Nothing Special   »   [go: up one dir, main page]

JPH0484599A - Manufacture of acoustic diaphragm - Google Patents

Manufacture of acoustic diaphragm

Info

Publication number
JPH0484599A
JPH0484599A JP19940690A JP19940690A JPH0484599A JP H0484599 A JPH0484599 A JP H0484599A JP 19940690 A JP19940690 A JP 19940690A JP 19940690 A JP19940690 A JP 19940690A JP H0484599 A JPH0484599 A JP H0484599A
Authority
JP
Japan
Prior art keywords
graphite
dome
acoustic diaphragm
diaphragm
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19940690A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
和廣 渡辺
Mutsuaki Murakami
睦明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19940690A priority Critical patent/JPH0484599A/en
Priority to US07/735,721 priority patent/US5178804A/en
Priority to EP91112609A priority patent/EP0468524B1/en
Priority to DE69124024T priority patent/DE69124024T2/en
Publication of JPH0484599A publication Critical patent/JPH0484599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

PURPOSE:To easily obtain an excellent acoustic characteristic by applying heat treatment to a high polymer film compression molded to a dome or a cone shape at a specific temperature under an inert gas environment so as to attain graphite processing when a polyamide acid is converted into a polyamide by thermal polycondens. CONSTITUTION:The heat treatment processed under an inert gas environment is implemented so as to reach 2000 deg.C or over so that graphite processing is sufficiently progressed and a usual pressure of 0.1-200kg/cm<2> is exerted after the temperature reaches 2000 deg.C. Thus, since the compression molding to obtain a dome or a cone shape is implemented in the drawing enable state in the imide processing progressing stage in which imide processing is finished, a proper shape such as a done or cone is easily obtained. Thus, a graphite-made diaphragm with excellent acoustic characteristic is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、スピーカー、マイクロフォン等に用いられ
る音響振動板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method of manufacturing an acoustic diaphragm used for speakers, microphones, etc.

従来の技術 近年、音9機器のディジタル化が進行し、スビカー等の
振動板に対する要求性能はまずまず厳しくなっている。
BACKGROUND OF THE INVENTION In recent years, digitalization of sound equipment has progressed, and the performance requirements for diaphragms such as subicars have become fairly strict.

たとえば、外力による変形が少なく音の歪みが小さいこ
と、再生音域が広く明瞭な音質が出せることが求められ
ており、そのためには軽く、しかも弾性率、剛性に優れ
ていることが要求されている。この事を具体的な物性値
の条件としてまとめると、 ■ヤング率(E)が大きいこと、 ■密度(ρ)が小さいこと、 ■音速(音波の伝搬速度■)が大きいこと、■振動の内
部損失(tanδ)が適当であること、0強度が大きい
こと、 などである。ただし、V、E、  ρの間には、V−(
E/ρ)+7 の関係がある。もちろん、ごれらの条件以外に、成型が
可能であること、製造が容易であること、熱や湿度など
の外部条件に対して安定であることが要求される。
For example, it is required that there is little deformation due to external force and that the distortion of the sound is small, and that the reproduced sound range is wide and clear sound quality can be produced.To achieve this, it is required that it is light and has excellent elastic modulus and rigidity. . To summarize this as conditions for specific physical property values, ■Young's modulus (E) is large, ■Density (ρ) is small, ■Sound velocity (sound wave propagation speed■) is large, and ■Internal vibration. The loss (tan δ) should be appropriate, the 0 intensity should be large, etc. However, between V, E, and ρ, V-(
There is a relationship of E/ρ)+7. Of course, in addition to these conditions, it is also required to be moldable, easy to manufacture, and stable against external conditions such as heat and humidity.

振動板材料としては、従来、紙、プラスチック、アルミ
ニウム、チタン、ベリリウム、ボロン、シリカ等がその
素材として用いられてきた。これらは、単独であるいは
ガラス繊維や炭素繊維などとの複合体として使用された
り、金属合金などと言った形で使用されたりしてきた。
Conventionally, materials such as paper, plastic, aluminum, titanium, beryllium, boron, and silica have been used as materials for the diaphragm. These materials have been used alone or in composites with glass fibers, carbon fibers, etc., or in the form of metal alloys.

