Nothing Special   »   [go: up one dir, main page]

JPH05107403A - High refractivity conductive film or low reflective anti-static film and manufacture thereof - Google Patents

High refractivity conductive film or low reflective anti-static film and manufacture thereof

Info

Publication number
JPH05107403A
JPH05107403A JP3296215A JP29621591A JPH05107403A JP H05107403 A JPH05107403 A JP H05107403A JP 3296215 A JP3296215 A JP 3296215A JP 29621591 A JP29621591 A JP 29621591A JP H05107403 A JPH05107403 A JP H05107403A
Authority
JP
Japan
Prior art keywords
refractive index
film
conductive
high refractive
index film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3296215A
Other languages
Japanese (ja)
Inventor
Keisuke Abe
啓介 阿部
Takeshi Morimoto
剛 森本
Kazuya Hiratsuka
和也 平塚
Satoshi Takemiya
聡 竹宮
Keiko Kubota
恵子 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3296215A priority Critical patent/JPH05107403A/en
Publication of JPH05107403A publication Critical patent/JPH05107403A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To provide a highly conductive optical film by coating a substrate thereover with a solution containing conductive microparticles and Ti salt, and thereafter by heating the substrate or irradiating ultraviolet radiation to the substrate. CONSTITUTION:A substrate is coated thereover with a solution containing conductive microparticles and Ti salt, and thereafter, it is heated or irradiated thereto with ultraviolet radiation so as to form a high refractive conductive film. In a method in which a high refractive film and a low refractive film are successively laminated on a substrate so as to produce an anticharge low reflective film, a solution containing conductive micro particles and Ti salt is applied over a substrate, and then is heated or irradiated thereto with ultraviolet radiation so as to form the high refractive film. In this case, SnO2 microparticles doped with Sb or F, conductive titanium oxide microparticles, ITO (In2O3 doped with Sn) micro particles are used as the conductive microparticles. Further, titanium oxide subjected to reduction or titanium oxide doped with pentra-valered metal ions are also usable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はブラウン管パネル等の基
体表面に塗布される導電性高屈折率膜及び帯電防止低反
射膜、及びこれらの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive high refractive index film and an antistatic low reflection film applied to the surface of a substrate such as a cathode ray tube panel, and a method for producing them.

【0002】[0002]

【従来の技術】低反射膜のコーティング法は従来より光
学的機器においてはいうまでもなく、民生用機器特にT
V,コンピュータ端末の陰極線管(CRT) に関し多くの検
討がなされてきた。従来の方法は例えば特開昭61-11893
1 号記載の如くブラウン管表面に防眩効果をもたせる為
に表面に微細な凹凸を有するSiO2層を付着させたり、弗
酸により表面をエッチングして凹凸を設ける等の方法が
なされてきた。しかしこれらの方法は外部光を散乱させ
るノングレアー処理とよばれ、本質的に低反射層を設け
る手法でない為、反射率の低減には限界があり、またブ
ラウン管などにおいては解像度を低下させる原因ともな
っていた。
2. Description of the Related Art Needless to say, the coating method of a low-reflection film has been used in conventional optical equipment as well as consumer equipment, especially T
V. Many studies have been conducted on cathode ray tubes (CRTs) for computer terminals. A conventional method is disclosed in, for example, JP-A-61-11893.
As described in No. 1, in order to have an antiglare effect on the surface of the cathode ray tube, a method of adhering a SiO 2 layer having fine irregularities on the surface or etching the surface with hydrofluoric acid to provide irregularities has been used. However, these methods are called non-glare processing that scatters external light, and there is a limit to the reduction of reflectance because it is not a method of essentially providing a low reflection layer, and it is also a cause of lowering resolution in cathode ray tubes. It was

【0003】帯電防止膜の付与についても多くの検討が
されてきており、例えば特開昭63-76247号記載の通り、
ブラウン管パネル表面を 350℃程度に加熱しCVD 法によ
り酸化スズや酸化インジウム等の導電性酸化物層を設け
る方法が採用されていた。
Many studies have been conducted on the provision of an antistatic film, for example, as described in JP-A-63-76247.
A method has been adopted in which the surface of the cathode ray tube panel is heated to about 350 ° C and a conductive oxide layer such as tin oxide or indium oxide is provided by the CVD method.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこの方法
では装置コストがかかることに加え、ブラウン管を高温
加熱するためブラウン管内の蛍光体の脱落を生じたり、
寸法精度が低下する等の問題があった。また導電層に用
いる材料としてはFやSbドープ酸化スズやSnドープ酸化
インジウムが最も一般的であるが、この場合CVD法や
湿式法(熱分解法)では、 120℃程度の低温加熱によっ
ては十分低抵抗の膜が得られないという欠点があった。
However, in this method, in addition to the high cost of the apparatus, the fluorescent substance in the cathode ray tube may fall off because the cathode ray tube is heated to a high temperature.
There was a problem such as a decrease in dimensional accuracy. In addition, F or Sb-doped tin oxide or Sn-doped indium oxide is the most common material used for the conductive layer. There is a drawback that a low resistance film cannot be obtained.

【0005】更に、Tiの出発物質としてアルコキシドを
用いた場合、加水分解速度を制御するため、キレート化
剤が不可欠であるが、一般にキレート化剤は沸点が高く
(アセチルアセトンは 140℃、メチルアセトアセテート
は171.7 ℃)かつ、Tiにキレートしている為、 120℃の
低温加熱では膜中に有機分が残存し膜強度の低下力が避
けられなかった。
Further, when an alkoxide is used as a starting material for Ti, a chelating agent is indispensable in order to control the hydrolysis rate. Generally, a chelating agent has a high boiling point (140 ° C. for acetylacetone, methylacetoacetate). (171.7 ℃), and since it is chelated to Ti, the low temperature heating at 120 ℃ left an organic component in the film, which unavoidably reduced the film strength.

【0006】又、上述のノングレアー膜に導電性微粒子
を添加して、帯電防止性を付与することも知られている
が、反射率の低減に限界があること、又、微粒子が表面
に存在するための膜強度が十分でない等の欠点を有して
いた。
It is also known that conductive fine particles are added to the above-mentioned non-glare film to impart antistatic property, but there is a limit to reduction of reflectance, and fine particles are present on the surface. Therefore, there is a defect that the film strength is insufficient.

【0007】[0007]

【課題を解決するための手段】本発明は従来技術が有し
ていた前述の欠点を解消しようとするものであり、導電
性高屈折率膜、及び、高屈折率且つ高電導性を有する膜
を基体側に低屈折率を有する膜を空気側に配した、2層
からなる高性能帯電防止低反射膜、及びこれらの製造方
法を新規に提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks of the prior art, that is, a conductive high refractive index film and a film having a high refractive index and high conductivity. It is an object of the present invention to newly provide a high-performance antistatic low-reflection film consisting of two layers in which a film having a low refractive index is disposed on the substrate side on the air side, and a manufacturing method thereof.

【0008】すなわち本発明は、前述の問題点を解決す
べくなされたものであり、導電性微粒子と、Ti塩を含有
する液を基体上に塗布した後、加熱かつ/又は紫外線照
射により導電性高屈折率膜を製造することを特徴とする
導電性高屈折率膜の製造方法、及び、基体上に高屈折率
膜、低屈折率膜を順次積層して2層からなる帯電防止低
反射膜を製造する方法であって、上記高屈折率膜を、導
電性微粒子と、Ti塩とを含有する液を基体上に塗布した
後、加熱かつ/又は紫外線照射によって製造することを
特徴とする帯電防止低反射膜の製造方法、を提供するも
のである。
That is, the present invention has been made to solve the above-mentioned problems, and after applying a liquid containing conductive fine particles and a Ti salt on a substrate, the conductive material is heated and / or irradiated with ultraviolet rays to make it conductive. A method of manufacturing a conductive high refractive index film, which comprises manufacturing a high refractive index film, and an antistatic low reflection film composed of two layers by sequentially laminating a high refractive index film and a low refractive index film on a substrate. A method for producing a high-refractive-index film, which comprises producing a high-refractive-index film by applying a liquid containing conductive fine particles and a Ti salt onto a substrate, and then heating and / or irradiating with ultraviolet rays. The present invention provides a method for manufacturing an anti-reflective film.

【0009】本発明で用いる導電性高屈折率膜は導電性
微粒子と、TiCl4 とを含む液を含有する溶液を用いて得
られる。導電性微粒子としては、SbやFをドープした
SnO2微粒子や、導電性酸化チタンの微粒子、ITO(Sn
をドープしたIn2O3)の微粒子が挙げられる。Sbドープ
SnO2微粒子(5価のSbがSnO2のSnの格子位置に置換型
固溶したもの)は、低抵抗で微粒子100 Å以下の超微粒
子を作りやすいため、比較的好適に使用できる。Fドー
プSnO2微粒子(FイオンがSnO2の0の格子位置に置換型
固溶したもの)も低抵抗であり、好適に使用可能であ
る。
The conductive high refractive index film used in the present invention is obtained by using a solution containing a liquid containing conductive fine particles and TiCl 4 . The conductive fine particles were doped with Sb or F.
SnO 2 particles, conductive titanium oxide particles, ITO (Sn
Examples include fine particles of In 2 O 3 ). Sb dope
SnO 2 fine particles (substitution of pentavalent Sb in substitutional solid solution at the Sn lattice position of SnO 2 ) are low resistance and easy to form ultrafine particles of 100 Å or less, and thus can be used relatively favorably. Fine particles of F-doped SnO 2 (F ions in which substitutional solid solution of F ions at the 0 lattice position of SnO 2 ) have low resistance and can be suitably used.

【0010】又、還元処理した酸化チタン、もしくは五
価の金属イオンをドープした酸化チタンも好適に使用可
能である。還元処理には、不活性ガス、N2ガス、H2ガス
もしくはそれらの混合ガスを用いることができる。又、
五価の金属イオンとしては Nb, Sb, Ta などを用いるこ
とが好ましく、還元雰囲気でドープすることも可能であ
る。
Further, reduction-treated titanium oxide or titanium oxide doped with pentavalent metal ions can be preferably used. For the reduction treatment, an inert gas, N 2 gas, H 2 gas or a mixed gas thereof can be used. or,
It is preferable to use Nb, Sb, Ta or the like as the pentavalent metal ion, and it is possible to dope in a reducing atmosphere.

