Nothing Special   »   [go: up one dir, main page]

JPH0482170A - Manufacture of angular nickel hydrogen storage battery - Google Patents

Manufacture of angular nickel hydrogen storage battery

Info

Publication number
JPH0482170A
JPH0482170A JP2195006A JP19500690A JPH0482170A JP H0482170 A JPH0482170 A JP H0482170A JP 2195006 A JP2195006 A JP 2195006A JP 19500690 A JP19500690 A JP 19500690A JP H0482170 A JPH0482170 A JP H0482170A
Authority
JP
Japan
Prior art keywords
electrode plate
metal case
thickness
battery
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2195006A
Other languages
Japanese (ja)
Other versions
JP2856855B2 (en
Inventor
Hideaki Ozawa
英明 小澤
Osamu Takahashi
修 高橋
Katsuyuki Hata
秦 勝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2195006A priority Critical patent/JP2856855B2/en
Publication of JPH0482170A publication Critical patent/JPH0482170A/en
Application granted granted Critical
Publication of JP2856855B2 publication Critical patent/JP2856855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To eliminate increase in thickness of battery with that of electrode plate group and to improve injecting property of electrolite by allowing a metal case to contain an electrode plate group with a thickness being 95% or less of the inner diameter of the metal case in the laminating direction, performing charging/discharging by one cycle after enclosing the metal case, and compressing the metal case in the thickness direction of the electrode plate group. CONSTITUTION:An electrode plate group is accommodated in a metal case 21 and an alkaline electrolyte is injected. After that, a positive terminal 29 and elastic body 26 are provided in an insulating gasket 27, and a sealing member accommodating a metallic cover plate 28 connected with a positive electrode plate 24 is pressed in an opening of the case 21. Collector terminals 31 and 30 are formed on the electrode plates 24 and 22, respectively and are collectively connected with the cover plate 28 and the case 21. The opening of the metal case 21 is folded for sealing, to thus obtain a battery. The battery is charged, and discharged with a current of 1CmA to be 1V in battery voltage, after which the side surfaces of the case 21 is compressed from the thickness direction of the electrode plate group by a press such that the thickness of the pressed portion is to be 95% of that of the battery.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は正極板と負極板をセパレータを介して積層した
角形電池、特に負極に水素吸蔵金属を、正極にニッケル
酸化物を、それぞれ主成分として有する角形ニッケル水
素蓄電池の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a prismatic battery in which a positive electrode plate and a negative electrode plate are laminated with a separator in between. The present invention relates to a method for manufacturing a prismatic nickel-metal hydride storage battery.

(従来の技術) 近年、機器の小型軽量化にともない体積効率の高い角形
電池の開発が行われている。また最近、円筒形電池にお
いて一層の高容量化を目的として負極に水素吸蔵金属を
用いるアルカリ蓄電池の開発も活発になっている。
(Prior Art) In recent years, as devices become smaller and lighter, prismatic batteries with high volumetric efficiency have been developed. Furthermore, in recent years, development of alkaline storage batteries using a hydrogen-absorbing metal in the negative electrode has become active in order to further increase the capacity of cylindrical batteries.