しかしながら、紙やプラスチックは、ヤング率や密度、
音速などの特性が振動板として十分ではなく、特に高周
波数帯域での周波数特性が著しく劣るものであって、ツ
イータ等の振動板としては明瞭な音質を得ることが困難
であった。また、アルミニウム、マグネシウム、チタン
などは、音速はかなり優れているものの、振動の内部損
失が小さいため、高周波共振現象を生じ、これもまた高
周波振動板としては不十分な特性しか得られていなかっ
た。一方、ボロン、ベリリウム等は、上記の素材に比べ
優れた物性値を有しているために、振動板として良質の
音質を発現する事が出来る。しかしながら、ボロンやブ
リリウムは、極めて高価で、しかも著しく加工性が劣っ
ていると言う欠点を有している。
However, paper and plastics have low Young's modulus and density.
The characteristics such as sound velocity are not sufficient as a diaphragm, and the frequency characteristics especially in high frequency bands are extremely poor, making it difficult to obtain clear sound quality as a diaphragm for tweeters and the like. Furthermore, although materials such as aluminum, magnesium, and titanium have fairly high sound speeds, their internal loss of vibration is small, resulting in high-frequency resonance phenomena, which also provide insufficient characteristics for high-frequency diaphragms. . On the other hand, boron, beryllium, and the like have superior physical properties compared to the above-mentioned materials, and therefore can produce good sound quality as a diaphragm. However, boron and bryllium have the drawbacks of being extremely expensive and having extremely poor workability.

以上のような従来の振動板材料の持つ欠点を克服し優れ
た高周波特性を有しかつ良質の音色の再現を目指して、
炭素材料を用いた振動板の開発が行われている。これは
、炭素(グラフアイl−)の持つ優れた物性値を活かし
て、ごれを振動板として使用するものである。この様な
振動板材料を得る方法には、つぎのようなものがある。
We aim to overcome the drawbacks of conventional diaphragm materials as mentioned above, have excellent high frequency characteristics, and reproduce high quality tone.
Diaphragms using carbon materials are being developed. This uses dirt as a diaphragm by taking advantage of the excellent physical properties of carbon (graphite l-). Methods for obtaining such a diaphragm material include the following.

(1)黒鉛粉末と高分子樹脂を複合一体化する方法。(1) A method of compositely integrating graphite powder and polymer resin.

(2)黒鉛粉末と高分子樹脂を複合一体化したのち焼結
して黒鉛/炭素複合型とする方法。
(2) A method in which graphite powder and polymer resin are integrated into a composite and then sintered to form a graphite/carbon composite type.

(3)高分子フィルムを熱処理により炭素化する方法。(3) A method of carbonizing a polymer film by heat treatment.

これらのうち、(1)の方法により得られる代表的なも
のとして、塩化ビニル樹脂をマトリックスとしてこれに
黒鉛粉末を複合させた振動板がある。
Among these, a typical example obtained by method (1) is a diaphragm in which a vinyl chloride resin matrix is composited with graphite powder.

これは優れた性質を有する振動板として知られている。This is known as a diaphragm with excellent properties.

(2)の方法としては、原油分解ピッチの液晶成分に黒
鉛粉末を混合させて熱処理炭化する方法や、黒鉛粉末に
これを結合するバインダーを加えて熱処理炭化する方法
がある。後者の場合、バインダーを炭化する際には、熱
硬化性樹脂のモノマーまたは初期重合物を、加熱時に分
解し相互に反応して架橋硬化する官能基を有する熱可塑
性樹脂と併せて熱処理炭化する方法等が知られている。
Method (2) includes a method in which graphite powder is mixed with the liquid crystal component of crude oil cracking pitch and heat treated and carbonized, and a method in which a binder is added to the graphite powder to bind it and heat treated and carbonized. In the latter case, when carbonizing the binder, a thermosetting resin monomer or initial polymer is heat-treated and carbonized together with a thermoplastic resin that has functional groups that decompose when heated and react with each other to crosslink and harden. etc. are known.