【0011】導電性微粒子の分散媒、分散法は特に限定
されるものではなく種々使用可能である。例えば水或い
はアルコール等の有機溶媒中に導電性微粒子を添加し、
酸或いはアルカリを添加しpHを調整し、コロイドミル、
ボールミル、サンドミル、ホモミキサー等市販の粉砕器
や超音波等により分散させて得ることができる。
The dispersion medium and dispersion method of the conductive fine particles are not particularly limited, and various kinds can be used. For example, by adding conductive fine particles to an organic solvent such as water or alcohol,
Adjust pH by adding acid or alkali, colloid mill,
It can be obtained by dispersing with a commercially available pulverizer such as a ball mill, a sand mill, a homomixer or ultrasonic waves.

【0012】又、導電性微粒子が分散したゾル液をオー
トクレーブ等の密閉容器に入れて、加熱及び加圧(以
下、水熱処理という)すると、より低抵抗の膜が得られ
るので好ましい。その処理温度は200 ℃以上、好ましく
は300℃以上とするのが好ましい。この時の圧力は 200
℃で15atm 、300 ℃で85atm である。又、1時間以上処
理するのが好ましい。又、この分散液は、アルコール,
水等で任意に希釈して用いることができる。
Further, it is preferable to put the sol liquid in which the conductive fine particles are dispersed in a closed container such as an autoclave and heat and pressurize (hereinafter referred to as hydrothermal treatment) because a film having a lower resistance can be obtained. The treatment temperature is preferably 200 ° C. or higher, more preferably 300 ° C. or higher. The pressure at this time is 200
It is 15 atm at ℃ and 85 atm at 300 ℃. Moreover, it is preferable to treat for 1 hour or more. Also, this dispersion contains alcohol,
It can be optionally diluted with water or the like before use.

【0013】水熱処理する前のゾル液は均一化できる程
の流動性が必要であるため、固形分は5%程度が好まし
い。この固形分量では溶媒量が多すぎるので冷却後、分
散液を取り出し、エバポレータ等を用いて濃縮して導電
性微粒子の分散液を得る。
Since the sol liquid before the hydrothermal treatment needs to have fluidity so that it can be homogenized, the solid content is preferably about 5%. Since the solid content is too much solvent, the dispersion is taken out after cooling and concentrated using an evaporator or the like to obtain a dispersion of conductive fine particles.

【0014】水熱処理による低抵抗化の機構は必ずしも
明らかでないが、導電性微粒子に水熱処理を施すことに
より微粒子の表面の水酸基を強固に付着させ、或いは水
和水分子を強固に配位させ、導電性高屈折率膜のマトリ
ックスとして導入されるTiCl4 との相互作用を一部抑制
し、焼成時に導電性微粒子同士のコンタクトを生じさせ
ている為と考えられる。
Although the mechanism of lowering the resistance by hydrothermal treatment is not always clear, by conducting hydrothermal treatment on the conductive fine particles, the hydroxyl groups on the surface of the fine particles are firmly attached or the hydrated water molecules are strongly coordinated. It is considered that this is because the interaction with TiCl 4 introduced as the matrix of the conductive high refractive index film is partially suppressed, and the conductive fine particles are brought into contact with each other during firing.

【0015】分散液中の導電性微粒子の平均粒径は300n
m 以下となっていることが好ましい。好ましくは、40Å
〜700 Å、特に好ましくは40Å〜200 Å程度であること
が好ましい。40Åより細かいと導電性微粒子相互の接触
が不十分となり、所望の抵抗値(1010Ω/□以下)が得
られにくくなる可能性がある。700 Åを超えると膜強度
が不十分になる。またこの分散液はアルコール、水等で
任意に希釈して用いることができる。
The average particle size of the conductive fine particles in the dispersion is 300 n
It is preferably m or less. Preferably 40Å
It is preferably about 700 Å, particularly preferably about 40 Å to 200 Å. If it is smaller than 40Å, the contact between the conductive particles becomes insufficient, and it may be difficult to obtain a desired resistance value (10 10 Ω / □ or less). If it exceeds 700Å, the film strength will be insufficient. Further, this dispersion can be diluted with alcohol, water or the like.

【0016】上記の導電性微粒子の分散液には、導電性
高屈折率膜のマトリックスとしてTiO2を導入するために
Ti塩を含む溶液を添加して塗布液とする。具体的には、
TiCl4 で示される塩化物をアルコール等の有機溶媒中に
溶解し、水かつ/又はClのカウンターイオンを含んだp
H調整液を添加して部分加水分解させた後、上記分散液
中に添加するのが好ましい。この際、Ti塩はClによりブ
ロッキングされ、重合が極端に速く進行することがな
く、加水分解速度制御用のキレート化剤を添加する必要
がない。
In order to introduce TiO 2 into the above-mentioned dispersion liquid of conductive fine particles as a matrix of the conductive high refractive index film.
A solution containing Ti salt is added to obtain a coating solution. In particular,
A chloride represented by TiCl 4 is dissolved in an organic solvent such as alcohol, and p containing water and / or a counter ion of Cl is added.
It is preferable that the H-adjusting liquid is added and partially hydrolyzed, and then added to the dispersion liquid. At this time, the Ti salt is blocked by Cl, polymerization does not proceed extremely rapidly, and it is not necessary to add a chelating agent for controlling the hydrolysis rate.

【0017】又、導電性高屈折率膜の付着強度及び硬度
を向上させるため、塗布液にはSiアルコキシドを添加す
るのが好ましい。具体的にはSi(OR)mRn (m=1〜4,
n=0〜3,R=C1 〜C4 のアルキル基)で示される
Siアルコキシド、或いは部分加水分解物を含む溶液を塗
布液に添加する。
Further, in order to improve the adhesion strength and hardness of the conductive high refractive index film, it is preferable to add Si alkoxide to the coating solution. Specifically, Si (OR) m R n (m = 1 to 4,
n = 0 to 3, R = C 1 to C 4 alkyl group)
A solution containing Si alkoxide or a partial hydrolyzate is added to the coating solution.

【0018】導電性微粒子として導電性SnO2微粒子を用
いる場合、1×1010Ω/□以下の導電性を付与するため
の好ましい膜組成比としては酸化物換算でSnO2:(TiO2
+SiO2)=25:75〜90:10である。TiO2とSiO2の組成比
は導電性高屈折率層の屈折率及び膜強度に影響を及ぼ
し、好ましくはTiO2:SiO2= 100:0〜10:90である重
量比範囲が挙げられる。SiO2が多くなると膜強度は向上
するが屈折率は下がるので、これらを考慮して適宜組成
を決定すれば良い。
When conductive SnO 2 fine particles are used as the conductive fine particles, the preferable film composition ratio for imparting conductivity of 1 × 10 10 Ω / □ or less is SnO 2 : (TiO 2 in terms of oxide.
+ SiO 2 ) = 25: 75 to 90:10. The composition ratio of TiO 2 and SiO 2 affects the refractive index and the film strength of the conductive high refractive index layer, and a weight ratio range of TiO 2 : SiO 2 = 100: 0 to 10:90 is preferable. When the amount of SiO 2 is large, the film strength is improved but the refractive index is lowered. Therefore, the composition may be appropriately determined in consideration of these.

【0019】総括すると本発明において、SnO2微粒子を
用いる場合、導電性高屈折率膜においては、導電性を付
与するために、膜の固形分(酸化物換算)中、SnO2が25
wt%以上、又、1.60以上の屈折率を得るために、膜の固
形分(酸化物換算)中、塩化物から得られるTiO2が5wt
%以上であることが好ましい。
In summary, in the present invention, when SnO 2 fine particles are used, in a conductive high refractive index film, SnO 2 is contained in the solid content of the film (as oxide) in order to impart conductivity.
In order to obtain a refractive index of at least wt% or 1.60 or more, 5 wt% of TiO 2 obtained from chloride in the solid content of the film (as oxide)
% Or more is preferable.

【0020】導電性微粒子としてTiOx(x:1.6 〜1.9
)微粒子を用いる場合、1×1010Ω/□以下の導電性
を付与するための好ましい膜組成比としては、酸化物換
算でTiOx(x:1.6 〜1.9 であり導電性粒子として導入
したもの):(TiO2+SiO2)=20:80〜90:10である重
量比範囲が挙げられる。
As conductive fine particles, TiO x (x: 1.6 to 1.9
) When using fine particles, a preferable film composition ratio for imparting conductivity of 1 × 10 10 Ω / □ or less is TiO x (x: 1.6 to 1.9) in terms of oxide, which is introduced as conductive particles. ) :( TiO 2 + SiO 2 ) = 20: 80 to 90:10.

【0021】導電性酸化チタン微粒子としてTiOx(x:
1.6 〜1.9 )微粒子を用いる場合、導電性高屈折率膜の
好ましい組成範囲は、導電性を付与するために膜の固形
分(酸化物換算)中、当該TiOx(x:1.6 〜1.9 )微粒
子が20wt%以上、及び1.60以上の屈折率を得るために、
アルコキシドから得られるTiO2が3wt%以上であること
が好ましい。
As conductive titanium oxide fine particles, TiO x (x:
When 1.6 to 1.9) fine particles are used, the preferable composition range of the conductive high refractive index film is the TiO x (x: 1.6 to 1.9) fine particles in the solid content (converted to oxide) of the film to impart conductivity. To obtain a refractive index of 20 wt% or more, and 1.60 or more,
TiO 2 obtained from the alkoxide is preferably 3 wt% or more.