ところで、従来の角形アルカリ蓄電池、例えばニッケル
カドミウム蓄電池においては、第5図に示される構造の
ものが知られている。すなわち第5図において、1は負
極端子を兼ねる有底直方体の金属ケース容器である。こ
の容器1の内部には、カドミウムを主成分とする負極板
2、セパレータ3、ニッケル酸化物を主成分とする正極
板4とがこの順序で積層して構成された発電要素5が配
置されている。この正極板4.負極板2にはそれぞれ集
電端子II、 10を形成し、それぞれの集電端子11
及び10はそれぞれ纏めて金属性蓋体8及び金属ケース
容器1に接続されている。9は電池内圧か上昇した際に
外部にガスを排出する機構を有する弾性体6を内蔵した
封口板であり、絶縁性ガスケット7を介して金属ケース
1の開口端部をかしめることにより、容器1内の発電要
素などの各部材を密閉している。
By the way, as a conventional prismatic alkaline storage battery, for example, a nickel-cadmium storage battery, one having the structure shown in FIG. 5 is known. That is, in FIG. 5, 1 is a rectangular parallelepiped metal case container with a bottom that also serves as a negative electrode terminal. Inside this container 1, a power generation element 5 is arranged, which is constructed by laminating in this order a negative electrode plate 2 mainly composed of cadmium, a separator 3, and a positive electrode plate 4 mainly composed of nickel oxide. There is. This positive electrode plate 4. A current collector terminal II, 10 is formed on each negative electrode plate 2, and a current collector terminal 11 is formed on each of the negative electrode plates 2.
and 10 are collectively connected to the metal lid 8 and the metal case container 1, respectively. Reference numeral 9 denotes a sealing plate containing an elastic body 6 having a mechanism for discharging gas to the outside when the internal pressure of the battery increases. Each member such as the power generation element inside 1 is sealed.

上記発電要素のうち、正極板としてはニッケル粉末の焼
結体に溶液状の活物質を含浸充填する焼結式極板が用い
られてきたが、従来その電極容量密度は最高450mA
h/cc程度であり、より一層の高容量化のためには容
量密度を向上させることが必要とされるようになってき
た。
Among the above-mentioned power generation elements, a sintered electrode plate in which a sintered body of nickel powder is impregnated and filled with a solution active material has been used as the positive electrode plate, but conventionally, the electrode capacity density is up to 450 mA.
h/cc, and in order to achieve even higher capacity, it has become necessary to improve the capacity density.

そこで、電極容量密度を高める上で有利となる発泡メタ
ルや焼結繊維などの三次元構造基板に活物質を直接充填
する方法によるペースト式極板が開発され、それらの電
極では500 mAb/cc以上の容量密度が得られて
いる。
Therefore, a paste-type electrode plate was developed that uses a method of directly filling an active material into a three-dimensional structure substrate such as foamed metal or sintered fiber, which is advantageous in increasing the electrode capacity density. A capacitance density of is obtained.

(発明が解決しようとする課題) 正極にニッケル酸化物、負極にカドミウム酸化物及び金
属カドミウムを採用した従来のニッケルカドミウム蓄電
池は、充電過程において正極の厚みが増大し、負極の厚
みが減少する。また放電過程においては各々その逆の傾
向を有している。
(Problems to be Solved by the Invention) In conventional nickel-cadmium storage batteries that employ nickel oxide for the positive electrode and cadmium oxide and metal cadmium for the negative electrode, the thickness of the positive electrode increases and the thickness of the negative electrode decreases during the charging process. Moreover, in the discharge process, each has an opposite tendency.

方、負極に水素吸蔵合金を主成分として有するニッケル
水素アルカリ蓄電池においては、充電過程において負極
では水素吸蔵合金が水素を吸蔵するために負極の厚みが
若干増大し、正極厚みの増大と重なって極板群厚の増大
がニッケルカドミウム電池よりも顕著となる。この現象
は正極が焼結式極板よりもペースト式極板に代表される
非焼結式極板の方が顕著であり、更に正極が未化成の電
極である場合には初充電時に化成により大幅に厚みが増
大するため、セパレータから電解液を押し出してしまい
電解液が安全弁を通して外部に排出されてしまうことも
ある。このような電極の膨潤により電池が厚さ方向に膨
らむため、封目方法として金属ケース開口端のかしめを
採用した角形電池では、アルカリ電解液の漏液の原因と
なるおそれもある。
On the other hand, in a nickel-metal hydride alkaline storage battery that has a hydrogen storage alloy as its main component in the negative electrode, the hydrogen storage alloy absorbs hydrogen in the negative electrode during the charging process, so the thickness of the negative electrode increases slightly, and this overlaps with the increase in the thickness of the positive electrode. The increase in plate group thickness is more pronounced than in nickel-cadmium batteries. This phenomenon is more pronounced in non-sintered positive electrode plates, such as paste-type electrode plates, than in sintered positive electrode plates.Furthermore, if the positive electrode is an unformed electrode, chemical formation occurs during the first charge. Since the thickness increases significantly, the electrolyte may be pushed out of the separator and may be discharged to the outside through the safety valve. This swelling of the electrodes causes the battery to swell in the thickness direction, which may cause alkaline electrolyte leakage in prismatic batteries in which the opening end of the metal case is caulked as a sealing method.