これらの方法は、有機材料としての炭素収率を高め、熱
処理時における収縮、変形を防止することを目的として
開発されたもので、優れた特性の振動板を得るこ七が出
来る。
These methods were developed with the aim of increasing the yield of carbon as an organic material and preventing shrinkage and deformation during heat treatment, making it possible to obtain a diaphragm with excellent characteristics.

(3)の方法の場合、いくつかの高分子フィルムが検討
されたが、大抵の高分子フィルムは高温で熱処理しても
中々グラフアイI・化しない、いわゆる難黒鉛化材料に
属するため、優れた音響振動板を得ることは難しいとい
う状況であった。
In the case of method (3), several polymer films have been considered, but most polymer films are considered to be non-graphitizable materials that do not easily change to graphite I even when heat treated at high temperatures. The situation was that it was difficult to obtain an acoustic diaphragm that

発明が解決しようとする課題 しかし、(1)の方法による音響振動板は、湿度、温度
特性に劣り、30℃以」−では振動特性が著しく劣化し
てしまう。
Problems to be Solved by the Invention However, the acoustic diaphragm produced by method (1) has poor humidity and temperature characteristics, and its vibration characteristics deteriorate significantly at temperatures above 30°C.

(2)の方法は、いずれも複雑な製造工程を必要とし、
工業的Gこは量産を行う場合に著しく不利なものであっ
た。即ち、例えば、製造工程面では、原料として用いる
原油分解ピッチ及びその液晶成分を工業的に得るために
は高温熱処理や溶剤分別抽出等の極めて複雑な工程が必
要である点で問題があり、量産面では、黒鉛粉末とバイ
ンダー樹脂を高度の剪断力を有する混練機を用いて十分
に混練し、メカノケミカル反応により襞間された黒鉛結
晶とバインダー樹脂を相互に強固に親和分散させ黒鉛の
結晶面をシー]・の面方向に配向させると言う高度な技
術が必要である点で問題があった。し2かも、これらの
方法によって得られた振動板は、従来にない極めて優れ
た特性を有しているとは言うものの、その特性は現在最
高特性であると言われるベリリウムより僅かに劣り、黒
鉛単結晶の理論弾性率1020GPaには描かに及ばな
いものであった。
Method (2) all require complicated manufacturing processes;
Industrial G was extremely disadvantageous in mass production. For example, in terms of the manufacturing process, there is a problem in that extremely complicated processes such as high-temperature heat treatment and solvent fractional extraction are required to industrially obtain crude oil cracked pitch and its liquid crystal component used as raw materials, and mass production is difficult. For the surface, graphite powder and binder resin are sufficiently kneaded using a kneading machine with a high shear force, and a mechanochemical reaction causes the folded graphite crystals and binder resin to have a strong affinity and disperse with each other, thereby creating a graphite crystal surface. The problem was that a sophisticated technique was required to orient the material in the direction of the surface of the material. 2.Although the diaphragms obtained by these methods have extremely superior properties that have not been seen before, their properties are slightly inferior to beryllium, which is currently said to have the best properties, and are superior to graphite. The theoretical elastic modulus of single crystal was less than 1020 GPa.

(3)の方法は、縮合系高分子の一部は高温の熱処理に
よりグラファイト化する、いわゆる易グラファイト化材
料であるという最近の知見に基づくものである。ただ、
この方法で得られる振動板は平面状のものに限られてい
た。これは、原料となる高分子フィルムは成型が極めて
困難であるからである。平面状の音響振動板は、例えば
、ドーム状振動板に比べて音圧が劣るために大きな部屋
で使う場合、特に高音が十分に聞こえないというような
不都合があった。
Method (3) is based on the recent finding that some condensation polymers are so-called graphitizable materials that graphitize by high-temperature heat treatment. just,
The diaphragm obtained by this method was limited to a flat one. This is because the polymer film used as the raw material is extremely difficult to mold. For example, a flat acoustic diaphragm has a disadvantage in that high-pitched sounds cannot be heard sufficiently when used in a large room because the sound pressure is inferior to that of a dome-shaped diaphragm.