【0022】導電性微粒子としてNbドープTiO2微粒子を
用いる場合、1×1010Ω/□以下の導電性を付与するた
めの好ましい膜組成比としては、酸化物換算でNbドープ
TiO2 :(TiO2+SiO2)=18:82〜90:10である重量比
範囲が挙げられる。
When Nb-doped TiO 2 fine particles are used as the conductive fine particles, the preferable film composition ratio for imparting conductivity of 1 × 10 10 Ω / □ or less is Nb-doped in terms of oxide.
A weight ratio range of TiO 2 : (TiO 2 + SiO 2 ) = 18: 82 to 90:10 can be mentioned.

【0023】導電性酸化チタン微粒子としてNbドープTi
O2微粒子を用いる場合、導電性高屈折率膜の好ましい組
成範囲は、導電性を付与するために膜の固形分(酸化物
換算)中、NbドープTiO2微粒子が18wt%以上、及び1.60
以上の屈折率を得るために、アルコキシドから得られる
TiO2が3wt%以上であることが好ましい。
Nb-doped Ti as conductive titanium oxide fine particles
When O 2 fine particles are used, the preferable composition range of the conductive high refractive index film is 18% by weight or more of Nb-doped TiO 2 fine particles, and 1.60 in the solid content of the film (in terms of oxide) in order to impart conductivity.
Obtained from alkoxide to obtain the above refractive index
It is preferable that TiO 2 is 3 wt% or more.

【0024】導電性微粒子としてITO(Snをドープし
たIn2O3)微粒子を用いる場合、1×1010Ω/□以下の導
電性を付与するための好ましい膜組成比としては、酸化
物換算でITO:(TiO2+SiO2)=15:85〜90:10が挙
げられ、又、TiO2とSiO2の組成比は導電性高屈折率層の
屈折率及び膜強度に影響を及ぼし、好ましい範囲として
は、TiO2:SiO2=100 :0〜10:90である重量比範囲が
挙げられる。
When ITO (Sn-doped In 2 O 3 ) fine particles are used as the conductive fine particles, a preferable film composition ratio for imparting conductivity of 1 × 10 10 Ω / □ or less is calculated in terms of oxide. ITO: (TiO 2 + SiO 2 ) = 15: 85 to 90:10, and the composition ratio of TiO 2 and SiO 2 affects the refractive index and film strength of the conductive high refractive index layer and is in a preferable range. Includes a weight ratio range of TiO 2 : SiO 2 = 100: 0 to 10:90.

【0025】導電性ITO微粒子を用いる場合、導電性
高屈折率膜の好ましい組成範囲は、導電性を付与するた
めに、膜の固形分(酸化物換算)中、ITO微粒子が15
wt%以上、及び1.60以上の屈折率を得るために、アルコ
キシドから得られるTiO2が5wt%以上であることが好ま
しい。
When the conductive ITO fine particles are used, the preferable composition range of the conductive high refractive index film is that the ITO fine particles are 15 in the solid content (as oxide) of the film in order to impart conductivity.
In order to obtain a refractive index of wt% or more and 1.60 or more, it is preferable that the TiO 2 obtained from the alkoxide be 5 wt% or more.

【0026】又、導電性高屈折率膜形成用の塗布液は、
総固形分量が溶媒に対して 0.1〜30wt%であることが好
ましい。
The coating liquid for forming the conductive high refractive index film is
The total solid content is preferably 0.1 to 30 wt% with respect to the solvent.

【0027】本発明において導電性低屈折率膜或いは帯
電防止低反射膜を形成する基体としては、特に限定され
るものではなく、目的に応じてソーダライムシリケート
ガラス、アルミノシリケートガラス、硼珪酸塩ガラス、
リチウムアルミノシリケートガラス、石英ガラス等のガ
ラス、鋼玉等の単結晶、マグネシア、サイアロン等の透
光性セラミックス、ポリカーボネート等のプラスチック
などが使用できる。
In the present invention, the substrate on which the conductive low refractive index film or antistatic low reflection film is formed is not particularly limited, and soda lime silicate glass, aluminosilicate glass, borosilicate glass is used according to the purpose. ,
Glass such as lithium aluminosilicate glass and quartz glass, single crystals such as steel balls, translucent ceramics such as magnesia and sialon, and plastics such as polycarbonate can be used.

【0028】基体への塗布法はスピンコート法、ディッ
プ法、スプレー法、ロールコーター法、メニスカスコー
ター法等様々考えられるが、特にスピンコーター法は量
産性、再現性に優れ、好ましく採用可能である。かかる
方法によって100 Å〜1μm程度の厚さの膜が形成可能
である。
There are various possible methods for coating the substrate, such as a spin coating method, a dipping method, a spraying method, a roll coater method and a meniscus coater method. In particular, the spin coater method is excellent in mass productivity and reproducibility and can be preferably used. .. By this method, a film having a thickness of about 100Å to 1 μm can be formed.

【0029】本発明においては、上述の導電性微粒子分
散液に、TiCl4 かつ好ましくはSiアルコキシドを添加し
た塗布液を塗布した後、加熱するか、紫外線、具体的に
は 180〜 490nmの波長を有する紫外線を照射するか、あ
るいは紫外線照射及び加熱を行って導電性を有する高屈
折率膜を形成する。
In the present invention, the above-mentioned conductive fine particle dispersion liquid is coated with a coating liquid containing TiCl 4 and preferably Si alkoxide and then heated or exposed to ultraviolet rays, specifically, a wavelength of 180 to 490 nm. The high refractive index film having electroconductivity is formed by irradiating it with ultraviolet light or irradiating with ultraviolet light and heating.

【0030】本発明においては、光の干渉を利用して帯
電防止低反射膜を形成することができる。例えば、基体
がガラス(屈折率n=1.52)の場合、かかる導電性高屈
折率膜(n≧1.60)の上に、n(導電性高屈折率膜)/
n(低屈折率膜)の比の値が約 1.23 となるような低屈
折率膜を形成すると最も反射率を低減できる。
In the present invention, the antistatic low reflection film can be formed by utilizing the interference of light. For example, when the substrate is glass (refractive index n = 1.52), n (conductive high refractive index film) /
The reflectance can be reduced most by forming a low refractive index film having a ratio of n (low refractive index film) of about 1.23.

【0031】かかる2層からなる帯電防止低反射膜の最
外層の低屈折率膜としてはMgF2ゾルを含む溶液やSiアル
コキシドを含む溶液の内から選ばれる少なくとも1種よ
りなる溶液を用いて形成する。屈折率の面からみると該
材料の内MgF2が最も低く反射率低減の為にはMgF2ゾルを
含む溶液を用いることが好ましいが、膜の硬度や耐擦傷
性の点ではSiO2を主成分とする膜が好ましい。
The outermost low refractive index film of the antistatic low reflection film consisting of two layers is formed by using at least one solution selected from a solution containing MgF 2 sol and a solution containing Si alkoxide. To do. In terms of the refractive index, MgF 2 is the lowest among the materials, and it is preferable to use a solution containing MgF 2 sol to reduce the reflectance, but SiO 2 is mainly used in terms of film hardness and scratch resistance. Membranes of component are preferred.

【0032】かかる低屈折率膜形成用のSiアルコキシド
を含む液としては種々のものが採用可能であるが、Si(O
R)mRn (m=1〜4,n=0〜3,R=C1 〜C4 のア
ルキル基)で示されるSiアルコキシド或いは、部分加水
分解物を含む液が挙げられる。例えば、シリコンエトキ
シド、シリコンメトキシド、シリコンイソプロポキシ
ド、シリコンブトキシドのモノマー或いは重合体が好ま
しく使用可能である。
Various liquids can be adopted as the liquid containing the Si alkoxide for forming the low refractive index film.
R) m R n (m = 1 to 4, n = 0 to 3, R = C 1 to C 4 alkyl group), a liquid containing a Si alkoxide or a partial hydrolyzate. For example, a monomer or polymer of silicon ethoxide, silicon methoxide, silicon isopropoxide or silicon butoxide can be preferably used.

【0033】Siアルコキシドはアルコール、エステル、
エーテル等に溶解して用いることもでき、又前記溶液に
塩酸、硝酸、酢酸或いはアンモニア水溶液を添加して加
水分解して用いることもできる。前記Siアルコキシドは
溶媒に対して1 〜30wt%含まれていることが好ましい。
Si alkoxides are alcohols, esters,
It can be used by dissolving it in ether or the like, or can be used by adding hydrochloric acid, nitric acid, acetic acid or an aqueous ammonia solution to the solution to hydrolyze it. The Si alkoxide is preferably contained in the solvent in an amount of 1 to 30 wt%.

【0034】又、かかる低屈折率膜を形成するための溶
液には、上記の溶液の他に、膜の強度向上のために、バ
インダーとして、Zr, Ti, Al等のアルコキシドや、これ
らの部分加水分解物を添加して、ZrO2,TiO2,Al2O3 の一
種、あるいはこれら少なくとも二種の混合物、又は複合
物を MgF2, SiO2, MgF2 やSiO2と同時に析出させても良
い。或いは又、基体とのぬれ性を上げる為に、種々の界
面活性剤を添加してもよい。例えば、添加される界面活
性剤としては、直鎖アルキルベンゼンスルホン酸ナトリ
ウム、アルキルエーテル硫酸エステル等が挙げられる。
In addition to the above-mentioned solutions, the solution for forming such a low refractive index film may further include, as a binder, alkoxides such as Zr, Ti and Al, or a portion thereof in order to improve the strength of the film. If a hydrolyzate is added and one of ZrO 2 , TiO 2, and Al 2 O 3 , or a mixture of at least two of these, or a composite is precipitated simultaneously with MgF 2 , SiO 2 , MgF 2 and SiO 2. good. Alternatively, various surfactants may be added to improve the wettability with the substrate. For example, as the surfactant to be added, linear sodium alkylbenzene sulfonate, alkyl ether sulfate, etc. may be mentioned.

