Nothing Special   »   [go: up one dir, main page]

JPH05104407A - Non-contact measuring method for material to be machined and device thereof - Google Patents

Non-contact measuring method for material to be machined and device thereof

Info

Publication number
JPH05104407A
JPH05104407A JP29504491A JP29504491A JPH05104407A JP H05104407 A JPH05104407 A JP H05104407A JP 29504491 A JP29504491 A JP 29504491A JP 29504491 A JP29504491 A JP 29504491A JP H05104407 A JPH05104407 A JP H05104407A
Authority
JP
Japan
Prior art keywords
ultrasonic
liquid column
work piece
sensor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29504491A
Other languages
Japanese (ja)
Inventor
Yoshiki Ito
新樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroda Precision Industries Ltd
Original Assignee
Kuroda Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroda Precision Industries Ltd filed Critical Kuroda Precision Industries Ltd
Priority to JP29504491A priority Critical patent/JPH05104407A/en
Publication of JPH05104407A publication Critical patent/JPH05104407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To enable in-process measurement during the working operation by installing an ultrasonic sensor in a tool or in a material to be machined, outputting an ultrasonic wave in a condition that a liquid column is created relative to the other reflecting surface, and measuring a dimension by means of measurement of a reflecting time in measurement for a machine tool. CONSTITUTION:Coolant 25 is introduced into a nozzle 2 from a tank 24 through a coolant inlet port 22 by means of a pump 23, and a liquid column 20 is formed relative to a reflecting surface 41 (obverse) of a material 40 to be machined and the coolant inlet port. In this condition, a distance between the transmitting surface of an ultrasonic sensor 10 and the reflecting surface 41 (obverse) of the material 40 to be ground is maintained in a prescribed value, for example, approximately 5mm, and an oil feeding quantity is kept properly, and an interval X to the liquid column 20 is maintained in a constant condition. In this condition, an ultrasonic wave is transmitted by the ultrasonic sensor 10, and the reflection is received by a transmitter- receiver 11, and it is processed by a control device 12, so that a reflecting time can be measured. By repeating this transmission/reception at a time interval, a grinding margin can be calculated based on repeatedly received data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種工作機械の被削体
の測定法に係り、特に被削体の加工代、被削体の寸法、
若しくは研削砥石の摩耗代を、加工作業中に測定する方
法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a work body of various machine tools, and particularly to a machining allowance of the work body, a size of the work body,
Alternatively, the present invention relates to a method and an apparatus for measuring the wear allowance of a grinding wheel during a working operation.

【0002】[0002]

【従来の技術】従来より、研削盤に於いて研削加工中に
被研削体の研削代を測定する(インプロセス測定とい
う。)には、接触式測定方法、レーザ測定方法、及
び超音波測定方法が採られている。第1の接触式測定
方法にあっては、ダイヤルゲージ、差動トランス等のプ
ローブを運動する被測定物に接触させて行うため、表面
の凹凸によってプローブが振動し、該振動が測定ノイズ
となる。研削盤に於いては、通常1μm程度の測定精度
を要求されるので、前記測定ノイズが要求される精度と
同程度かそれより超える場合は、この接触式測定方法で
は測定できない。即ち、非研削物を研削盤より取り外
し、所要定盤に移動させて測定することになる。第2の
レーザ測定方法においては、レーザ光の波長はYAGレ
ーザにあっても1064nmであり、その他、ヘリウム
−ネオン・レーザ、アルゴン・レーザその他のレーザに
あっては、数百nmであり、精度の点からは十分過ぎる
程度に最も優れている。しかし、研削油剤、研削屑、風
等の影響を最も受けやすく、安定性に欠ける。また、測
定装置の価格も高価で、メンテナンスも相応の技術を要
するなど、実用段階にいまだ問題を残している。第3の
超音波測定方法にあっては、通常使用される周波数範囲
は数百kHz程度で、最も好ましい。
2. Description of the Related Art Conventionally, a contact type measuring method, a laser measuring method, and an ultrasonic measuring method have been used to measure the grinding allowance of a workpiece to be ground during grinding in a grinder (referred to as in-process measurement). Has been taken. In the first contact-type measuring method, the probe such as a dial gauge or a differential transformer is brought into contact with a moving object to be measured, so that the unevenness of the surface causes the probe to vibrate, and the vibration causes measurement noise. .. In a grinding machine, a measurement accuracy of about 1 μm is usually required. Therefore, if the measurement noise is equal to or higher than the required accuracy, it cannot be measured by this contact type measurement method. That is, the non-grinding object is removed from the grinder and moved to a required surface plate for measurement. In the second laser measuring method, the wavelength of the laser light is 1064 nm even in the YAG laser, and is several hundred nm in the other lasers such as the helium-neon laser, the argon laser, and the accuracy. From the point of view, it is the most excellent enough. However, it is most likely to be affected by grinding fluid, grinding dust, wind, etc., and lacks stability. In addition, the price of the measuring device is expensive, and the maintenance also requires a suitable technique. In the third ultrasonic measurement method, the frequency range that is normally used is about several hundred kHz, which is most preferable.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、超音波
測定方法にあっても、レーザ測定方法と同様に、被削体
表面を流れる加工油剤、加工屑、風等の影響を受けやす
い欠点を有していた。
However, even in the ultrasonic measuring method, as in the laser measuring method, the ultrasonic measuring method has a drawback that it is easily influenced by the working oil, the processing dust, the wind, etc. flowing on the surface of the workpiece. Was there.