このような事情に鑑み、この発明は、優れた音響特性を
有するドーム状ないしコーン状グラファイト製の音響振
動板を容易に得ることのできる方法を提供することを目
的とする。
In view of these circumstances, an object of the present invention is to provide a method by which a dome-shaped or cone-shaped acoustic diaphragm made of graphite having excellent acoustic properties can be easily obtained.

課題を解決するだめの手段 前記目的を達成するため、請求項1〜3記載の発明にか
かる音響振動板の製造方法では、ポリアミド酸を熱縮重
合によりポリイミドに転化する際にドーム状ないしコー
ン状に加圧成型された高分子フィルムに、不活性雰囲気
中、2000℃以上の温度域に達する熱処理を施しグラ
ファイト化するようムこしている。
Means for Solving the Problems In order to achieve the above object, in the method for manufacturing an acoustic diaphragm according to the invention according to claims 1 to 3, when polyamic acid is converted into polyimide by thermal condensation polymerization, a dome-shaped or cone-shaped The polymer film that has been pressure-molded is subjected to heat treatment in an inert atmosphere at a temperature of 2000°C or higher to turn it into graphite.

成型工程で付けられる形状がドーム状の場合、真球曲面
に限らず偏平楕円曲面でもよい。
When the shape formed in the molding process is a dome shape, it is not limited to a true spherical curved surface, but may be an oblate elliptical curved surface.

そして、この発明でのイミド化は、例えば、請求項2の
ように、ポリアミド酸を含む溶液をキャスティングし溶
剤の一部を蒸発除去することにより得られるフィルムを
70〜400℃で加熱することで行う。
The imidization in this invention can be carried out, for example, by heating a film obtained by casting a solution containing polyamic acid and evaporating a part of the solvent at 70 to 400°C. conduct.

この発明の場合、請求項3のように、2000℃以−に
の温度域においてフィル1、を加圧するようにするごと
が好ましい。
In the case of this invention, it is preferable that the fill 1 is pressurized in a temperature range of 2000° C. or higher.

なお、得られる音響振動板は100%グラファイトであ
る必要はなく若干非グラフアイ]・カーボンが残留して
いてもよい。
Note that the resulting acoustic diaphragm does not need to be 100% graphite, and may have some residual graphite.

この発明で使われるドーム状ないしコーン状に加圧成型
された高分子フィルムは、ポリイミド、特に好ましくは
芳香族ポリイミドである。芳香族ポリイミドには、例え
ば、下記の化合物が挙げられる。
The polymer film pressure-molded into a dome or cone shape used in the present invention is made of polyimide, particularly preferably aromatic polyimide. Examples of aromatic polyimides include the following compounds.

一芳香族ポリイミド 11]1 ここでR,は、下記であられす置換基 R2は下記であられず置換基 上記芳香族ポリイミドは、例えば、以下のようにして得
られる。
Monoaromatic polyimide 11]1 Here, R, is the following substituent R2 is not the following substituent The above aromatic polyimide can be obtained, for example, as follows.

まず、下記(81式であられずピロメリット酸無水物と
下記(bJ式であられずジアミノフェニルエーテルが使
われる。
First, the following (formula 81, not pyromellitic anhydride) and the following (bJ, not diaminophenyl ether) are used.

(a)           (b) ]111 両者を反応させ、下記(C)弐であられず可溶性ポリア
ミド酸を合成する。
(a) (b) ]111 Both are reacted to synthesize the following (C) soluble polyamic acid.

つぎに、ポリアミド酸溶液を用いて、キャスI・法等に
よりポリアミド酸フィルムを作製する。例えば、ポリア
ミド酸溶液を基板上にキャスティングしてから乾燥(加
熱)して溶媒を一部除去しポリアミド酸フィルムを得る
。この場合、溶媒には、N−メチルピロリドンとジメチ
ルアセトアミドと芳香族炭化水素の混合液等が挙げられ
る。ついで、ポリアミド酸の種類により異なるが、通常
は70〜400℃(好ましくは120〜300℃)の範
囲の温度下で加熱脱水しイミド化させ、下記(d)式で
あられすポリイミドフィルムにする。
Next, a polyamic acid film is produced using the polyamic acid solution by the Cass I method or the like. For example, a polyamic acid solution is cast onto a substrate and then dried (heated) to remove a portion of the solvent to obtain a polyamic acid film. In this case, examples of the solvent include a mixed solution of N-methylpyrrolidone, dimethylacetamide, and an aromatic hydrocarbon. Next, although it varies depending on the type of polyamic acid, it is usually heat-dehydrated and imidized at a temperature in the range of 70 to 400°C (preferably 120 to 300°C) to form a polyimide film according to the following formula (d).