また非焼結式正極板、例えばペースト式極板を用いて高
容量の電池を構成しようとする場合には、正極板の容量
密度としては500 mAh/cc以上が要求される。
Further, when a high-capacity battery is constructed using a non-sintered positive electrode plate, for example, a paste-type positive electrode plate, the capacity density of the positive electrode plate is required to be 500 mAh/cc or more.

そのペースト式極板は活物質を含むペースト状物を多孔
性基板に塗布乾燥することにより形成されているため、
充放電により膨潤を生し、その結果必要とされる電解液
量は焼結式極板の場合よりも多くなってしまうが、円筒
形電池の場合と異なって角形電池には渦巻式極板群の巻
芯に相当する部分の空間が存在しないために、電解液の
注入性が極端に劣ってしまう。また万一電解液の不足が
生じた場合には電極反応の不均一が生じて、電池容量の
不足及び電極の劣化に伴う電極容量バランスの崩れを生
じ、充放電サイクル寿命の低下を引き起こしてしまう。
The paste-type electrode plate is formed by applying a paste-like material containing an active material to a porous substrate and drying it.
Swelling occurs during charging and discharging, and as a result, the amount of electrolyte required is larger than in the case of sintered electrode plates, but unlike the case of cylindrical batteries, prismatic batteries have a spiral electrode group. Since there is no space corresponding to the winding core, the injectability of the electrolyte is extremely poor. In addition, in the event that a shortage of electrolyte occurs, uneven electrode reactions will occur, resulting in insufficient battery capacity and imbalance in electrode capacity due to electrode deterioration, leading to a reduction in charge/discharge cycle life. .

さらに、前述したように非焼結式極板が膨潤し電解液を
セパレータから電極内に取り込んでしまうため、セパレ
ータ中に適量の電解液量を確保することが困難となり、
充放電サイクル寿命を低下させてしまうというように、
種々の問題があった。
Furthermore, as mentioned above, the non-sintered electrode plates swell and take electrolyte from the separator into the electrode, making it difficult to secure an appropriate amount of electrolyte in the separator.
This may reduce the charge/discharge cycle life.
There were various problems.

本発明は上記問題点を解消するためになされたもので、
その目的は、極板群の厚み増大による電池厚みの増大が
なく、電解液の注入性を向上させると共に放電特性が良
好でサイクル劣化の小さい角形ニッケル水素蓄電池を提
供することにある。
The present invention was made to solve the above problems, and
The purpose is to provide a prismatic nickel-metal hydride storage battery that does not have an increase in battery thickness due to an increase in the thickness of the electrode plate group, improves the injectability of electrolyte, has good discharge characteristics, and exhibits little cycle deterioration.

(課題を解決するための手段) 上記目的を達成するために、本発明は負極性端子を兼ね
る有底角筒金属ケース内に帯状のニッケル正極板と水素
吸蔵金属を主成分とする負極板とをセパレータを介して
横方向に交互に重ね合わせた極板群およびアルカリ電解
液を収納した角形ニッケル水素蓄電池の製造方法におい
て、正極が電極容量密度500mAh/cc以上である
未化成の非焼結式ニッケル極を備え、金属ケース挿入前
の極板群厚みを金属ケースの積層方向の内径の95%以
下とした極板群を内装しているとともに、密閉後少なく
とも1サイクル充放電した後、極板群の厚み方向から金
属ケースを圧縮し厚みを減少させることを特徴とするも
のである。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a strip-shaped nickel positive electrode plate and a negative electrode plate mainly composed of a hydrogen storage metal in a bottomed rectangular cylindrical metal case that also serves as a negative polarity terminal. In the manufacturing method of a prismatic nickel-metal hydride storage battery containing a group of electrode plates and an alkaline electrolyte, which are stacked alternately in the horizontal direction with separators in between, the positive electrode is an unformed, non-sintered type with an electrode capacity density of 500 mAh/cc or more. It is equipped with a nickel electrode, and the thickness of the electrode plate group before insertion into the metal case is 95% or less of the inner diameter in the stacking direction of the metal case. This is characterized by compressing the metal case from the thickness direction of the group to reduce its thickness.