【0004】本発明は、かかる従来技術の欠点に鑑み、
超音波測定方法により被削体の加工代、被削体の寸法、
及び研削砥石の摩耗代を、加工作業中にインプロセス測
定可能な方法及び装置を提供する事を目的とする。
In view of the drawbacks of the prior art, the present invention has been made.
Depending on the ultrasonic measurement method, the machining allowance of the work piece, the size of the work piece,
Another object of the present invention is to provide a method and an apparatus capable of measuring the wear allowance of a grinding wheel in-process during processing work.

【0005】[0005]

【課題を解決する為の手段】本発明は、加工工具側に取
付けた超音波センサと、被削体側の反射面との間に、液
柱を生成した状態で、前記センサより超音波を出力し、
該出力波の反射時間を利用して加工代若しくは被削体の
寸法を測定する事を特徴とする。また本発明は、被削体
側に取付けた超音波センサと、加工工具側の反射面との
間に、液柱を生成した状態で、前記センサより超音波を
出力し、該出力波の反射時間を利用して加工代若しくは
被削体の寸法を測定する事を特徴とする。なお好ましく
は、前記超音波の振動数が1MHz以上とする。なお好
ましくは、前記液柱を生成する液体が加工油剤と同種の
液体とする。なお、前記加工工具は、切削工具、若しく
は研削砥石とする。
According to the present invention, an ultrasonic wave is output from the ultrasonic sensor mounted on the machining tool side and a reflecting surface on the workpiece side in a state where a liquid column is generated. Then
It is characterized in that the machining allowance or the dimension of the work piece is measured by utilizing the reflection time of the output wave. Further, according to the present invention, an ultrasonic wave is output from the sensor in a state where a liquid column is generated between the ultrasonic sensor attached to the work piece side and the reflecting surface on the working tool side, and the reflection time of the output wave Is used to measure the machining allowance or the size of the work piece. In addition, preferably, the frequency of the ultrasonic waves is 1 MHz or more. It is preferable that the liquid that forms the liquid column is the same type of liquid as the processing oil. The processing tool is a cutting tool or a grinding wheel.

【0006】更に本発明は、被削体側の反射面と対向さ
せて、加工工具側に取付けた超音波センサと、前記セン
サの外周を囲繞する如く配した液供給手段とを具え、該
供給手段よりの供給液を利用して、前記センサの超音波
出力部と前記反射面間に液柱を生成可能に構成した事を
特徴とする。或いは本発明は、加工工具側の反射面と対
向させて、被削体側に取付けた超音波センサと、前記セ
ンサの外周を囲繞する如く配した液供給手段とを具え、
該供給手段よりの供給液を利用して、前記センサの超音
波出力部と前記反射面間に液柱を生成可能に構成した事
を特徴とする。
Further, the present invention comprises an ultrasonic sensor mounted on the side of the machining tool so as to face the reflecting surface on the side of the workpiece, and a liquid supply means arranged so as to surround the outer circumference of the sensor. It is characterized in that a liquid column can be generated between the ultrasonic wave output part of the sensor and the reflection surface by using the supplied liquid. Alternatively, the present invention comprises an ultrasonic sensor mounted on the side of the workpiece, facing the reflection surface on the side of the processing tool, and a liquid supply means arranged so as to surround the outer periphery of the sensor,
It is characterized in that a liquid column can be generated between the ultrasonic wave output part of the sensor and the reflection surface by using the liquid supplied from the supply means.