(d) そして、この発明では、既にイミド化が完了したフィル
ムを成型するのではなく、例えば、請求項2のように、
ポリアミド酸を含む溶液をキャスティングし溶剤の一部
を蒸発除去するごとにより得られるフィルムを70〜4
00℃の温度で加圧成型するようにする。
(d) In this invention, instead of molding a film that has already been imidized, for example, as in claim 2,
The film obtained by casting a solution containing polyamic acid and evaporating a part of the solvent is 70 to 4
Pressure molding is performed at a temperature of 00°C.

普通、成型は、ステンレス製等の金型を用いてイミド化
が多少進んだ段階(イミド化の途中)で行い、成型後も
さらに加熱処理してイミド化を完了させる。
Usually, molding is carried out using a mold made of stainless steel or the like when imidization has progressed to some extent (in the middle of imidization), and after molding, further heat treatment is performed to complete imidization.

成型済ポリイミドフィルムは、そのままで熱処理しグラ
ファイト化すると寸法収縮乙こより表面に皺が入ったり
形が崩れたりし易いので、グラファイト製の形状保持用
金型を用いてグラファイト他用熱処理の段階で加圧する
ことが好ましい。
If molded polyimide film is heat-treated to graphite as it is, it tends to shrink in size and cause wrinkles to form on the surface or lose its shape. It is preferable to press.

不活性(ガス)雰囲気中で行う熱処理は、グラファイト
化が十分に進む2000’C(より好ましくは2500
℃)以」二に達するように行い、2000℃以上に達し
てから、普通、0.1〜200kg/cJ程度の圧力を
かけるようにする。200kg/caを越ず圧力は一般
に必要ない。この加圧は、得られる音響振動板に皺が入
ったり等の不都合を防く作用だけでなくグラファイトの
結晶に欠陥が生しるのを防止する作用もある。
The heat treatment carried out in an inert (gas) atmosphere is carried out at a temperature of 2000'C (more preferably 2500'C), which is sufficient for graphitization.
℃) or higher, and after reaching 2000°C or higher, a pressure of about 0.1 to 200 kg/cJ is usually applied. Pressures above 200 kg/ca are generally not required. This pressurization not only prevents wrinkles from occurring in the resulting acoustic diaphragm but also prevents defects from forming in the graphite crystals.

作用 この発明の音響振動板の製造方法では、ドーム状ないし
コーン状とする加圧成型をイミド化が完了してしまうイ
ミド化進行段階の延伸可能な状態で行うために、[゛−
ム状、コーン状といった適切な形状のものを容易に得る
ごとができる。また、高分子フィルムが芳香族ポリイミ
ドというグラファイト化の容易な材料であるため、優れ
たグラファイト製振動板が得られる。
Function: In the method for manufacturing an acoustic diaphragm of the present invention, in order to perform pressure molding into a dome shape or a cone shape in a stretchable state at the imidization progress stage where imidization is completed, [゛-
It is possible to easily obtain a suitable shape such as a wedge shape or a cone shape. Furthermore, since the polymer film is made of aromatic polyimide, a material that can be easily converted into graphite, an excellent graphite diaphragm can be obtained.

実施例 以下、この発明の詳細な説明する。もちろん、この発明
は、下記の実施例Gこ限らない。
EXAMPLES The present invention will be described in detail below. Of course, the present invention is not limited to Example G below.