(作 用) 本発明によると、角形金属ケースの厚み方向の膨れを抑
えると共に、適量の電解液を注入することが容易となり
、セパレータの電解液保持性を良好な状態で保つことを
可能とすることができるため、充放電サイクル特性及び
大放電特性か良好でスペース効率の優れた高容量の角形
電池が得られる。
(Function) According to the present invention, it is possible to suppress the swelling of the square metal case in the thickness direction, to easily inject an appropriate amount of electrolyte, and to maintain the electrolyte retention property of the separator in a good state. Therefore, a high capacity prismatic battery with good charge/discharge cycle characteristics and large discharge characteristics and excellent space efficiency can be obtained.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例 1 第1図は本発明の一実施例である角形ニッケル水素電池
の発電要素収納直後の縦断面図である。
Example 1 FIG. 1 is a longitudinal cross-sectional view of a prismatic nickel-metal hydride battery, which is an example of the present invention, immediately after the power generation element is housed.

図に示すように、0.2mm厚の袋状セパレータ23内
に水酸化ニッケルを主体とするペースト状活物質を三次
元網状構造を有するニッケル基板に充填。
As shown in the figure, a nickel substrate having a three-dimensional network structure is filled with a paste-like active material mainly composed of nickel hydroxide in a bag-like separator 23 with a thickness of 0.2 mm.

乾燥、プレスした電極容量密度500mAh/ccの未
化成の正極板24と、水素吸蔵合金を主体としたペース
ト状活物質をパンチトメタル基板に充填、乾燥。
A dried and pressed unformed positive electrode plate 24 with an electrode capacity density of 500 mAh/cc and a paste-like active material mainly composed of a hydrogen storage alloy were filled into a punched metal substrate and dried.

プレスした負極板22とを交互に重ね合わせて極板群2
5を形成した。この際、正極と負極の容量バランスが適
正となるようにするとともに極板群の厚みが金属ケース
内面の厚み寸法の95%となるように正負極の厚みを調
節した。その後、両面にニッケルメッキを施した鋼板を
深絞り成形して得られる0、 4mm厚の有底角形金属
ケース21内に極板群を収納し、アルカリ電解液を注入
後、絶縁ガスケット27内に正極端子299弾性体26
を備え、正極板24と接続された金属性蓋板28を収め
た封口部材を金属ケース21の開口部に圧入、載置する
。この正極板24.負極板22にはそれぞれ集電端子3
1.30が形成されており、それぞれの集電端子31及
び30はそれぞれ纏めて金属性蓋体28及び金属ケース
21に接続されている。そして、金属ケース21の開口
部を折り曲げて封口し、密閉式角形電池を完成させた。
The pressed negative electrode plates 22 are stacked alternately to form the electrode plate group 2.
5 was formed. At this time, the thickness of the positive and negative electrodes was adjusted so that the capacity balance between the positive electrode and the negative electrode was appropriate, and the thickness of the electrode plate group was 95% of the thickness of the inner surface of the metal case. Thereafter, the electrode group is housed in a bottomed rectangular metal case 21 with a thickness of 0.4 mm obtained by deep drawing a steel plate with nickel plating on both sides, and after injecting an alkaline electrolyte, it is inserted into an insulating gasket 27. Positive electrode terminal 299 elastic body 26
A sealing member containing a metal cover plate 28 connected to the positive electrode plate 24 is press-fitted into the opening of the metal case 21 and placed. This positive electrode plate 24. Each negative electrode plate 22 has a current collector terminal 3.
1.30 are formed, and the respective current collecting terminals 31 and 30 are collectively connected to the metal lid body 28 and the metal case 21, respectively. Then, the opening of the metal case 21 was bent and sealed to complete a sealed prismatic battery.