【0035】又、本発明で用いる低屈折率膜用の溶液に
は上述のように、種々のZr、Ti、Al、Sn化合物を含む溶
液を添加することもできるが特にZrアセチルアセトンア
ルコキシド Zr(C5H7O2)n(OR)m を用いた場合、塗布液の
安定性が向上するため好ましい。
Further, as described above, the solution containing various Zr, Ti, Al, and Sn compounds may be added to the solution for the low refractive index film used in the present invention, but especially Zr acetylacetone alkoxide Zr (C The use of 5 H 7 O 2 ) n (OR) m is preferable because the stability of the coating solution is improved.

【0036】かかるZr(C5H7O2)n(OR)m(但しn+m=
4,n=1〜3,m=1〜3,R=C1〜C4のアルキル
基)は前記MgF2ゾルやSiアルコキシド液にそのまま添加
することもできるし、又アルコール、エーテル、エステ
ル、芳香族炭化水素等に溶解して用いることもできる。
MgF2ゾルやSiアルコキシド液と、Zrアセチルアセトンア
ルコキシドを含む液を混合する際、最終的な全固型分量
は酸化物換算で0.1 〜5.0wt%の範囲であることが好ま
しい。またMgF2とSiO2の重量比は任意に変更し得るが、
ZrO2の添加量は SiO2 対して0.05〜0.2 重量比の範囲で
あることが好ましい。
Zr (C 5 H 7 O 2 ) n (OR) m (where n + m =
4, n = 1 to 3, m = 1 to 3, R = C 1 to C 4 alkyl group) can be added as they are to the MgF 2 sol or the Si alkoxide solution, or an alcohol, ether, ester, It can also be used by dissolving it in an aromatic hydrocarbon or the like.
When the MgF 2 sol or Si alkoxide liquid and the liquid containing Zr acetylacetone alkoxide are mixed, the final total solid content is preferably in the range of 0.1 to 5.0 wt% in terms of oxide. Further, the weight ratio of MgF 2 and SiO 2 can be arbitrarily changed,
The amount of ZrO 2 added is preferably in the range of 0.05 to 0.2 weight ratio with respect to SiO 2 .

【0037】低屈折率膜形成用の液の、導電性高屈折率
膜上への塗布法としては、導電性高屈折率膜の塗布法と
同様に、スピンコーター法等、種々の方法が好ましく採
用可能である。
As the coating method of the liquid for forming the low refractive index film on the conductive high refractive index film, various methods such as the spin coater method are preferable as in the coating method of the conductive high refractive index film. Can be adopted.

【0038】低屈折率膜形成用の液を塗布した後、紫外
線を照射、又は加熱、あるいは紫外線照射及び加熱を順
次行ない、低屈折率膜を形成する。
After applying the liquid for forming the low-refractive index film, the low-refractive index film is formed by irradiating ultraviolet rays or heating, or irradiating ultraviolet rays and heating sequentially.

【0039】本発明における導電性高屈折率膜はTiCl4
から形成されるTiO2を含む為、高屈折率を有しており、
例えば2層構成のλ/2−λ/4或いはλ/4−λ/4膜に応用
した場合、好ましい組合わせとしては基体/SnO2−TiO2
−SiO2/MgF2−SiO2, 基体/SnO2−TiO2−SiO2/SiO2
が挙げられる。
The conductive high refractive index film in the present invention is made of TiCl 4
It has a high refractive index because it contains TiO 2 formed from
For example, when applied to a λ / 2-λ / 4 or λ / 4-λ / 4 film having a two-layer structure, a preferable combination is a substrate / SnO 2 —TiO 2
-SiO 2 / MgF 2 -SiO 2, the substrate / SnO 2 -TiO 2 -SiO 2 / SiO 2 and the like.

【0040】本発明の導電性高屈折率膜、低反射帯電防
止膜の製造方法は、多層の導電性低反射膜の製造にも応
用できる。反射防止性能を有する多層の低反射膜の構成
としては、反射防止したい波長をλとして、基体側よ
り、高屈折率層−低屈折率層を光学厚みλ/2−λ/4で形
成した2層の低反射膜、基体側より中屈折率層−高屈折
率層−低屈折率層を光学厚みλ/4−λ/2−λ/4で形成し
た3層の低反射膜、基体より低屈折率層−中屈折率層−
高屈折率層−低屈折率層を光学厚みλ/4−λ/4−λ/2−
λ/4で形成した4層の低反射膜等が典型的な例として知
られており、本発明の導電性高屈折率膜を高屈折率膜と
して用いて、各種の導電性多層膜を製造することも可能
である。
The method for producing a conductive high refractive index film and a low reflection antistatic film of the present invention can be applied to the production of a multilayer conductive low reflection film. As the structure of the multilayer low-reflection film having the antireflection property, the wavelength to be antireflection is set to λ, and the high refractive index layer-low refractive index layer is formed with an optical thickness of λ / 2-λ / 4 from the substrate side. Low-reflecting film of three layers, a medium-refractive index layer-high refractive index layer-low refractive index layer formed from the substrate side with an optical thickness of λ / 4-λ / 2-λ / 4. Refractive Index Layer-Medium Refractive Index Layer-
High Refractive Index Layer-Low Refractive Index Layer Optical Thickness λ / 4-λ / 4-λ / 2-
A four-layer low reflection film or the like formed with λ / 4 is known as a typical example, and various conductive multilayer films are produced by using the conductive high refractive index film of the present invention as a high refractive index film. It is also possible to do so.

【0041】[0041]

【作用】本発明の高屈折率帯電防止膜においては、TiCl
4 を用いるため膜を加熱かつ/又は紫外線照射後部分的
にTiO2が析出して高屈折率化するものと考えられる。Ti
源をTiアルコキシドで導入した場合、加水分解速度を制
御するため、アセチルアセトン(β−ジケトン類)やメ
チルアセトアセテート、エチルアセトアセテート(ケト
エステル類)が不可欠である。これらのキレート化剤は
沸点が高く(メチルアセトアセテートは 140℃、エチル
アセトアセテートは 180℃)、 120℃という加熱処理と
しては、極低温の処理しか施さない場合、膜中に残留し
てしまい膜強度が低下する。又、Tiアルコキシドに由来
する有機分も膜強度の低下を生起する。
In the high refractive index antistatic film of the present invention, TiCl
Since 4 is used, it is considered that TiO 2 is partially deposited after heating the film and / or irradiating it with ultraviolet rays to increase the refractive index. Ti
When the source is introduced with Ti alkoxide, acetylacetone (β-diketones), methyl acetoacetate and ethyl acetoacetate (ketoesters) are indispensable for controlling the hydrolysis rate. These chelating agents have high boiling points (140 ° C for methyl acetoacetate and 180 ° C for ethyl acetoacetate), and as a heat treatment of 120 ° C, they remain in the film when only extremely low temperature treatment is performed. Strength is reduced. In addition, organic components derived from Ti alkoxide also cause a decrease in film strength.

【0042】本発明は、ClによるTiの重合抑制を利用
し、Ti塩の安定化を図り、キレート化剤を使用しないで
安定な液を合成することに成功したものである。
The present invention has succeeded in synthesizing a stable solution without using a chelating agent by utilizing the inhibition of Ti polymerization by Cl to stabilize the Ti salt.

【0043】Tiアルコキシドを例にとるならば、エタノ
ールにTi(OPr)4をTiO2換算で3wt%となるように溶解
し、キレート化剤を添加せず、加水分解を行うため水を
H2O /TiO2=2モル比添加するならば急激に加水分解が
進行しTiO2が生成、沈殿が生じてしまう。しかしなが
ら、本発明によるTiCl4 をTi出発原料として用いるなら
ば、特段の加水分解は必要とせず、かつ、仮に水が添加
されてもClによるTiのブロッキングが生じている為、液
の状態は安定である。
Taking Ti alkoxide as an example, Ti (OPr) 4 is dissolved in ethanol so as to be 3 wt% in terms of TiO 2 , and no water is added for hydrolysis without adding a chelating agent.
If H 2 O / TiO 2 = 2 molar ratio is added, hydrolysis will proceed rapidly and TiO 2 will be produced and precipitate. However, if TiCl 4 according to the present invention is used as a Ti starting material, no particular hydrolysis is required, and even if water is added, the blocking of Ti by Cl occurs, so the liquid state is stable. Is.

【0044】しかしながら、これらのみでは完全に結晶
化は進行しないことがあり、特にTiO2に関しては不定比
化合物も形成しやすく、膜の強度としては 120℃前後の
低温での焼成のみでは不十分である可能性もあるため、
Si(OR)mRn (m+n=4,m=1〜4,n=0〜3,R
=C1 〜C4 のアルキル基)のモノマー或いは重合体を
膜のマトリックスとして導入した。
However, crystallization may not be completely progressed only by these, and particularly with respect to TiO 2 , a nonstoichiometric compound is also easily formed, and as the strength of the film, it is not sufficient to sinter at a low temperature of about 120 ° C. Because there is a possibility
Si (OR) m R n (m + n = 4, m = 1 to 4, n = 0 to 3, R
= C 1 -C 4 alkyl group) monomer or polymer was introduced as the matrix of the membrane.

【0045】本発明では上記組成の塗布液を塗布後、膜
の硬化条件として、紫外線照射を行うことにより、従来
からの加熱、あるいはIR焼成のみでは達成できなかっ
た高い膜強度を、達成することができる。これは、紫外
線照射により膜の TiO2 化がより一層進行し、膜の屈折
率もさらに向上したと考えられる。
In the present invention, after applying the coating solution having the above composition, by performing ultraviolet irradiation as the curing condition of the film, it is possible to achieve high film strength which could not be achieved by conventional heating or IR baking alone. You can It is considered that this is because the UV irradiation further promoted the conversion of the film into TiO 2 and further improved the refractive index of the film.

【0046】本発明の2層構成の帯電防止低反射膜にお
いては、基体側の高屈折率膜に導電性微粒子を含有させ
ることによって、200 ℃以下の低温処理(焼成かつ/又
は紫外線照射)によっても十分な低比抵抗を付与するこ
とができると同時に、マトリックスとしてもTiO2を導入
することによって高屈折率を付与できる。
In the antistatic low-reflection film having a two-layer structure of the present invention, by incorporating conductive fine particles in the high refractive index film on the substrate side, a low-temperature treatment at 200 ° C. or lower (baking and / or UV irradiation) is performed. It is possible to impart a sufficiently low specific resistance, and at the same time, it is possible to impart a high refractive index by introducing TiO 2 as a matrix.