【0007】更に本発明は、装置本体側に取付けた超音
波センサと、研削砥石の研削面との間に、液柱を生成し
た状態で、前記センサより超音波を出力し、該出力波の
反射時間を利用して研削砥石の摩耗代を測定する事を特
徴とする。
Further, according to the present invention, an ultrasonic wave is output from the sensor in the state where a liquid column is generated between the ultrasonic sensor mounted on the apparatus main body side and the grinding surface of the grinding wheel, and the output wave The feature is that the wear allowance of the grinding wheel is measured using the reflection time.

【0008】[0008]

【作用】かかる技術手段によれば、加工工具側に取付け
た超音波センサと、被削体側の表面との間に、液柱を生
成した状態で、前記センサより超音波を出力し、該出力
波の反射時間を利用して加工代を測定するよう構成した
ために、前記超音波センサと被削体の表面との間に生成
された液柱を介して、一定時間間隔に繰り返し発信した
超音波の出力波と被削体の表面からの反射波との時間差
を計測する事により、被削体の加工代のインプロセス測
定ができる。また同時に被削体の表面からの反射波と共
に、底面からの反射波も同時に受信して、前記出力波と
の時間を計測する事により、被削体の寸法を求める事が
できる。しかも、前記超音波センサと被削体の表面との
間には、液柱のみしか存在しなく、被削体の表面を流れ
る加工油剤、加工屑、或いは風に影響される事もなく測
定できる。しかも、前記超音波センサと被削体の表面と
の間には、液柱のみしか存在しなく、接触式測定方法の
如き物理的な接触による測定ノイズがなく、所望の精度
で測定できる。
According to such a technical means, the ultrasonic wave is output from the sensor in the state where the liquid column is generated between the ultrasonic sensor attached to the machining tool side and the surface on the side of the workpiece. Since it is configured to measure the machining allowance using the reflection time of the wave, the ultrasonic wave repeatedly transmitted at a constant time interval via the liquid column generated between the ultrasonic sensor and the surface of the workpiece. The in-process measurement of the machining allowance of the work piece can be performed by measuring the time difference between the output wave of the work piece and the reflected wave from the surface of the work piece. At the same time, the reflected wave from the bottom surface of the work is received at the same time as the reflected wave from the work surface, and the time with the output wave is measured, whereby the size of the work can be obtained. Moreover, since only the liquid column exists between the ultrasonic sensor and the surface of the work piece, the measurement can be performed without being affected by the working oil agent, the processing waste, or the wind flowing on the surface of the work piece. .. Moreover, since only the liquid column exists between the ultrasonic sensor and the surface of the workpiece, there is no measurement noise due to physical contact as in the contact type measurement method, and the measurement can be performed with desired accuracy.

【0009】なお超音波の振動数を1MHz以上に設定
したために、従来の空気中に発信したときの音速(およ
そ330m/s)と本発明に拠る液柱中に発信したとき
の音速(およそ1500m/s)の差に基く測定精度も
同程度或いはそれ以上に維持できる。この事は、特に被
削体の板厚を測定するとき、鋼中の音速がおよそ580
0m/sであるために有効である。即ち、本発明では出
力波と反射波との時間を計測するために超音波の振動数
とは直接関係ないが、しかし精度を維持するためには、
高振動数である事が望ましい。幸い、材料、部品の進歩
を背景に順調な成長を遂げつつあり、数百MHzの超音
波センサ(超音波発生素子)をも実用可能となってい
る。なお前記液柱を生成する液体を加工油剤と同種の液
体とすることにより、該液体によって加工作業が妨害さ
れる事もなくインプロセス測定ができ、しかも被削体の
加工作業後の作業、例えば脱油作業・表面処理等は、従
来の処理作業を変更する事無く処理する事ができる。
Since the frequency of ultrasonic waves is set to 1 MHz or higher, the sound velocity when transmitting in the conventional air (about 330 m / s) and the sound velocity when transmitting in the liquid column according to the present invention (about 1500 m). The measurement accuracy based on the difference of / s) can be maintained at the same level or higher. This means that when measuring the plate thickness of a work piece, the sound velocity in steel is about 580.
It is effective because it is 0 m / s. That is, in the present invention, it is not directly related to the frequency of the ultrasonic wave for measuring the time between the output wave and the reflected wave, but in order to maintain the accuracy,
A high frequency is desirable. Fortunately, it is steadily growing against the backdrop of advances in materials and parts, and ultrasonic sensors (ultrasonic wave generation elements) of several hundred MHz are also practical. By using a liquid that produces the liquid column as a liquid of the same type as the processing oil agent, in-process measurement can be performed without disturbing the processing operation by the liquid, and the operation after the processing operation of the workpiece, for example, Oil removal work and surface treatment can be performed without changing the conventional treatment work.