そして引き続き、0.2Cm人の電流で8時間充電し、
ICm^の電流で電池電圧が1■になるまで放電した後
、極板群の厚み方向からプレスにより金属ケース21の
側面を圧縮し、プレス部の厚みが電池の厚みの95%と
なるようにした。この状態の断面図を第2図に示す。
Then, continue to charge for 8 hours with 0.2Cm human current,
After discharging with a current of ICm^ until the battery voltage reaches 1■, press the sides of the metal case 21 from the direction of the thickness of the electrode plate group so that the thickness of the pressed part becomes 95% of the thickness of the battery. did. A cross-sectional view of this state is shown in FIG.

次に本発明の効果を確認するために、上記実施例と同様
の電極構成を用いて、次に示す各電池を製作し、各電池
の製造時における電池性状を調べた。
Next, in order to confirm the effects of the present invention, the following batteries were manufactured using the same electrode configuration as in the above example, and the battery properties of each battery at the time of manufacture were examined.

(1)金属ケースを厚み方向から圧縮しなかった場合(
比較例1)、 (2)密封後、直ちに厚み方向からケースを圧縮した場
合(比較例2)、 (3)密封後、同様の充放電サイクルを5サイクルした
後、厚み方向からケースを圧縮した場合(実施例2)、 (4)予め金属ケースを圧縮し、厚みを減少したケース
に極板群を挿入し、その後封口した場合(比較例3)。
(1) If the metal case is not compressed from the thickness direction (
Comparative Example 1), (2) When the case was compressed from the thickness direction immediately after sealing (Comparative Example 2), (3) After sealing, the case was compressed from the thickness direction after 5 similar charge/discharge cycles. (Example 2), (4) A case in which the metal case was compressed in advance, the electrode plate group was inserted into the case whose thickness was reduced, and then the case was sealed (Comparative Example 3).

これらについて電池性状を比較してみると、(1)の金
属ケースを厚み方向から圧縮しなかったものは、充放電
後、0.1〜0.15mm程度膨らみを生じた。(2)
の密封後直ちに金属ケースを圧縮したものは、圧縮の際
安全弁からの電解液が噴き出してしまうことがあった。
When the battery properties of these batteries were compared, the battery (1) in which the metal case was not compressed in the thickness direction swelled by about 0.1 to 0.15 mm after charging and discharging. (2)
If the metal case was compressed immediately after being sealed, the electrolyte from the safety valve could spout out during compression.

これらに対して(3)の5サイクル充放電を行ってから
金属ケースを圧縮したものは、上記実施例と同様に良好
な特性の電池を得た。(4)の場合は、予め厚みを減少
したケースに極板群を挿入するため、電極の崩れ及びそ
の微粉末による短絡を誘発し、これらを防止するために
予め極板群の厚みを小さくすると、ニッケル水素蓄電池
として利点である高容量のメリットがなくなってしまう
ことになる。
When these were subjected to 5 cycles of charging and discharging as described in (3) and then the metal case was compressed, a battery with good characteristics as in the above example was obtained. In the case of (4), the electrode group is inserted into a case whose thickness has been reduced in advance, which may cause the electrodes to crumble and cause short circuits due to the fine powder. , the advantage of high capacity as a nickel-metal hydride storage battery will be lost.