【0047】従って、帯電防止低反射膜の最外層の低屈
折率膜に導電性微粒子を導入する必要がなくなり、SiO2
やMgF2等の十分低屈折率な膜を使用することが可能にな
る。又、高屈折率膜は、導電性微粒子を含んでいるため
に硬度は十分高いとは言えないが、その上に形成される
低屈折率膜として、SiO2を含む、高硬度の膜を採用する
ことによって反射防止性と同時に、2層全体として高硬
度を有する帯電防止低反射膜が実現される。
Therefore, it is not necessary to introduce conductive fine particles into the outermost low refractive index film of the antistatic low reflection film, and SiO 2
It is possible to use a film having a sufficiently low refractive index such as MgF 2 or MgF 2 . The high-refractive index film does not have sufficiently high hardness because it contains conductive fine particles, but a high-hardness film containing SiO 2 is used as the low-refractive index film formed thereon. By doing so, at the same time as the antireflection property, an antistatic low reflection film having high hardness as the entire two layers is realized.

【0048】[0048]

【実施例】以下に実施例により本発明を具体的に説明す
るが本発明はこれらの実施例に限定されるものではな
い。以下の実施例及び比較例において、得られた膜の評
価方法は次の通り。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In the following examples and comparative examples, the evaluation methods of the obtained films are as follows.

【0049】1)導電性評価 ハイレスタ抵抗測定器(三菱油化製)により相対湿度30
%以下の雰囲気中で膜表面の表面抵抗値を測定。 2)屈折率 導電性高屈折率膜単層の屈折率については、エリプソメ
ーター(GAERTNER SCINETIFIC CORPORATION 製L− 116
A)により測定。
1) Conductivity evaluation A relative humidity of 30 was measured by a Hiresta resistance measuring instrument (manufactured by Mitsubishi Yuka).
The surface resistance of the film surface is measured in an atmosphere of less than 100%. 2) Refractive index For the refractive index of a single layer of a conductive high refractive index film, an ellipsometer (L-116 manufactured by GAERTNER SCINETIFIC CORPORATION
Measured according to A).

【0050】3)耐擦傷性 1kg荷重下で(LION製50−50)で膜表面を往復後、その
表面の傷の付きを目視で判断した。評価基準は以下の通
りとした。 ○:傷が全くつかない △:傷が多少つく ×:一部に膜剥離が生じる
3) Scratch resistance After reciprocating the membrane surface under a load of 1 kg (50-50 manufactured by LION), scratches on the surface were visually judged. The evaluation criteria are as follows. ○: No scratches were found △: Some scratches were found ×: Film peeling occurred in part

【0051】4)鉛筆硬度 1kg荷重下において、鉛筆で膜表面を走査しその後目視
により表面の傷の生じ始める鉛筆の硬度を膜の鉛筆硬度
と判断した。 5)視感反射率 GAMMA 分光反射率スペクトルに測定器により、多層膜の
400〜 700nmでの視感反射率を測定した。
4) Pencil Hardness Under a load of 1 kg, the surface of the film was scanned with a pencil, and the pencil hardness at which scratches on the surface began to be visually observed was judged to be the pencil hardness of the film. 5) Luminous reflectance GAMMA Spectral reflectance
The luminous reflectance at 400 to 700 nm was measured.

【0052】実施例1 Sbを10 mol%ドープしたSnO2粉末(平均粒径0.5 μm )
15g を水に添加して30℃下に保持しホモミキサーで1時
間撹拌してゾルを調製した(A液)。TiCl4 をエタノー
ルに溶解しTiO2換算固型分10wt%となるように調整した
(B液)。
Example 1 SnO 2 powder doped with Sb in an amount of 10 mol% (average particle size 0.5 μm)
15 g was added to water, kept at 30 ° C., and stirred for 1 hour with a homomixer to prepare a sol (solution A). TiCl 4 was dissolved in ethanol and adjusted so that the solid content in terms of TiO 2 was 10 wt% (liquid B).

【0053】A液とB液を各々酸化物換算で3wt%とな
る様にエタノールで希釈した後、A液:B液=2:1重
量比になる様に混合し、ブラウン管パネル表面に1200rp
m の回転速度で5秒間塗布し、その後 120℃で5分間加
熱し、約100nm の厚さの導電性高屈折率膜を得た。
Liquid A and liquid B were diluted with ethanol so that each of them would be 3 wt% in terms of oxide, and then mixed so that the ratio of liquid A: liquid B was 2: 1 by weight, and 1200 rp was formed on the surface of the cathode ray tube panel.
It was applied at a rotation speed of m 2 for 5 seconds and then heated at 120 ° C. for 5 minutes to obtain a conductive high refractive index film having a thickness of about 100 nm.

【0054】実施例2 SnO2:TiO2=1:1重量比となるように混合した以外は
実施例1と同様に行った。
Example 2 Example 1 was repeated except that SnO 2 : TiO 2 was mixed at a weight ratio of 1: 1.

【0055】比較例1 A液をエタノールで固型分3wt%となる様に希釈して塗
布液として用い100nmの膜を得た。評価は実施例1と同
様に行った。
Comparative Example 1 Solution A was diluted with ethanol to a solid content of 3 wt% and used as a coating solution to obtain a 100 nm film. The evaluation was performed in the same manner as in Example 1.

【0056】比較例2 Ti(OC4H9)4のエタノール溶液(TiO2換算固形分20.0wt
%)にアセチルアセトンをTi(OC4H9)4に対して 2.0 mol
比添加し4時間85℃において還流を施し、アセチルアセ
トンでキレート化を行った。更にその後、H2O をTi(OC4
H9)4に対して2mol 比添加し更に1時間撹拌した(C
液)。A液とC液を各々酸化物換算で3.0wt%となるよ
うにエタノールで希釈した後、A液:C液=2:1重量
比となるように混合し、ブラウン管パネル表面に1200rp
m の回転速度で5秒間塗布し、その後120 ℃で5分間加
熱し、約 100nmの厚さの膜を得た。
Comparative Example 2 Ti (OC 4 H 9 ) 4 ethanol solution (TiO 2 conversion solid content 20.0 wt
%) Acetylacetone with respect to Ti (OC 4 H 9 ) 4 2.0 mol
After specific addition, the mixture was refluxed at 85 ° C. for 4 hours and chelated with acetylacetone. After that, H 2 O is replaced with Ti (OC 4
2 mol ratio was added to H 9 ) 4 and the mixture was further stirred for 1 hour (C
liquid). Liquid A and liquid C were diluted with ethanol so that each would be 3.0 wt% in terms of oxide, and then mixed so that the ratio of liquid A: liquid C = 2: 1 by weight, and 1200 rp on the surface of the cathode ray tube panel.
The coating was carried out at a rotation speed of m 2 for 5 seconds and then heated at 120 ° C. for 5 minutes to obtain a film having a thickness of about 100 nm.

【0057】尚、実施例1、2、及び比較例1、2につ
いての評価結果を表1に示す。
Table 1 shows the evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2.

【0058】[0058]

【表1】 [Table 1]

【0059】実施例3 エタノール100gにH2O 3gを添加し、更にMgCl2 を0.05
mol 、BF3・C2H5OHを0.033 mol 添加し、完全に混合溶解
させた溶液を還流冷却器付フラスコに入れ、85℃で1時
間反応させMgF2ゾルを得た。この液にシリコンエトキシ
ドのエタノール溶液を酸化物、フッ化物換算の総固型分
量で3wt%,MgF2:SiO2=4:6重量比となる様に混合
した。更にこの溶液にZr(C5H7O2)2(OC4H9)2 のエタノー
ル溶液をZrO2換算でSiO2の10wt%となる様に添加混合し
た。(D液)
Example 3 3 g of H 2 O was added to 100 g of ethanol, and 0.05 mg of MgCl 2 was added.
mol and BF 3 .C 2 H 5 OH (0.033 mol) were added, and the completely mixed and dissolved solution was placed in a flask equipped with a reflux condenser and reacted at 85 ° C. for 1 hour to obtain MgF 2 sol. An ethanol solution of silicon ethoxide was mixed with this solution so that the total solid content in terms of oxide and fluoride was 3 wt% and MgF 2 : SiO 2 = 4: 6 weight ratio. Further, an ethanol solution of Zr (C 5 H 7 O 2 ) 2 (OC 4 H 9 ) 2 was added to and mixed with this solution so as to be 10 wt% of SiO 2 in terms of ZrO 2 . (D liquid)

【0060】実施例1と同様に作製した導電製高屈折率
膜上にD液を2000rpm の回転速度で5秒間塗布し、その
後 120℃で5分間加熱し、100nm の低屈折率膜を形成
し、全体として(基体/)導電性高屈折率/低屈折率膜
の2層からなる帯電防止低反射膜を得た。
Liquid D was applied on the conductive high refractive index film prepared in the same manner as in Example 1 at a rotation speed of 2000 rpm for 5 seconds, and then heated at 120 ° C. for 5 minutes to form a 100 nm low refractive index film. As a whole, an antistatic low reflection film consisting of two layers of (substrate /) conductive high refractive index / low refractive index film was obtained.

【0061】実施例4 実施例3においてD液塗布後、 200℃で30分間加熱した
以外は実施例3と同様に行った。
Example 4 The procedure of Example 3 was repeated, except that after applying the liquid D in Example 3, heating was performed at 200 ° C. for 30 minutes.

【0062】実施例5 実施例3においてD液塗布後、450 ℃で30分間加熱した
以外は実施例3と同様に行った。
Example 5 The procedure of Example 3 was repeated, except that after applying the liquid D in Example 3, heating was carried out at 450 ° C. for 30 minutes.