実施例1〜3 ポリアミド酸溶液(東し株式会社製 商品名トレニース
)を使い、ドクターブレード法により、ガラス基板」二
に厚み250μmでキャスティングし、120℃まで加
熱して溶媒(N−メチルピロリドンとジメチルアセトア
ミドと芳香族炭化水素の混合液)を一部蒸発させポリア
ミド酸フィルムを得た。
Examples 1 to 3 Using a polyamic acid solution (manufactured by Toshi Co., Ltd., trade name: TRENICE), it was cast to a thickness of 250 μm on a glass substrate by the doctor blade method, heated to 120°C, and mixed with a solvent (N-methylpyrrolidone). Part of the mixture (mixture of dimethylacetamide and aromatic hydrocarbon) was evaporated to obtain a polyamic acid film.

得たフィルムをガラス基板から剥がし、延伸装置(柴山
科学機械製作所 高分子延伸装置)にセットし、220
℃の温度で10分保持しイミド化を進める間に、直径3
0mmでR15mmのドーム状ステンレス成型金型(実
施例1)、直径30mm ’T: R25rnmのドー
ム状ステンレス成型金型(実施例2)、直径30肛でR
40mmのドーム状ステンレス成型金型(実施例3)を
用いて、それぞれ加圧成型した後、温度を350℃に」
二げ、10分間の熱処理を行ってイミド化を完了させ、
ドーム状の芳香族ポリイミドフィルムを得た。
The obtained film was peeled off from the glass substrate, set in a stretching device (Shibayama Kagaku Kikai Seisakusho, polymer stretching device), and
℃ temperature for 10 minutes to proceed with imidization.
0mm and R15mm dome-shaped stainless steel mold (Example 1), diameter 30mm 'T: R25rnm dome-shaped stainless steel mold (Example 2), diameter 30mm and R
After pressure molding using a 40 mm dome-shaped stainless steel mold (Example 3), the temperature was raised to 350°C.
After that, heat treatment was performed for 10 minutes to complete imidization.
A dome-shaped aromatic polyimide film was obtained.

ついで、得られたドーム状のポリイミドフィルムを、ホ
ットプレス炉(中外炉工業製G15X15HTB−Gl
l ・III’15)を用い、アルゴン雰囲気中、20
℃/分の昇温速度で2800℃まで昇温し、その温度で
、直径30mmでR1,5mmのドーム状カーボン製形
状保持用金型(実施例1)、直径30mmでR25+m
nのドーム状カーボン製形状保持用金型(実施例2)、
直径30mmでR40mmのドーム状カーボン製形状保
持用金型(実施例3)を用いて50kg/c+Ilの圧
力をかけ2時間保持し、ドーム状音響振動板を得た。
Next, the obtained dome-shaped polyimide film was heated in a hot press furnace (G15X15HTB-Gl manufactured by Chugai Roko Kogyo Co., Ltd.
l ・III'15) in an argon atmosphere for 20
The temperature was raised to 2800°C at a heating rate of °C/min, and at that temperature, a dome-shaped carbon shape-retaining mold with a diameter of 30mm and R1.5mm (Example 1), a diameter of 30mm and R25+m
n dome-shaped carbon shape-retaining mold (Example 2),
Using a dome-shaped carbon shape retaining mold (Example 3) with a diameter of 30 mm and radius of 40 mm, a pressure of 50 kg/c+Il was applied and held for 2 hours to obtain a dome-shaped acoustic diaphragm.

一実施例4 ポリアミド酸溶液(東し株式会社製 商品名トレニース
)を使い、ドクターブレード法により、ガラス基板上に
厚み250 II Illでキャスティングし、120
℃まで加熱して溶媒(N−メチルピロリドンとジメチル
アセトアミドと芳香族炭化水素の混合液)を一部蒸発さ
せポリアミド酸フィルムを得た。
Example 4 Using a polyamic acid solution (manufactured by Toshi Co., Ltd., trade name: TRENICE), it was cast onto a glass substrate with a thickness of 250 II Ill by the doctor blade method.
C. to partially evaporate the solvent (mixture of N-methylpyrrolidone, dimethylacetamide, and aromatic hydrocarbon) to obtain a polyamic acid film.