また、これらの電池を0.2Cm^で7時間充電した後
、放電電流を段階的に設定した際の各放電率での電池容
量を第3図に、Q、 2CmAで7時間充電し、I C
mAで電池電圧が1■になるまで放電するサイクルを繰
り返した際の電池容量維持率を第4図に示す。なお放電
特性については放電終止電圧を800mVとし、各放電
率での容量は、0.2CmA放電時における放電容量を
100%とし、充放電サイクルにおいては初期における
コンデイション後の放電容量を100%としたときのサ
イクル後の容量維持率%を示した。
In addition, after charging these batteries at 0.2CmA for 7 hours, the battery capacity at each discharge rate when the discharge current was set stepwise is shown in Figure 3. C
Figure 4 shows the battery capacity retention rate when repeated cycles of discharging at mA until the battery voltage reached 1. Regarding the discharge characteristics, the discharge end voltage is 800 mV, the capacity at each discharge rate is 100% at 0.2 CmA discharge, and the discharge capacity after initial conditioning in the charge/discharge cycle is 100%. The capacity retention rate (%) after cycling is shown.

以上の結果から分かるように、本発明の実施例はいずれ
も、放電特性が比較例1及び2よりも優れているととも
に充放電サイクル特性が優れていることが分かる。これ
は極板群の厚み方向に金属ケースが圧縮されるため、正
極と負極の極間距離が小さくなったためであり、比較的
崩れ易いペースト式極板を抑え込むことによって、電極
自身の膨潤を抑制しセパレータ中に適量の電解液を保持
させることができるためである。さらには耐振動性や耐
衝撃性の点から見てもよい効果をもたらすものである。
As can be seen from the above results, all of the Examples of the present invention have better discharge characteristics than Comparative Examples 1 and 2, and also have better charge/discharge cycle characteristics. This is because the metal case is compressed in the thickness direction of the electrode plate group, which reduces the distance between the positive and negative electrodes.By suppressing the paste-type electrode plate, which is relatively easy to collapse, the swelling of the electrode itself is suppressed. This is because an appropriate amount of electrolyte can be retained in the separator. Furthermore, it brings about good effects in terms of vibration resistance and impact resistance.

なお前記実施例では負極板の基板としてパンチトメタル
を用いたが、金網やラスメタル等、二次元構造基板及び
発泡メタル等の三次元構造基板に充填したものでもよい
Although punched metal was used as the substrate of the negative electrode plate in the above embodiment, it may be filled in a two-dimensional structured substrate such as wire mesh or lath metal, or a three-dimensional structured substrate such as foamed metal.

(発明の効果) 以上説明したように、本発明によると、充放電時におけ
る発電要素の膨潤に伴う容器の膨れを抑えると共に大電
流放電特性が優れ、長寿命のエネルギー密度の高い角形
ニッケル水素蓄電池を提供できる。
(Effects of the Invention) As explained above, according to the present invention, the prismatic nickel-metal hydride storage battery has a long life and high energy density, suppresses the swelling of the container due to the swelling of the power generation element during charging and discharging, and has excellent large current discharge characteristics. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第17図は本発明の一実施例である角形ニッケル水素電
池の発電要素収納直後の縦断面図、第2図は第1図の電
池を1サイクル充放電した後極板の厚み方向から金属ケ
ースを圧縮した状態を示す縦断面図、第3図は本発明の
実施例および比較例の電池の各放電率における放電容量
の維持率を示す図、第4図はサイクル充放電に伴う電池
容量の維持率を示す図、第5図は従来の角形ニッケルカ
ドミウム蓄電池の縦断面図である。 21・・・有底角形金属ケース 22・・・負極板 23・・・セパレータ 24・・・正極板 25・・・極板群 26・・・弾性体 27・・・絶縁ガスケット 28・・金属性蓋板 29・・・正極端子 30.31・・・集電端子 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 六電電A(cへA) 第 戊
Figure 17 is a vertical cross-sectional view of a prismatic nickel-metal hydride battery, which is an embodiment of the present invention, immediately after the power generation element is housed, and Figure 2 is a view of the metal case from the thickness direction of the electrode plate after one cycle of charging and discharging the battery in Figure 1. FIG. 3 is a diagram showing the retention rate of discharge capacity at each discharge rate of the batteries of Examples and Comparative Examples of the present invention, and FIG. FIG. 5, a diagram showing the maintenance rate, is a longitudinal cross-sectional view of a conventional prismatic nickel-cadmium storage battery. 21... Square metal case with bottom 22... Negative electrode plate 23... Separator 24... Positive electrode plate 25... Electrode plate group 26... Elastic body 27... Insulating gasket 28... Metallic Lid plate 29...Positive terminal 30.31...Collection terminal (8733) Agent: Patent attorney Yoshiaki Inomata (and others)
1 person) Rokudenden A (c to A) No. 1