【0063】実施例6 実施例3においてD液調製時にMgF2:SiO2=5:5とし
た液を用い、この液を塗布後450 ℃で30分間加熱した以
外は実施例3と同様に行った。
Example 6 The same procedure as in Example 3 was carried out except that a solution of MgF 2 : SiO 2 = 5: 5 was used in the preparation of solution D in Example 3 and the solution was applied and heated at 450 ° C. for 30 minutes. It was

【0064】実施例7 実施例3におけるD液の代りにケイ酸エチルの部分加水
分解物( SiO2換算固型分3wt%)を用いた以外は実施例
3と同様に行った。
Example 7 The same procedure as in Example 3 was carried out except that a partial hydrolyzate of ethyl silicate (3 wt% in terms of SiO 2 solid content) was used instead of the liquid D in Example 3.

【0065】比較例3 比較例1で得た膜上に実施例7と同様にケイ酸エチルの
部分加水分解物を塗布した以外は実施例3と同様に行っ
た。
Comparative Example 3 The procedure of Example 3 was repeated, except that the partial hydrolyzate of ethyl silicate was coated on the film obtained in Comparative Example 1 as in Example 7.

【0066】比較例4 比較例2で得た膜上に実施例7と同様にケイ酸エチルの
部分加水分解物を塗布した以外は実施例3と同様に行っ
た。
Comparative Example 4 The procedure of Example 3 was repeated, except that the partial hydrolyzate of ethyl silicate was coated on the film obtained in Comparative Example 2 as in Example 7.

【0067】尚、実施例3〜7、及び比較例3,4につ
いては低反射性の評価も併せて行った。結果を表2に示
す。視感反射率は、GAMMA 分光反射スペクトル測定器に
より膜の片面視感反射率を測定したものである。
In addition, Examples 3 to 7 and Comparative Examples 3 and 4 were also evaluated for low reflectivity. The results are shown in Table 2. The luminous reflectance is the one-sided luminous reflectance of the film measured by a GAMMA spectroscopic reflectance spectrophotometer.

【0068】[0068]

【表2】 [Table 2]

【0069】以下、導電性高屈折率膜を紫外線照射によ
り形成した実施例を示す。
An example in which a conductive high refractive index film is formed by irradiating ultraviolet rays will be shown below.

【0070】実施例8 Sbを16 mol%ドープしたSnO2超微粒子粉末(平均粒径6
nm)30gを水70g中に添加してサンドミルで4時間撹拌
分散させ、更にエタノールによって希釈し、濃度を3wt
%に調整した(E液)。TiCl4 をTiO2換算固形分20.0wt
%となるようにエタノールに溶解し、調整した(F
液)。
Example 8 Sb 16 mol% doped SnO 2 ultrafine powder (average particle size 6
(30 nm) in 70 g of water, stirred and dispersed in a sand mill for 4 hours, and further diluted with ethanol to a concentration of 3 wt.
% (Solution E). Solid content of TiCl 4 converted to TiO 2 20.0 wt
It was dissolved in ethanol and adjusted so that
liquid).

【0071】Si(OC2H5)4のエタノール溶液(SiO2換算固
形分28.9 wt %)に、Si(OC2H5)4に対してNH4Cl でpH
5.0に調整した水溶液を8mol 比添加し30分撹拌した
(G液)。Si(OC2H5)4のエタノール溶液(SiO2換算固形
分28.9wt %)に、Si(OC2H5)4に対してHCl でpH 1.6に
調整した水溶液を9mol 比添加し2時間撹拌した(H
液)。
In an ethanol solution of Si (OC 2 H 5 ) 4 (solid content of SiO 2 of 28.9 wt%), pH of Si (OC 2 H 5 ) 4 was adjusted with NH 4 Cl.
An aqueous solution adjusted to 5.0 was added in an amount of 8 mol and stirred for 30 minutes (solution G). To an ethanol solution of Si (OC 2 H 5 ) 4 (solid content of SiO 2 of 28.9 wt%), add 9 mol of an aqueous solution of Si (OC 2 H 5 ) 4 adjusted to pH 1.6 with HCl and stir for 2 hours. Did (H
liquid).

【0072】F液とG液を各々酸化物換算で 3.0wt%と
なるように希釈した後、F液:G液=2:3重量比にな
るように混合した(I液)。更に、I液:E液=1:1
重量比となるように混合し、更に 1.0wt%に希釈して、
面温60℃のブラウン管パネル表面に 100rpm の回転速度
で60秒間スピンコート塗布した後、365nm の波長を有す
る紫外線を30分照射し、屈折率1.70、かつ約 100nmの厚
さの導電性高屈折率膜(第1層)を得た。この膜上にH
液をエタノールで希釈し酸化物換算で0.75wt%となる様
調整し、同様に面温60℃で 100rpm の回転速度で60秒間
スピンコート塗布し、その後 120℃で5分間加熱し、基
体側第2層として屈折率1.46、膜厚約90nmのケイ素化合
物膜を形成させた。
The liquids F and G were diluted to 3.0 wt% in terms of oxide, and then mixed so that the ratio of liquid F: liquid G was 2: 3 (liquid I). Further, solution I: solution E = 1: 1
Mix so that the weight ratio becomes, and further dilute to 1.0wt%,
After spin coating the surface of a cathode ray tube panel with a surface temperature of 60 ° C for 60 seconds at a rotation speed of 100 rpm, it is irradiated with ultraviolet rays having a wavelength of 365 nm for 30 minutes to obtain a conductive high refractive index with a refractive index of 1.70 and a thickness of about 100 nm. A film (first layer) was obtained. H on this film
The solution was diluted with ethanol and adjusted to be 0.75 wt% in terms of oxide. Similarly, spin coating was performed at a surface temperature of 60 ° C at a rotation speed of 100 rpm for 60 seconds, and then heated at 120 ° C for 5 minutes to prepare a substrate-side coating. A silicon compound film having a refractive index of 1.46 and a film thickness of about 90 nm was formed as two layers.

【0073】実施例9 実施例8に示されるF液とG液の混合比をF液:G液=
3:2重量比とした以外は実施例8と同様に行った。
Example 9 The mixing ratio of the liquid F and the liquid G shown in the embodiment 8 was F liquid: G liquid =
Example 8 was repeated except that the weight ratio was 3: 2.

【0074】実施例10 実施例8に示されるI液とE液の混合比をI液:E液=
4:3重量比とした以外は実施例8と同様に行った。
Example 10 The mixing ratio of solution I and solution E shown in Example 8 was changed to solution I: solution E =
Example 8 was repeated except that the weight ratio was 4: 3.

【0075】実施例11 実施例8に示されるF液調整過程において、TiCl4 を一
部 Ti(OPr)4 に置換しmol 比でTiCl4 /Ti(OPr)4=1と
なるようにした以外は実施例8と同様に行った。
Example 11 Except that TiCl 4 was partly replaced by Ti (OPr) 4 in the F liquid preparation process shown in Example 8 so that the molar ratio was TiCl 4 / Ti (OPr) 4 = 1. Was performed in the same manner as in Example 8.

【0076】実施例12 実施例8の基体側第2層のケイ素化合物膜形成過程にお
いて、 120℃で5分間の加熱工程を、紫外線(365nm) を
5分照射した後、更に 120℃で5分間加熱する工程、に
変更した以外は実施例8と同様に行った。
Example 12 In the process of forming the silicon compound film of the second layer on the substrate side of Example 8, the heating step at 120 ° C. for 5 minutes was followed by irradiation with ultraviolet rays (365 nm) for 5 minutes, and then at 120 ° C. for 5 minutes. The same procedure as in Example 8 was performed except that the heating step was changed.

【0077】実施例13 実施例12に示される紫外線の波長を 254nmとした以外は
実施例12と同様に行った。
Example 13 The procedure of Example 12 was repeated except that the wavelength of ultraviolet rays shown in Example 12 was 254 nm.

【0078】比較例5 実施例8に示される紫外線照射を、 100℃での30分間の
加熱に変更した以外は、実施例8と同様に行った。な
お、SnO2粒子の平均粒径は日本電子製TEM(JEM−
100CX)を用いて測定した。結果を表3に示す。
Comparative Example 5 The procedure of Example 8 was repeated, except that the ultraviolet irradiation shown in Example 8 was changed to heating at 100 ° C. for 30 minutes. The average particle size of the SnO 2 particles is TEM (JEM-
It was measured using 100 CX). The results are shown in Table 3.

【0079】[0079]

【表3】 [Table 3]

【0080】以下、導電性微粒子を分散させたゾルを水
熱処理した場合の実施例を示す。
The following is an example of hydrothermal treatment of a sol in which conductive particles are dispersed.

【0081】実施例14 Sbを16 mol%ドープしたSnO2超微粒子粉末(平均粒径6
nm)30gを水70g中に添加してサンドミルで4時間撹拌
分散させ、ゾルを調整した。このゾルを水で固形分5wt
%希釈し、オートクレーブに入れ 350℃、 170 atmに2
時間保持した後、冷却しアンチモンドープ酸化スズゾル
を取り出した。これをエバポレータによって固形分20wt
%まで濃縮し、更にエタノールによって希釈し、濃縮を
3wt%に調整した(J液)。
Example 14 SnO 2 ultrafine particle powder (average particle size 6
(30 nm) was added to 70 g of water, and the mixture was stirred and dispersed in a sand mill for 4 hours to prepare a sol. Solid content of this sol is 5 wt%
% Diluted and put in an autoclave at 350 ° C, 170 atm 2
After holding for a time, it was cooled and the antimony-doped tin oxide sol was taken out. The solid content of this is 20 wt.
%, And further diluted with ethanol to adjust the concentration to 3 wt% (solution J).