【0010】また超音波センサを被削体側に取付け、加
工工具側の反射面との間に、液柱を生成した状態で、前
記センサより超音波を出力しても、前記同様の作用が得
られる。即ち、被削体底面に配した超音波センサから発
信する出力波は、被削体の底面及び研削表面から反射さ
れて前記センサに受信され、該出力波の反射時間を計測
する事により、被削体の加工代及び被削体の寸法を求め
る事ができる。
Further, even if an ultrasonic sensor is attached to the work body side and an ultrasonic wave is output from the sensor in a state where a liquid column is generated between the ultrasonic wave sensor and the reflecting surface on the machining tool side, the same action as described above can be obtained. Be done. That is, the output wave emitted from the ultrasonic sensor arranged on the bottom surface of the work piece is reflected from the bottom surface and the grinding surface of the work piece and received by the sensor, and by measuring the reflection time of the output wave, The machining allowance of the machined body and the size of the machined body can be obtained.

【0011】また本発明によると、被削体側の反射面と
対向させて、加工工具側に取付けた超音波センサと、前
記センサの外周を囲繞する如く配した液供給手段とを具
え、該供給手段よりの供給液を利用して、前記センサの
超音波出力部と前記反射面間に液柱を生成可能に構成し
たために、前記センサから発信された出力波の反射時間
を測定する事により、被削体の加工代及び被削体の寸法
を測定可能な非接触測定装置を提供することができる。
また、加工工具側の反射面と対向させて、被削体側に取
付けた超音波センサと、前記センサの外周を囲繞する如
く配した液供給手段とを具えても、前記測定方法の作用
で述べた如く前記構成と同様の作用を有する、被削体の
加工代及び被削体の寸法を測定可能な非接触測定装置を
提供する事ができる。
Further, according to the present invention, there is provided an ultrasonic sensor mounted on the machining tool side so as to face the reflection surface on the side of the workpiece, and a liquid supply means arranged so as to surround the outer periphery of the sensor, By using the supply liquid from the means, since it is possible to generate a liquid column between the ultrasonic output portion of the sensor and the reflection surface, by measuring the reflection time of the output wave transmitted from the sensor, It is possible to provide a non-contact measuring device capable of measuring the machining allowance of a workpiece and the dimensions of the workpiece.
Further, even if it is provided with an ultrasonic sensor which is attached to the work body side so as to face the reflecting surface of the machining tool side and a liquid supply means which is arranged so as to surround the outer circumference of the sensor, the operation of the measuring method will be described. As described above, it is possible to provide a non-contact measuring device that has the same operation as the above-described structure and that can measure the machining allowance of the work piece and the dimensions of the work piece.

【0012】また本発明によると、装置本体側に取付け
た超音波センサと、砥石の研削面との間に、液柱を生成
した状態で、前記センサより超音波を出力し、該出力波
の反射時間を利用して研削砥石の摩耗代を測定可能に構
成したために、前記センサと砥石の研磨面と間を往復す
る超音波は、前記液柱を介してのみ行われ、研削砥石の
表面を不規則に流れる研削油剤、研削屑等の影響を受け
る事がない砥石摩耗代の測定方法を提供する事ができ
る。
Further, according to the present invention, the ultrasonic wave is output from the sensor in the state where a liquid column is generated between the ultrasonic sensor attached to the apparatus main body side and the grinding surface of the grindstone, and the ultrasonic wave is output from the ultrasonic wave. Since it is configured to be able to measure the wear allowance of the grinding wheel using the reflection time, ultrasonic waves reciprocating between the sensor and the polishing surface of the grinding wheel is performed only through the liquid column, the surface of the grinding wheel It is possible to provide a method for measuring a grinding wheel wear margin that is not affected by irregularly flowing grinding fluid, grinding dust, and the like.

