JPH0481633A - Leak detector - Google Patents
Leak detectorInfo
- Publication number
- JPH0481633A JPH0481633A JP19491790A JP19491790A JPH0481633A JP H0481633 A JPH0481633 A JP H0481633A JP 19491790 A JP19491790 A JP 19491790A JP 19491790 A JP19491790 A JP 19491790A JP H0481633 A JPH0481633 A JP H0481633A
- Authority
- JP
- Japan
- Prior art keywords
- leak
- frequency
- signal
- environmental noise
- frequency distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007613 environmental effect Effects 0.000 claims abstract description 32
- 238000009826 distribution Methods 0.000 claims abstract description 23
- 230000005236 sound signal Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 19
- 238000001228 spectrum Methods 0.000 abstract description 12
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 238000012423 maintenance Methods 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、検出信号に混在する雑音と信号のうちの雑音
を低減して信号成分を相対的に大きくする信号処理法に
係り、特に、暗騒音の大きな環境下での漏洩にともなう
音を感度良く検出するのに好適な漏洩検出器に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a signal processing method for reducing noise mixed in a detection signal and noise in the signal to relatively increase a signal component. The present invention relates to a leak detector suitable for detecting sound accompanying leaks with high sensitivity in an environment with large background noise.
従来の漏洩検出手段として、漏洩にともなう音を検出す
る方法が提案されている。特に、空間を伝播する音を検
出する方法は、比較的センサ取付位置の制限がないこと
、速い応答性が期待できる等の利点がある。このため、
検出音がある設定値を越えたときに、漏洩発生と判定す
る音響式漏洩検出器が実現されている。漏洩検出の雑音
を低減するため、相対的に漏洩音が大きくなる周波数を
選択的に監視する方式も具体化されている。このような
装置には、特開昭62−43535号公報や、センサ技
術、vol、 7. Nnl 1 (1987年10
月)の18頁〜20頁記載の漏洩検出器がある。As a conventional leakage detection means, a method of detecting sound accompanying leakage has been proposed. In particular, the method of detecting sound propagating through space has advantages such as relatively no restrictions on the sensor mounting position and fast response. For this reason,
An acoustic leak detector has been realized that determines that a leak has occurred when the detected sound exceeds a certain set value. In order to reduce noise in leakage detection, methods have also been implemented that selectively monitor frequencies at which leakage sounds are relatively loud. Such devices include Japanese Patent Application Laid-Open No. 62-43535, Sensor Technology, vol. 7. Nnl 1 (October 1987
There is a leak detector described on pages 18 to 20 of ``Month''.
上記従来技術は、音響の伝播減衰による漏洩音の検出点
における周波数分布や、検出点近傍の局所的な騒音につ
いての考慮が十分でないため、バンドパスフィルタを使
用することで、かえって、漏洩検出の感度が低下する可
能性があった。The above conventional technology does not sufficiently consider the frequency distribution at the detection point of leakage sound due to acoustic propagation attenuation and the local noise near the detection point. There was a possibility that the sensitivity would decrease.
例えば、漏洩音の周波数成分は比較的広い範囲に分布し
ているが、伝播途中では、特に、高周波域が減衰する。For example, the frequency components of leaked sound are distributed over a relatively wide range, but during propagation, the high frequency range is particularly attenuated.