【0082】I液とJ液をI液:J液=1:1重量比と
なる様に混合し、更にエタノールで1.0 wt%に希釈し
て、面温60℃のブラウン管パネル表面に100rpmの回転速
度で60秒スピンコート塗布し、その後120℃で5分間加
熱して、屈折率1.69かつ約 100nmの厚さの導電性高屈折
率膜(第1層)を得た。この膜上にH液をエタノールで
希釈して酸化物換算で0.75wt%となる様調整し、同様に
面温60℃で100rpmの回転速度で60秒間スピンコート塗布
し、その後 120℃で5分間加熱し、基体側第2層として
屈折率1.46、膜厚約90nmのケイ素化合物膜を形成させ
た。
Solution I and solution J were mixed so that solution I: solution J = 1: 1 weight ratio, further diluted with ethanol to 1.0 wt%, and rotated at 100 rpm on the surface of a cathode ray tube panel having a surface temperature of 60 ° C. The coating was spin-coated at a speed of 60 seconds and then heated at 120 ° C. for 5 minutes to obtain a conductive high refractive index film (first layer) having a refractive index of 1.69 and a thickness of about 100 nm. Solution H was diluted with ethanol on this film to adjust it to 0.75 wt% in terms of oxide, and spin coating was performed at a surface temperature of 60 ° C for 60 seconds at a rotation speed of 100 rpm, and then at 120 ° C for 5 minutes. By heating, a silicon compound film having a refractive index of 1.46 and a film thickness of about 90 nm was formed as the second layer on the substrate side.

【0083】実施例15 実施例14に示されるF液とG液の混合比をF液:G液=
3:2重量比とした以外は実施例14と同様に行った。
Example 15 The mixing ratio of the F liquid and the G liquid shown in the embodiment 14 was F liquid: G liquid =
Example 14 was repeated except that the weight ratio was 3: 2.

【0084】実施例16 実施例14に示されるI液とJ液の混合比をI液:J液=
4:3重量比とした以外は実施例14と同様に行った。
Example 16 The mixing ratio of liquid I and liquid J shown in Example 14 was I liquid: J liquid =
Example 14 was repeated except that the weight ratio was 4: 3.

【0085】比較例6 実施例14に示されるSbを16 mol%ドープしたSnO2超微
粒子粉末30gを平均粒径50nmのものに変更し、これを水
70g中に添加してサンドミルで4時間撹拌分散させ、こ
の後更にエタノールで希釈し固形分3wt%のゾルを調整
し、J液として用いた以外は実施例14と同様に行った。
Comparative Example 6 30 g of SnO 2 ultrafine particle powder doped with 16 mol% of Sb shown in Example 14 was changed to have an average particle size of 50 nm, and this was mixed with water.
The same procedure as in Example 14 was carried out except that the solution was added to 70 g and stirred and dispersed in a sand mill for 4 hours, and then diluted with ethanol to prepare a sol having a solid content of 3 wt% and used as the solution J.

【0086】比較例7 比較例6に示されるSbを16 mol%ドープしたSnO2超微
粒子を平均粒径3nmのものに変更した以外は比較例6と
同様に行った。なお、SnO2粒子の平均粒径は、日本電子
製TEM(JEM−100CX)を用いて測定した。結
果を表4に示す。
Comparative Example 7 The same procedure as in Comparative Example 6 was carried out except that the SnO 2 ultrafine particles doped with 16 mol% of Sb shown in Comparative Example 6 were changed to have an average particle size of 3 nm. The average particle size of SnO 2 particles was measured using a TEM (JEM-100CX) manufactured by JEOL Ltd. The results are shown in Table 4.

【0087】[0087]

【表4】 [Table 4]

【0088】次に、導電性微粒子として導電性酸化チタ
ン,ITO,FドープSnO2を用いた場合の実施例を示
す。
Next, an example in which conductive titanium oxide, ITO, or F-doped SnO 2 is used as the conductive fine particles will be described.

【0089】実施例17 導電性酸化チタンTiOx( x=1.6〜1.9 )15gを水85g中
に添加してサンドミルで4時間粉砕し、90℃で1時間加
熱解膠した後、濃度を10重量%に調整し、ゾルを調製し
た。更に、これをエタノールで希釈し、固形分で3.0 wt
%になるように調整した(K液)。I液とK液をI液:
K液=1:1重量比となるように混合し、更にエタノー
ルで1.0 wt%に希釈して面温60℃のブラウン管パネル表
面に100rpmの回転速度で60秒間スピンコート塗布し、そ
の後 120℃で5分間加熱して約100nm の厚さの導電性高
屈折率膜(第1層)を得た。
Example 17 15 g of conductive titanium oxide TiO x (x = 1.6 to 1.9) was added to 85 g of water, pulverized with a sand mill for 4 hours, and peptized by heating at 90 ° C. for 1 hour, and then the concentration was 10 weight. % To prepare a sol. Furthermore, dilute it with ethanol to obtain 3.0 wt.
It adjusted so that it might become% (K liquid). Solution I and solution K:
Mix K solution = 1: 1 weight ratio, further dilute to 1.0 wt% with ethanol and spin coat the surface of a cathode ray tube panel with a surface temperature of 60 ° C at a rotation speed of 100 rpm for 60 seconds, and then at 120 ° C. After heating for 5 minutes, a conductive high refractive index film (first layer) having a thickness of about 100 nm was obtained.

【0090】この膜上にH液をエタノールで希釈して酸
化物換算で0.75wt%となるように調整し、同様に面温60
℃でで100rpmの回転速度で60秒間スピンコート塗布し、
その後120 ℃で5分間加熱し、基体側第2層として屈折
率1.46、膜厚約90nmのケイ素化合物膜を形成させた。
Liquid H was diluted with ethanol on this film and adjusted to be 0.75 wt% in terms of oxide.
Spin coating at 60 ° C for 60 seconds at 100 rpm,
Thereafter, the substrate was heated at 120 ° C. for 5 minutes to form a silicon compound film having a refractive index of 1.46 and a film thickness of about 90 nm as the second layer on the substrate side.

【0091】実施例18 実施例17に示されるF液とG液の混合比をF液:G液=
3:2重量比とした以外は実施例17と同様に行った。
Example 18 The mixing ratio of the F liquid and the G liquid shown in Example 17 was F liquid: G liquid =
Example 17 was repeated except that the weight ratio was 3: 2.

【0092】実施例19 実施例17に示されるI液とK液の混合比をI液:K液=
4:3重量比とした以外は実施例17と同様に行った。
Example 19 The mixing ratio of solution I and solution K shown in Example 17 was as follows: solution I: solution K =
Example 17 was repeated except that the weight ratio was 4: 3.

【0093】実施例20 実施例17に示される導電性酸化チタンとして酸素欠損型
(TiOx: x=1.6〜1.9)のかわりに、NbCl5 をTiO2粉末に
0.05 mol比含浸させ 900℃でN2ガス雰囲気下で2時間加
熱することにより TiO2 中にNbをドープすることにより
得られるNb-TiO2粉末を使用以外は、実施例17と同様に
行った。
Example 20 Instead of the oxygen deficient type (TiO x : x = 1.6 to 1.9) as the conductive titanium oxide shown in Example 17, NbCl 5 was changed to TiO 2 powder.
Example 17 was repeated except that the Nb-TiO 2 powder obtained by doping Nb in TiO 2 by impregnating with 0.05 mol ratio and heating at 900 ° C. in a N 2 gas atmosphere for 2 hours was used. ..

【0094】実施例21 実施例17に示される導電性酸化チタンを、ITO(Snを
ドープしたIn2O3 ) の超微粒子(平均粒径20nm)に変更
した以外は実施例17と同様に行った。
Example 21 The same procedure as in Example 17 was carried out except that the conductive titanium oxide shown in Example 17 was changed to ultrafine particles of ITO (Sn-doped In 2 O 3 ) (average particle size 20 nm). It was

【0095】実施例22 実施例19に示される導電性酸化チタンを、ITO(Snを
ドープしたIn2O3 ) の超微粒子(平均粒径20nm)に変更
した以外は実施例19と同様に行った。
Example 22 The same procedure as in Example 19 was carried out except that the conductive titanium oxide shown in Example 19 was replaced with ultrafine particles of ITO (Sn-doped In 2 O 3 ) (average particle size 20 nm). It was

【0096】実施例23 実施例17に示される基体側第1層塗布後の 120℃で5分
間加熱する工程を365nmの波長を主とする紫外線を5分
間照射したに変更した以外は、実施例17と同様に行っ
た。
Example 23 Example 23 was repeated, except that the step of heating at 120 ° C. for 5 minutes after coating the substrate-side first layer shown in Example 17 was changed to irradiation with ultraviolet rays mainly having a wavelength of 365 nm for 5 minutes. Same as 17

【0097】実施例24 実施例20に示される基体側第1層塗布後の 120℃で5分
間加熱する工程を254nmの波長を主とする紫外線を5分
間照射したに変更した以外は、実施例20と同様に行っ
た。
Example 24 Example 24 was repeated except that the step of heating at 120 ° C. for 5 minutes after coating the substrate-side first layer shown in Example 20 was changed to irradiation with ultraviolet rays having a wavelength of 254 nm for 5 minutes. Same as 20.

【0098】実施例25 実施例21に示される基体側第1層塗布後の 120℃で5分
間加熱する工程を365nmの波長を主とする紫外線を5分
間照射する工程に変更した以外は、実施例21と同様に行
った。結果を表5に示す。
Example 25 Except that the step of heating at 120 ° C. for 5 minutes after coating the substrate-side first layer shown in Example 21 was changed to the step of irradiating with ultraviolet rays mainly at a wavelength of 365 nm for 5 minutes, The same procedure as in Example 21 was performed. The results are shown in Table 5.

【0099】[0099]

【表5】 [Table 5]

【0100】[0100]

【発明の効果】本発明によれば、高温に加熱することな
く、強固で且つ導電性の高い高屈折率膜を提供し得る。
また、かかる導電性高屈折率膜上にMgF2やSiO2等により
成る低反射膜を設けることにより、低反射性及び硬度に
優れた帯電防止低反射膜を提供できる。
According to the present invention, a strong and highly conductive high refractive index film can be provided without heating to a high temperature.
Further, by providing a low reflection film made of MgF 2 , SiO 2 or the like on the conductive high refractive index film, it is possible to provide an antistatic low reflection film excellent in low reflectivity and hardness.