【0013】[0013]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described in detail below as an example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Not too much.

【0014】図2は本発明の実施例に使用される平面研
削盤の構成を示す正面図で、40は水平方向に自動及び
手動送りするベッド50に固定された被研削体で、該被
研削体40は砥石頭31に対向している。該砥石頭31
は回転する砥石30を具え、しかも垂直方向に自動及び
手動切込み送りを行う事ができる。砥石頭31の側壁に
は超音波センサ10を内装するノズル21が装設されて
おり、該ノズル21の上部には、前記超音波センサ10
が発信・受信するための信号を伝達する電線13と、前
記ノズル21内に液柱20を生成するために導入される
研削油剤25の入口22が配設されている。
FIG. 2 is a front view showing the structure of a surface grinder used in an embodiment of the present invention, in which reference numeral 40 denotes an object to be ground which is fixed to a bed 50 which is automatically and manually fed in the horizontal direction. The body 40 faces the grindstone head 31. The grinding head 31
Has a rotating grindstone 30 and is capable of automatic and manual cutting feed in the vertical direction. A nozzle 21 that houses the ultrasonic sensor 10 is installed on the side wall of the grindstone 31, and the ultrasonic sensor 10 is provided above the nozzle 21.
An electric wire 13 for transmitting a signal for transmitting / receiving and a inlet 22 for a grinding fluid 25 introduced to generate a liquid column 20 are provided in the nozzle 21.

【0015】図1は、本発明の実施例に係る超音波セン
サ10の構成を示す概要正面図で、該超音波センサ10
は電線13を介して送受信装置11及び制御装置12に
接続されている。制御装置12は、送受信装置11から
の出力波・受信波間の時間を演算し、被研削体40の研
削代・板厚43を測定・表示すると共に、設定値によっ
て自動定寸を行うべく平面研削盤を制御するよう構成さ
れている。前記ノズル21には、タンク24に貯溜され
ている研削油剤25を、ポンプ23によって研削油剤入
口22を介して導入される。従って、該ノズル21内に
は、研削油剤25による液柱20が生成される。該超音
波センサ10の発信面と対向する被研削体40の表面4
1との間の距離Xを略5mm程度に維持し、しかも適宜
送油量を維持する事により、前記液柱20は間隔X間に
定常流的に形成される。
FIG. 1 is a schematic front view showing the structure of an ultrasonic sensor 10 according to an embodiment of the present invention.
Is connected to the transmission / reception device 11 and the control device 12 via an electric wire 13. The controller 12 calculates the time between the output wave and the received wave from the transmitter / receiver 11, measures and displays the grinding allowance and the plate thickness 43 of the object to be ground 40, and also performs the surface grinding to perform automatic sizing according to the set value. It is configured to control the board. A grinding fluid 25 stored in a tank 24 is introduced into the nozzle 21 by a pump 23 through a grinding fluid inlet 22. Therefore, the liquid column 20 is generated in the nozzle 21 by the grinding fluid 25. The surface 4 of the object to be ground 40 facing the transmitting surface of the ultrasonic sensor 10.
By maintaining the distance X between the liquid column 1 and 1 to be approximately 5 mm, and by appropriately maintaining the oil feed amount, the liquid column 20 is formed in a constant flow between the intervals X.

【0016】そこで、前記超音波センサ10より発信さ
れた出力波は、被研削体40の表面41で反射し再び該
センサ10に受信され、受信信号は電線13を介して送
受信装置11及び制御装置12に伝達される。該超音波
センサ10は時間をおいて発信・受信を繰返し、その都
度制御装置12に知らされ、該時間間隔における研削代
を算出し測定値を得る。
Therefore, the output wave transmitted from the ultrasonic sensor 10 is reflected by the surface 41 of the object to be ground 40 and received again by the sensor 10, and the received signal is transmitted and received through the electric wire 13 to the transmitter / receiver 11 and the controller. 12 is transmitted. The ultrasonic sensor 10 repeats transmission and reception after a certain time, and the control device 12 is notified each time, and calculates the grinding allowance in the time interval to obtain a measured value.