また、プラントのなかでは、漏洩点と検出点の間に機器
や配管、その他の構造物があるため直達波だけではなく
反射波を検出することが多い。環境騒音は、通常コンプ
レッサやポンプ等大きなパワーの機械から発する低周波
音が支配的であるが、局所的にはパワーの小さな音源か
ら発生する比較的高い周波数成分の音も存在することが
ある。さらに、漏洩点と音響検出点の間の装置の移動等
により音響伝播特性が変化する。環境騒音も主要な機器
の分解等を含む定期検査などによって、その発生音は変
化する。つまり、従来のバンドパスフィルタを用いる漏
洩検出法では上記のことを常に考慮して漏洩検出器のメ
ンテナンスをしなければ設計通りの性能は確保できなか
った。Furthermore, in plants, there are equipment, piping, and other structures between the leak point and the detection point, so reflected waves are often detected in addition to direct waves. Environmental noise is usually dominated by low-frequency sounds emitted from high-power machines such as compressors and pumps, but locally there may also be sounds with relatively high-frequency components emitted from low-power sound sources. Furthermore, the acoustic propagation characteristics change due to movement of the device between the leakage point and the acoustic detection point. Environmental noise also changes due to periodic inspections that include the disassembly of major equipment. In other words, in the conventional leakage detection method using a bandpass filter, the performance as designed could not be ensured unless the above-mentioned factors were always taken into account and the leakage detector was maintained.
従って、本発明の目的は、プラント内の騒音発生状況の
変化や、漏洩検出点までの伝播特性の変化が生じても、
それに応じて漏洩検出に感度の高い周波数範囲の信号を
とらえる漏洩検出手段を提供することにある。Therefore, it is an object of the present invention to maintain noise control even when changes occur in the noise generation situation within the plant or changes in the propagation characteristics up to the leak detection point.
Accordingly, it is an object of the present invention to provide a leakage detection means that captures signals in a frequency range that is sensitive to leakage detection.
上記目的を達成するために、本発明は検出音響信号と環
境騒音の代表信号との差を各周波数ごとに算出し、その
差信号の実効値の大きさから漏洩の有無を判定する。In order to achieve the above object, the present invention calculates the difference between a detected acoustic signal and a representative signal of environmental noise for each frequency, and determines whether there is a leakage based on the magnitude of the effective value of the difference signal.
以下で述べる環境騒音の代表信号とは、漏洩が発生して
いない状態における環境騒音の平均的な周波数分布をも
つ信号のことである。The representative signal of environmental noise described below is a signal having an average frequency distribution of environmental noise in a state where no leakage occurs.
交流信号の実効値は、その振幅の大きさをあられす代表
値であり、各周波数成分の振幅の二乗和の平方根として
求められる。このため、実効値の大きさは信号の周波数
成分のうちの振幅の大きい成分に支配されることになる
。The effective value of an AC signal is a representative value representing the magnitude of its amplitude, and is determined as the square root of the sum of squares of the amplitudes of each frequency component. Therefore, the magnitude of the effective value is dominated by the component with a large amplitude among the frequency components of the signal.
漏洩が発生してない場合、検出音信号は環境騒音信号と
、はぼ、等しいため環境騒音信号との差信号の実効値は
、特別な周波数成分に依存しない値となる。一方、漏洩
が発生した場合、差信号の周波数成分は漏洩に伴って新
たに増加した成分のみであり、実効値はその新たに増加
した成分のなかでも大きな振幅をもつ周波数成分に支配
される。When no leakage occurs, the detected sound signal is almost equal to the environmental noise signal, so the effective value of the difference signal from the environmental noise signal is a value that does not depend on any particular frequency component. On the other hand, when leakage occurs, the frequency components of the difference signal are only those newly increased due to the leakage, and the effective value is dominated by the frequency component with a large amplitude among the newly increased components.
つまり、検出信号と環境騒音の代表信号との差をとり、
その差信号の実効値をとることによりバンドパスフィル
タで最適な周波数を選択して監視する従来法と同等な効
果が得られる。環境騒音の代表値の測定を、適時実施す
ることで自動的に最適な周波数の設定が行なわれる。In other words, take the difference between the detection signal and the representative signal of the environmental noise,
By taking the effective value of the difference signal, the same effect as the conventional method of selecting and monitoring the optimum frequency using a bandpass filter can be obtained. By timely measuring representative values of environmental noise, the optimum frequency can be automatically set.
以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.