【0101】本発明の導電性高屈折率膜及び、帯電防止
低反射膜は生産性に優れ、低温で高品質の膜を製造で
き、かつ真空を必要としないので装置も比較的簡単なも
ので良い。特にCRTのフェイス面等の、大面積であ
り、又、高温加熱が難しい基体にも十分適用でき、量産
も可能であり、工業的価値は非常に高い。
The conductive high-refractive index film and the antistatic low-reflection film of the present invention are excellent in productivity, can manufacture high-quality films at low temperatures, and require no vacuum, so the apparatus is relatively simple. good. In particular, it has a large area such as the face surface of a CRT, is sufficiently applicable to substrates that are difficult to be heated at high temperatures, and can be mass-produced, and thus has an extremely high industrial value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹宮 聡 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 久保田 恵子 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Satoshi Takemiya 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory (72) Keiko Kubota 1150, Hazawa-machi, Kanagawa-ku, Yokohama Asahi Glass Co., Ltd. Central research institute

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】導電性微粒子と、Ti塩を含有する液を基体
上に塗布した後、加熱かつ/又は紫外線照射により導電
性高屈折率膜を製造することを特徴とする導電性高屈折
率膜の製造方法。
1. A conductive high refractive index film, characterized in that a conductive high refractive index film is produced by applying a liquid containing conductive fine particles and a Ti salt onto a substrate and then heating and / or irradiating with ultraviolet rays. Membrane manufacturing method.
【請求項2】導電性微粒子を分散させた液を高温高圧処
理した液と、Ti塩を含む液とを含有する液を、基体上に
塗布する液として用いることを特徴とする請求項1の導
電性高屈折率膜の製造方法。
2. A liquid containing a liquid in which conductive particles are dispersed at a high temperature and high pressure and a liquid containing a Ti salt is used as a liquid for coating on a substrate. A method for producing a conductive high refractive index film.
【請求項3】基体上に高屈折率膜、低屈折率膜を順次積
層して2層からなる帯電防止低反射膜を製造する方法で
あって、上記高屈折率膜を、導電性微粒子と、Ti塩とを
含有する液を基体上に塗布した後、加熱かつ/又は紫外
線照射によって製造することを特徴とする帯電防止低反
射膜の製造方法。
3. A method for producing an antistatic low reflection film consisting of two layers by sequentially laminating a high refractive index film and a low refractive index film on a substrate, wherein the high refractive index film is made of conductive fine particles. A method for producing an antistatic low-reflection film, which comprises applying a liquid containing a Ti salt on a substrate and then heating and / or irradiating with ultraviolet rays.
【請求項4】Ti塩がTiCl4 であることを特徴とする、請
求項1又は2の導電性高屈折率膜の製造方法、又は、請
求項3の帯電防止低反射膜の製造方法。
4. The method for producing a conductive high refractive index film according to claim 1 or 2, or the method for producing an antistatic low reflection film according to claim 3, wherein the Ti salt is TiCl 4 .
【請求項5】導電性微粒子と、Ti塩とを含有することを
特徴とする液。
5. A liquid containing conductive fine particles and a Ti salt.
【請求項6】請求項1の製造方法によって製造された、
TiO2と導電性微粒子を含み、1.60以上の屈折率を有する
ことを特徴とする導電性高屈折率膜。
6. A device manufactured by the manufacturing method according to claim 1.
A conductive high refractive index film comprising TiO 2 and conductive fine particles and having a refractive index of 1.60 or more.
【請求項7】導電性微粒子としてSnO2を含み、酸化物換
算で、SnO2が 25 wt%以上、TiO2が5wt%以上、含まれ
ていることを特徴とする請求項6の導電性高屈折率膜。
Comprises SnO 2 as 7. conductive fine particles, in terms of oxide, SnO 2 is 25 wt% or more, TiO 2 is 5 wt% or more, the conductivity of claim 6, characterized in that it contains high Refractive index film.
【請求項8】請求項6又は7の導電性高屈折率膜を少な
くとも1層有する導電性多層膜。
8. A conductive multilayer film having at least one conductive high refractive index film according to claim 6 or 7.
【請求項9】基体上に高屈折率膜、低屈折率膜を順次積
層した2層からなる帯電防止低反射膜であって、上記高
屈折率膜が、請求項6又は7の導電性高屈折率膜である
ことを特徴とする帯電防止低反射膜。
9. An antistatic low-reflection film consisting of two layers in which a high-refractive index film and a low-refractive index film are sequentially laminated on a substrate, wherein the high-refractive index film has high conductivity. An antistatic low reflection film, which is a refractive index film.
【請求項10】請求項6又は7の導電性高屈折率膜、又
は請求項8の導電性多層膜、又は請求項9の帯電防止低
反射膜を形成したガラス物品。
10. A glass article on which the conductive high refractive index film according to claim 6 or 7, the conductive multilayer film according to claim 8, or the antistatic low reflection film according to claim 9 is formed.
【請求項11】請求項6又は7の導電性高屈折率膜、又
は請求項8の導電性多層膜、又は請求項9の帯電防止低
反射膜を形成したブラウン管。
11. A cathode ray tube having the electroconductive high refractive index film according to claim 6 or 7, the electroconductive multilayer film according to claim 8 or the antistatic low reflection film according to claim 9.
JP3296215A 1991-10-16 1991-10-16 High refractivity conductive film or low reflective anti-static film and manufacture thereof Withdrawn JPH05107403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3296215A JPH05107403A (en) 1991-10-16 1991-10-16 High refractivity conductive film or low reflective anti-static film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3296215A JPH05107403A (en) 1991-10-16 1991-10-16 High refractivity conductive film or low reflective anti-static film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05107403A true JPH05107403A (en) 1993-04-30

Family

ID=17830671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3296215A Withdrawn JPH05107403A (en) 1991-10-16 1991-10-16 High refractivity conductive film or low reflective anti-static film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05107403A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333423A (en) * 1994-06-08 1995-12-22 Hitachi Maxell Ltd Permselective membrane
EP0940837A1 (en) * 1998-03-03 1999-09-08 Hitachi, Ltd. Color cathode ray tube
JP2002258006A (en) * 2001-02-28 2002-09-11 Toppan Printing Co Ltd Optical functional film and method of manufacturing the same
US6808654B2 (en) 1997-09-05 2004-10-26 Mitsubishi Materials Corporation Transparent conductive film and composition for forming same
JP2005148379A (en) * 2003-11-14 2005-06-09 Nikon Corp Optical element and imaging device
EP1648164A1 (en) 2004-10-12 2006-04-19 Canon Kabushiki Kaisha Image capture apparatus
JP2009139925A (en) * 2007-11-16 2009-06-25 Epson Toyocom Corp Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus
JP2016143490A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Film formation agent, manufacturing method of the same, positive electrode active material for nonaqueous electrolyte secondary battery, and manufacturing method of the same
JPWO2014199991A1 (en) * 2013-06-11 2017-02-23 日本電気硝子株式会社 Cover member, display device, and method of manufacturing cover member
CN106896427A (en) * 2016-11-17 2017-06-27 住华科技股份有限公司 Anti-static optical film layer and its manufacture method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333423A (en) * 1994-06-08 1995-12-22 Hitachi Maxell Ltd Permselective membrane
US6808654B2 (en) 1997-09-05 2004-10-26 Mitsubishi Materials Corporation Transparent conductive film and composition for forming same
EP0940837A1 (en) * 1998-03-03 1999-09-08 Hitachi, Ltd. Color cathode ray tube
US6359380B1 (en) 1998-03-03 2002-03-19 Hitachi, Ltd. Color cathode ray tube with panel glass having a different light absorption characteristic from that of at least one outer surface layer provided thereon
JP2002258006A (en) * 2001-02-28 2002-09-11 Toppan Printing Co Ltd Optical functional film and method of manufacturing the same
JP2005148379A (en) * 2003-11-14 2005-06-09 Nikon Corp Optical element and imaging device
EP1648164A1 (en) 2004-10-12 2006-04-19 Canon Kabushiki Kaisha Image capture apparatus
US7476042B2 (en) 2004-10-12 2009-01-13 Canon Kabushiki Kaisha Image capture apparatus
JP2009139925A (en) * 2007-11-16 2009-06-25 Epson Toyocom Corp Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus
JPWO2014199991A1 (en) * 2013-06-11 2017-02-23 日本電気硝子株式会社 Cover member, display device, and method of manufacturing cover member
JP2016143490A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Film formation agent, manufacturing method of the same, positive electrode active material for nonaqueous electrolyte secondary battery, and manufacturing method of the same
CN106896427A (en) * 2016-11-17 2017-06-27 住华科技股份有限公司 Anti-static optical film layer and its manufacture method

Similar Documents

Publication Publication Date Title
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
US5085888A (en) Method for forming thin mgf2 film and low-reflection film
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JPWO2003049123A1 (en) Conductive film, method for producing the same, and substrate having the same
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
US5578377A (en) Colored thin film-forming coating solution and colored thin film obtained by such coating solution
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JPH0474568A (en) Low reflection antistatic film and preparation and use thereof
JP3514192B2 (en) Method for forming low reflective conductive film
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JPH0789720A (en) Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film
JP3315673B2 (en) CRT with conductive film
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JPH05173009A (en) Antistatic low reflection film and its production
JP2003306615A (en) Coating solution for forming low-resistance film or low- refraction film, and method for producing the low- resistance film or low-reflection low-resistance film
JPH06139822A (en) Transparent conducting film, reflection-proof electrification preventing film, and their manufacture
JPH11203943A (en) Transparent conductive base material, its manufacture and display device using this base material
JPH0570181A (en) Low-reflecting antistatic film and its production
JPH06119816A (en) Transparent conductive film and manufacture thereof
JPH0687632A (en) Low-reflection conductive film having antidazzle effect and its production
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
JPH05132341A (en) Production of electrically conductive film and electrically conductive film with low reflectance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107