【0017】図3は、本発明の他の実施例に係る超音波
センサ10の要部を示す概要正面図で、該センサ10か
ら液柱20中に発信された超音波は、被研削体40の底
面42において反射され該センサ10に受信される。送
発信信号は制御装置12において演算処理されて、まず
送受信間の時間が計測され、続いて前記図2に記述した
被研削体40の表面41からの反射波との差が求められ
て、被研削体40の板厚43の測定値が求められる。
FIG. 3 is a schematic front view showing a main part of an ultrasonic sensor 10 according to another embodiment of the present invention. The ultrasonic waves transmitted from the sensor 10 into the liquid column 20 are to be ground 40. The light is reflected by the bottom surface 42 of the sensor and received by the sensor 10. The transmission / transmission signal is arithmetically processed in the control device 12, the time between transmission and reception is first measured, and then the difference from the reflected wave from the surface 41 of the object to be ground 40 described in FIG. The measured value of the plate thickness 43 of the grinding body 40 is obtained.

【0018】更に図4は、本発明の他の実施例に係わる
超音波10の構成を示す概要正面図で、該超音波センサ
10はノズル21に囲繞されており、しかも該ノズル2
1は砥石30の研削面31と対面配設されている。前記
と同様に、研削油剤25は入口22からノズル21内に
導入されて、液柱20を生成する。該液柱内の超音波セ
ンサ10より発信された出力波は砥石30の研削面31
にて反射されて、電線13を介して送受信装置11に伝
達される。一定時間間隔で繰返し発信される出力波の反
射時間を演算する事により、該間隔内に摩耗した砥石3
0の摩耗代の測定値が算出される。従って制御装置12
により、該摩耗代に対応させて砥石30の研削送り代を
制御する事ができ、或いは設定値により砥石30の取替
え警告を発信する事もできる。
Further, FIG. 4 is a schematic front view showing the structure of an ultrasonic wave 10 according to another embodiment of the present invention. The ultrasonic sensor 10 is surrounded by a nozzle 21 and the nozzle 2
1 is arranged facing the grinding surface 31 of the grindstone 30. Similar to the above, the grinding fluid 25 is introduced into the nozzle 21 through the inlet 22 to generate the liquid column 20. The output wave transmitted from the ultrasonic sensor 10 in the liquid column is the grinding surface 31 of the grindstone 30.
Is transmitted to the transmitting / receiving device 11 via the electric wire 13. By calculating the reflection time of the output wave repeatedly transmitted at a constant time interval, the grindstone 3 worn within the interval is calculated.
A measured wear allowance of 0 is calculated. Therefore, the control device 12
As a result, the grinding feed allowance of the grindstone 30 can be controlled in accordance with the wear allowance, or a replacement warning of the grindstone 30 can be issued according to the set value.

【0019】また、前記本発明に係る実施例を研削盤に
ついて述べたが、切削加工機械に於いても、前記同様の
作用・効果を上げる事ができる。
Although the embodiment according to the present invention has been described with respect to the grinder, the same action and effect as described above can be obtained in a cutting machine.

【0020】[0020]

【効果】以上記載した如く本発明によれば、超音波セン
サと、被削体若しくは加工工具側の反射面との間に、液
柱を生成し、該液柱を往復する超音波の時間を計測する
ように構成したために、被削体の研削代、被削体の寸法
のインプロセス測定が可能となり、特に研削加工におい
ては、砥石の研削面の摩耗代のインプロセス測定が可能
となる。しかも、前記超音波の振動数を1MHz以上に
設定したために、超音波の伝達媒体が液体・固体である
にも拘らず、従来の空気中を送受信したときと同程度あ
るいはそれ以上の測定精度を得る事が可能となる。しか
も、前記液柱は加工作業に使用する加工油剤により生成
されているために、加工作業を妨害する事もなく、更
に、加工油剤がノズルより反射面に対して吐出する構造
としたために、該反射面上の加工屑と、これによるノイ
ズ発生を排除する事ができ、測定精度の良い被削体の非
接触測定装置を提供する事が可能となる。
As described above, according to the present invention, a liquid column is generated between the ultrasonic sensor and the reflecting surface on the side of the work piece or the machining tool, and the time of the ultrasonic wave reciprocating in the liquid column is reduced. Since the measurement is configured, the in-process measurement of the grinding allowance of the work piece and the dimension of the work piece can be performed, and particularly in the grinding process, the in-process measurement of the wear allowance of the grinding surface of the grindstone becomes possible. Moreover, since the frequency of the ultrasonic waves is set to 1 MHz or higher, the accuracy of measurement is equal to or higher than that when transmitting and receiving in the air, even though the ultrasonic transmission medium is liquid or solid. It becomes possible to obtain. Moreover, since the liquid column is generated by the processing oil used for the processing work, it does not interfere with the processing work, and further, the processing oil is discharged from the nozzle to the reflecting surface. It is possible to eliminate the machining waste on the reflecting surface and the generation of noise due to this, and it is possible to provide a non-contact measuring device for a workpiece with high measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る超音波センサの構成を示
す概要正面図
FIG. 1 is a schematic front view showing the configuration of an ultrasonic sensor according to an embodiment of the present invention.

【図2】本発明の実施例に使用される平面研削盤の構成
を示す正面図
FIG. 2 is a front view showing a configuration of a surface grinder used in an embodiment of the present invention.

【図3】本発明の他の実施例に係る超音波センサの構成
を示す概要正面図
FIG. 3 is a schematic front view showing the configuration of an ultrasonic sensor according to another embodiment of the present invention.

【図4】本発明の他の実施例に係わる超音波の構成を示
す概要正面図
FIG. 4 is a schematic front view showing the configuration of ultrasonic waves according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 超音波センサ 20 液柱 21 液供給手段 25 加工油剤 30 加工工具 31 研削砥石の反射面 40 被削体 41 被削体の反射面 42 被削体の反射面 43 被削体の寸法 10 Ultrasonic Sensor 20 Liquid Column 21 Liquid Supplying Means 25 Processing Oil 30 Processing Tool 31 Reflective Surface of Grinding Wheel 40 Workpiece 41 Reflective Surface of Workpiece 42 Reflective Surface of Workpiece 43 Dimension of Workpiece

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 加工工具側若しくは被削体側に取付けた
超音波センサと、被削体若しくは加工工具側の反射面と
の間に、液柱を生成した状態で、前記センサより超音波
を出力し、該出力波の反射時間を利用して加工代若しく
は被削体の寸法を測定する事を特徴とする被削体の非接
触測定方法
1. An ultrasonic wave is output from an ultrasonic sensor mounted on the side of a machining tool or a work piece and a reflective surface on the side of the work piece or the work tool in a state where a liquid column is generated. Then, the machining allowance or the dimension of the workpiece is measured by utilizing the reflection time of the output wave
【請求項2】 前記超音波の振動数が1MHz以上であ
る請求項1記載の被削体の非接触測定方法
2. The non-contact measuring method for a work piece according to claim 1, wherein the frequency of the ultrasonic waves is 1 MHz or more.
【請求項3】 前記液柱を生成する液体が加工油剤と同
種の液体である請求項1記載の被削体の非接触測定方法
3. The non-contact measuring method for a work piece according to claim 1, wherein the liquid that forms the liquid column is the same liquid as the processing oil.
【請求項4】 前記加工工具が切削工具である請求項1
記載の被削体の非接触測定方法
4. The machining tool is a cutting tool.
Non-contact measuring method of the work piece described
【請求項5】 前記加工工具が研削砥石である請求項1
記載の被削体の非接触測定方法
5. The processing tool is a grinding wheel.
Non-contact measuring method of the work piece described
【請求項6】 被削体側若しくは加工工具側の反射面と
対向させて、加工工具側若しくは被削体側に取付けた超
音波センサと、前記センサの外周を囲繞する如く配した
液供給手段とを具え、該供給手段よりの供給液を利用し
て、前記センサの超音波出力部と前記反射面間に液柱を
生成可能に構成した被削体の非接触測定装置
6. An ultrasonic sensor mounted on the machining tool side or the workpiece side facing the reflection surface on the workpiece side or the machining tool side, and a liquid supply means arranged so as to surround the outer circumference of the sensor. A non-contact measuring device for a workpiece, which is configured to generate a liquid column between the ultrasonic wave output part of the sensor and the reflecting surface by using the supply liquid from the supply means.
【請求項7】 装置本体側に取付けた超音波センサと、
砥石の研削面との間に、液柱を生成した状態で、前記セ
ンサより超音波を出力し、該出力波の反射時間を利用し
て砥石の摩耗代を測定する事を特徴とする砥石摩耗代測
定方法
7. An ultrasonic sensor attached to the main body of the apparatus,
Grinding wheel wear characterized by producing ultrasonic waves from the sensor in a state where a liquid column is generated between the grinding surface of the grinding wheel and measuring the wear allowance of the grinding wheel using the reflection time of the output wave Cost measurement method
JP29504491A 1991-10-15 1991-10-15 Non-contact measuring method for material to be machined and device thereof Pending JPH05104407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29504491A JPH05104407A (en) 1991-10-15 1991-10-15 Non-contact measuring method for material to be machined and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29504491A JPH05104407A (en) 1991-10-15 1991-10-15 Non-contact measuring method for material to be machined and device thereof