Claims (1)

【特許請求の範囲】[Claims] (1)負極性端子を兼ねる有底角筒金属ケース内に帯状
のニッケル正極板と水素吸蔵金属を主成分とする負極板
とをセパレータを介して横方向に交互に重ね合わせて構
成した極板群およびアルカリ電解液を収納した角形ニッ
ケル水素蓄電池の製造方法において、正極が電極容量密
度500mAh/cc以上である未化成の非焼結式ニッ
ケル極を備え、金属ケース挿入前の極板群厚みを金属ケ
ースの積層方向の内径の95%以下とした極板群を内装
しているとともに、密閉後少なくとも1サイクル充放電
した後極板群の厚み方向から金属ケースを圧縮し厚みを
減少させることを特徴とする角形ニッケル水素蓄電池の
製造方法。
(1) An electrode plate consisting of a strip-shaped nickel positive electrode plate and a negative electrode plate whose main component is a hydrogen-absorbing metal, which are alternately stacked horizontally with a separator in between, in a bottomed rectangular cylindrical metal case that also serves as a negative polarity terminal. In a method for manufacturing a prismatic nickel-metal hydride storage battery containing a battery pack and an alkaline electrolyte, the positive electrode is an unformed, non-sintered nickel electrode with an electrode capacity density of 500 mAh/cc or more, and the thickness of the electrode plate group before insertion into the metal case is It is equipped with a group of electrode plates that is 95% or less of the inner diameter of the metal case in the stacking direction, and after being sealed and charged and discharged for at least one cycle, the metal case is compressed from the thickness direction of the plate group to reduce its thickness. A manufacturing method for a prismatic nickel-metal hydride storage battery.
JP2195006A 1990-07-25 1990-07-25 Method for manufacturing prismatic nickel-metal hydride storage battery Expired - Fee Related JP2856855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195006A JP2856855B2 (en) 1990-07-25 1990-07-25 Method for manufacturing prismatic nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195006A JP2856855B2 (en) 1990-07-25 1990-07-25 Method for manufacturing prismatic nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH0482170A true JPH0482170A (en) 1992-03-16
JP2856855B2 JP2856855B2 (en) 1999-02-10

Family

ID=16333967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195006A Expired - Fee Related JP2856855B2 (en) 1990-07-25 1990-07-25 Method for manufacturing prismatic nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP2856855B2 (en)

Also Published As

Publication number Publication date
JP2856855B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US5451475A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
EP1062707B1 (en) Prismatic electrochemical cell
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
JP3390309B2 (en) Sealed alkaline storage battery
US6653023B1 (en) Rectangular battery
JP4126684B2 (en) Nickel metal hydride secondary battery
KR100210502B1 (en) Separator for spiral electrode
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP2856855B2 (en) Method for manufacturing prismatic nickel-metal hydride storage battery
JP3118716B2 (en) Sealed nickel-zinc battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3695868B2 (en) Square alkaline storage battery
JP2623775B2 (en) Sealed rectangular nickel-cadmium storage battery
JP3568316B2 (en) Prismatic alkaline storage battery
JP2022035768A (en) Nickel-metal hydride storage battery and manufacturing method thereof
JP3742149B2 (en) Alkaline secondary battery
JP2022128641A (en) Method for manufacturing nickel hydrogen storage battery
JP3071033B2 (en) Hydrogen storage electrode
JP2002075434A (en) Secondary cell
JPH07161378A (en) Square alkaline secondary battery
JPH08293320A (en) Manufacture of square sealed secondary battery
JP2003173815A (en) Sealed square alkaline storage battery
JP2001273874A (en) Rectangular alkaline secondary battery
JPH07114938A (en) Manufacture of sealed type metal hydride storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees