units are disposed. What is claimed is: 1. A liquid-cooled fuel cell stack comprising cooling pipes each electrically connected to a cooling pipe. 2) In the utility model registration claim described in claim 1, at least a portion of the cooling pipe of the cooler housed in the cooling plate that is conductively connected to the cooling unit is coated with a conductive coating. A liquid-cooled fuel cell stack characterized in that the cooling plate and the cooling pipe are electrically connected to each other through the cooling plate and the cooling pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984079886U JPS60192373U (en) | 1984-05-30 | 1984-05-30 | Liquid-cooled fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984079886U JPS60192373U (en) | 1984-05-30 | 1984-05-30 | Liquid-cooled fuel cell stack |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60192373U JPS60192373U (en) | 1985-12-20 |
JPH0514457Y2 true JPH0514457Y2 (en) | 1993-04-16 |
Family
ID=30625216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1984079886U Granted JPS60192373U (en) | 1984-05-30 | 1984-05-30 | Liquid-cooled fuel cell stack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60192373U (en) |
-
1984
- 1984-05-30 JP JP1984079886U patent/JPS60192373U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60192373U (en) | 1985-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1065397A (en) | Fuel cell cooling system using a non-dielectric coolant | |
CA1065395A (en) | Fuel cell cooling system | |
JPH0421250Y2 (en) | ||
US3964929A (en) | Fuel cell cooling system with shunt current protection | |
US8105731B2 (en) | Fuel cell system | |
JP3801096B2 (en) | Fuel cell having a stack structure | |
US20060024561A1 (en) | Fuel cell stack | |
US6846590B2 (en) | Fuel cell stack having grommet which covers each edge of communicating passages formed in terminal plate | |
JPH08130028A (en) | Solid polymer electrolyte fuel cell | |
US20040023089A1 (en) | Polymer electrolyte membrane fuel cell system comprising a cooling medium distribution space and cooling medium collection space, and with cooling effected by fluidic media | |
CA2400452C (en) | A fuel cell stack and a method of supplying reactant gases to the fuel cell stack | |
US20080138684A1 (en) | Compact fuel cell stack with uniform depth flow fields | |
US6656621B2 (en) | Fuel cell stack | |
JP2000164235A (en) | Solid polymeric fuel cell system | |
JPH0514457Y2 (en) | ||
WO2012091463A2 (en) | Fuel cell system and stack | |
JP2002164075A (en) | Solid polymer type fuel cell preventing electrolytic corrosion | |
US7740962B2 (en) | Compact fuel cell stack with current shunt | |
JP2009123446A (en) | Solid polymer fuel cell | |
KR100648732B1 (en) | Secondary battery module | |
JPS62103983A (en) | Fuel cell power generation system | |
RU2737037C1 (en) | Electrochemical device and battery | |
JPS63128562A (en) | Fuel cell | |
JPH05325993A (en) | Fuel cell | |
JP2005190763A (en) | Fuel cell |