得たフィルムをガラス基板から剥がし、延伸装置(柴山
科学機械製作所 高分子延伸装置)にセソ(〜し、 1
20℃の温度に達した時点で2軸方向に10%延伸をか
け1.に下方向から直径30mmでR100mmのドー
ム状ステンレス成型金型を用いて加圧成型し、その後、
温度を350℃に上げてI(1分間の熱処理を行いイミ
ド化を完了させ、ドーム状の芳香族ポリイミドフィルム
を得た。
The obtained film was peeled off from the glass substrate and placed in a stretching device (Shibayama Kagaku Kikai Seisakusho Polymer Stretching Equipment).
When the temperature reached 20°C, 10% stretching was applied in two axial directions.1. Pressure molded from below using a dome-shaped stainless steel mold with a diameter of 30 mm and a radius of 100 mm, and then
The temperature was raised to 350° C. and heat treatment was carried out for 1 minute to complete imidization, yielding a dome-shaped aromatic polyimide film.

ついで、得られたドーム状のポリイミドフィルムを、ホ
ットプレス炉(中外炉]二業製G ]、5 X ]、5
 II Tn−cp −npl、5)を用い、アルゴン
雰囲気中、20℃/分の昇温速度で280(1’(まで
昇温し、その温度で、直径30+nmでF’? 100
mmのドーム状カーボン製形状保持用金型を用いて50
kg/c%の圧力をかけ2時間保持し、ドーム状音響振
動板を得た。
Then, the obtained dome-shaped polyimide film was heated in a hot press furnace (Chugai Furnace) by Nigyo G], 5 X], 5
II Tn-cp-npl, 5) in an argon atmosphere at a heating rate of 20°C/min to 280 (1'), and at that temperature, F'?100 at a diameter of 30 + nm.
50 mm using a dome-shaped carbon shape-retaining mold.
A pressure of kg/c% was applied and maintained for 2 hours to obtain a dome-shaped acoustic diaphragm.

実施例1〜4の音響振動板について、東洋精器製ダイナ
ミックモジュラスターを用いて物性値(音速、内部損失
)を測定した。さらに、ボイスコイルを取り付け、(再
生)限界周波数を測定した。測定結果を第1表に示す。
Physical properties (sound velocity, internal loss) of the acoustic diaphragms of Examples 1 to 4 were measured using a Dynamic Modulus Star manufactured by Toyo Seiki. Furthermore, a voice coil was attached and the (reproduction) limit frequency was measured. The measurement results are shown in Table 1.

なお、実施例1〜3の音響振動板の一部を切り出し、走
査型電子顕微鏡(日本電子製 T−300型)で断面を
観察したとごろ、グラファイト特有の層状構造が見られ
た。
Note that when a part of the acoustic diaphragm of Examples 1 to 3 was cut out and the cross section was observed using a scanning electron microscope (Model T-300 manufactured by JEOL Ltd.), a layered structure peculiar to graphite was observed.

(以下余白) 第  1  表 第1表にみるように、実施例の音響振動板は優れた音響
特性を有し”ζいる。
(The following is a blank space) Table 1 As shown in Table 1, the acoustic diaphragm of the example has excellent acoustic characteristics.

発明の効果 以上に述べたように、この発明にかかる音響振動板の製
造方法では、イミド化終了前の延伸可能な状態で加圧成
型を行うために適切な形状となり、しかも、高分子フィ
ルJ、がグラファイト化の容易なポリイミドであるため
に音響特性の良いグラファイト製振動板が得られる。
Effects of the Invention As described above, in the method for manufacturing an acoustic diaphragm according to the present invention, the shape is suitable for pressure molding in a stretchable state before imidization, and the polymer film J Since , is a polyimide that can be easily converted into graphite, a graphite diaphragm with good acoustic properties can be obtained.