Publications (1)

Publication Number Publication Date
JPH05104407A true JPH05104407A (en) 1993-04-27

Family

ID=17815598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29504491A Pending JPH05104407A (en) 1991-10-15 1991-10-15 Non-contact measuring method for material to be machined and device thereof

Country Status (1)

Country Link
JP (1) JPH05104407A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199013A (en) * 2006-01-30 2007-08-09 Disco Abrasive Syst Ltd Thickness measuring device and grinding attachment
EP2412477A2 (en) 2010-07-27 2012-02-01 Jtekt Corporation Grinding method and grinding machine
JP2021117082A (en) * 2020-01-24 2021-08-10 株式会社ディスコ Measurement method
CN114577152A (en) * 2022-02-28 2022-06-03 北京烁科精微电子装备有限公司 Polishing pad groove detection method based on sound waves and detection system thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199013A (en) * 2006-01-30 2007-08-09 Disco Abrasive Syst Ltd Thickness measuring device and grinding attachment
EP2412477A2 (en) 2010-07-27 2012-02-01 Jtekt Corporation Grinding method and grinding machine
CN102343550A (en) * 2010-07-27 2012-02-08 株式会社捷太格特 Grinding method and grinding machine
JP2012024904A (en) * 2010-07-27 2012-02-09 Jtekt Corp Grinding method and grinding machine
US8784156B2 (en) 2010-07-27 2014-07-22 Jtekt Corporation Grinding method for grinding a workpiece using a grinding wheel
EP2412477A3 (en) * 2010-07-27 2014-08-27 Jtekt Corporation Grinding method and grinding machine
JP2021117082A (en) * 2020-01-24 2021-08-10 株式会社ディスコ Measurement method
CN114577152A (en) * 2022-02-28 2022-06-03 北京烁科精微电子装备有限公司 Polishing pad groove detection method based on sound waves and detection system thereof

Similar Documents

Publication Publication Date Title
JP4824166B2 (en) Method and grinding machine for process guides in peel grinding of workpieces
Coker et al. In-process control of surface roughness due to tool wear using a new ultrasonic system
Bhaduri et al. A study on ultrasonic assisted creep feed grinding of nickel based superalloys
Yandayan et al. In-process dimensional measurement and control of workpiece accuracy
US6062948A (en) Apparatus and method for gauging a workpiece
US4524543A (en) Vibratory abrasive contour-finishing method and apparatus
Shin et al. Surface roughness measurement by ultrasonic sensing for in-process monitoring
US7241201B2 (en) CMP pad analyzer
US5303510A (en) Automatic feed system for ultrasonic machining
JPH05104407A (en) Non-contact measuring method for material to be machined and device thereof
US6147764A (en) Optical interference profiler having shadow compensation
JP2008263096A (en) Grinding method of device
JP4707226B2 (en) Whetstone in-process measuring device, measuring method and grinding device
JP5547925B2 (en) Compound surface grinding method for workpieces
US4001980A (en) Grinding machine
JP4190682B2 (en) Ultrasonic processing equipment
US20240228358A1 (en) Installation for producing at least one useful part from a glass pane
US5739433A (en) Touch off probe
JPH07237122A (en) Grinding processor
Maksoud et al. In-process detection of grinding wheel truing and dressing conditions using a flapper nozzle arrangement
EP0729008A1 (en) Application and method for detecting changes in distance
KR20020072928A (en) Automatic Polishing Apparatus for Mold using ultrasonic waves vibrating tool
JPH0655414A (en) Tool position measuring method by ultrasound
JP2020185626A (en) Measurement system for measuring abrasive grain distribution of grinding wheel surface and grinder provided with the same
CS232545B1 (en) Method of determining of engagement of grinding wheel or milling cutter during work and device to perfotm that method