代理人の氏名 弁理士 粟野重孝 はか1名GName of agent: Patent attorney Shigetaka Awano Haka1 G

Claims (3)

【特許請求の範囲】[Claims] (1)ポリアミド酸を熱縮重合によりポリイミドに転化
する際にドーム状ないしコーン状に加圧成型された高分
子フィルムに、不活性雰囲気中、2000℃以上の温度
域に達する熱処理を施しグラファイト化するようにする
音響振動板の製造方法。
(1) When polyamic acid is converted into polyimide by thermal condensation polymerization, a polymer film that is pressure-molded into a dome or cone shape is subjected to heat treatment in an inert atmosphere at a temperature range of 2000°C or higher to form graphite. A method for manufacturing an acoustic diaphragm.
(2)ポリアミド酸を含む溶液をキャスティングし溶剤
の一部を蒸発除去することにより得られるフィルムを7
0〜400℃の温度で加圧成型する請求項1記載の音響
振動板の製造方法。
(2) A film obtained by casting a solution containing polyamic acid and evaporating a part of the solvent.
The method for manufacturing an acoustic diaphragm according to claim 1, wherein the acoustic diaphragm is press-molded at a temperature of 0 to 400°C.
(3)2000℃以上の温度域においてフィルムを加圧
するようにする請求項1または2記載の音響振動板の製
造方法。
(3) The method for manufacturing an acoustic diaphragm according to claim 1 or 2, wherein the film is pressurized in a temperature range of 2000° C. or higher.
JP19940690A 1990-07-27 1990-07-27 Manufacture of acoustic diaphragm Pending JPH0484599A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19940690A JPH0484599A (en) 1990-07-27 1990-07-27 Manufacture of acoustic diaphragm
US07/735,721 US5178804A (en) 1990-07-27 1991-07-25 Method of manufacturing acoustic diaphragm
EP91112609A EP0468524B1 (en) 1990-07-27 1991-07-26 Method of manufacturing acoustic diaphragm
DE69124024T DE69124024T2 (en) 1990-07-27 1991-07-26 Method of manufacturing an acoustic membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19940690A JPH0484599A (en) 1990-07-27 1990-07-27 Manufacture of acoustic diaphragm

Publications (1)

Publication Number Publication Date
JPH0484599A true JPH0484599A (en) 1992-03-17

Family

ID=16407267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19940690A Pending JPH0484599A (en) 1990-07-27 1990-07-27 Manufacture of acoustic diaphragm

Country Status (1)

Country Link
JP (1) JPH0484599A (en)

Similar Documents

Publication Publication Date Title
JP3630669B2 (en) Composite carbon diaphragm and manufacturing method thereof
US5043185A (en) Method for fabricating a graphite film for use as an electroacoustic diaphragm
US5080743A (en) Process for preparation of a wholly carbonaceous diaphragm for acoustic equipment use
EP0468524B1 (en) Method of manufacturing acoustic diaphragm
JPH0484599A (en) Manufacture of acoustic diaphragm
US4938829A (en) Process of making a diaphragm of vitreous hard carbonaceous material for an acoustic device
FR2649276A1 (en) PROCESS FOR PRODUCING A TOTALLY CARBONATED MEMBRANE FOR ACOUSTIC EQUIPMENT
JP2584114B2 (en) Manufacturing method of acoustic diaphragm
JP2998305B2 (en) Manufacturing method of acoustic diaphragm
JP2953022B2 (en) Manufacturing method of diaphragm
JP3025542B2 (en) Diaphragm for carbonaceous acoustic equipment and method of manufacturing the same
JPS6165596A (en) Manufacture of glass type hard carbon acoustic equipment&#39;s oscillating plate
US4921559A (en) Process of making an acoustic carbon diaphragm
JPH0353799A (en) Speaker diaphragm and its manufacture
JPS6256097A (en) Manufacture of diaphragm for all carbonaceous acoustic equipment
JPS6256098A (en) Manufacture of diaphragm for vitreous hard carbonaceous acoustic equipment
JPH0423699A (en) Acoustic diaphragm
JPH03274999A (en) Manufacture of acoustic diaphragm
JP2890789B2 (en) Manufacturing method of diaphragm
JP2002103363A (en) Method for producing polyimide molding and polyimide molding
JPS61236298A (en) Manufacture of diaphragm for completely carbonaceous acoustic equipment
JPH01185098A (en) Manufacture of vitreous hard carbonaceous diaphragm having compressional construction
JPH05103392A (en) Manufacture of acoustic diaphragm
JP3019565B2 (en) Manufacturing method of acoustic diaphragm
JP3052549B2 (en) Speaker diaphragm and method of manufacturing the same