第1図は、本発明の信号処理装置を原子炉冷却材の漏洩
検出器に適用した例である。冷却材配管101を通る高
温、高圧の冷却材が漏洩点102から噴出した場合、噴
出に伴う漏洩音をマイクロホン1で検出し、検出信号を
増幅器2で増幅して、スペクトル減算器3により定常運
転状態における環境騒音を検出音から除いた信号の実効
値を出力する。異常判定器4では、スペクトル減算器3
の実効値出力が設定値を越えた場合に異常と判定して、
異常信号を発生する。このように、検出音から正常運転
時の環境騒音の代表値を差し引くことにより、環境騒音
に比べて小さな漏洩音の発生もとらえられる。FIG. 1 is an example in which the signal processing device of the present invention is applied to a reactor coolant leak detector. When high-temperature, high-pressure coolant passing through the coolant pipe 101 spouts out from the leak point 102, the leakage sound accompanying the jet is detected by the microphone 1, the detected signal is amplified by the amplifier 2, and the spectrum subtractor 3 performs steady operation. Outputs the effective value of the signal obtained by removing the environmental noise in the detected sound from the detected sound. In the abnormality determiner 4, the spectrum subtractor 3
If the effective value output exceeds the set value, it is determined to be abnormal, and
Generates an abnormal signal. In this way, by subtracting the representative value of environmental noise during normal operation from the detected sound, it is possible to detect the occurrence of leakage sound that is smaller than the environmental noise.
次に、本発明の主たる要素であるスペクトル減算器3の
構成の詳細について説明する。スペクトル減算器3は、
第1図に示すように、周波数分析部31.スペクトル減
算部32.実効値演算部33、スペクトル累積部34か
ら成る。マイクロホン1で検出した音響信号の周波数分
布を、周波数分析部31により求める。スペクトル減算
部33は、検出音の周波数分布と、正常運転時の環境騒
音の代表的な周波数分布との差をとる機能をもつ。実効
値演算部33は、スペクトル演算部32で得られる環境
騒音の代表値と検出音の差の周波数分布の実効値を演算
する機能をもつ。スペクトル累積部34は、正常運転時
の環境騒音の平均的な周波数分布を測定する機能をもつ
ものであり、漏洩発生検知による累積停止、ポンプ等の
運転の有無等の運転条件毎の環境騒音周波数分布の累積
、手動による累積の実行および停止の制御ができるよう
になっている。Next, details of the configuration of the spectrum subtractor 3, which is the main element of the present invention, will be explained. The spectrum subtractor 3 is
As shown in FIG. 1, the frequency analysis section 31. Spectral subtraction section 32. It consists of an effective value calculation section 33 and a spectrum accumulation section 34. The frequency distribution of the acoustic signal detected by the microphone 1 is determined by the frequency analysis section 31. The spectrum subtraction unit 33 has a function of calculating the difference between the frequency distribution of the detected sound and the typical frequency distribution of environmental noise during normal operation. The effective value calculation section 33 has a function of calculating the effective value of the frequency distribution of the difference between the representative value of the environmental noise obtained by the spectrum calculation section 32 and the detected sound. The spectrum accumulator 34 has a function of measuring the average frequency distribution of environmental noise during normal operation, and calculates the environmental noise frequency for each operating condition, such as cumulative stoppage due to detection of leakage, whether pumps, etc. are in operation, etc. It is now possible to accumulate distributions and manually control the execution and stopping of accumulation.
次に、動作の説明を第2図により説明する。第2図(a
)は、プラント正常運転時の検出音の周波数分布である
。また、第2図(b)は漏洩発生時の検出音の周波数分
布であり、高周波の領域で一部環境騒音に比べて振幅が
増加していることがわかる。(a)、(b)それぞれの
検出音と、環境騒音の代表値との差の周波数分布の差を
、第2図(c)に示す。この場合、検出音の実効値で監
視する場合は、その実効値は低周波の振幅で支配される
ため、(a)、(b)の検出音の実効値に大きな違いは
なく、通常の音圧変動にかくれてしまう。Next, the operation will be explained with reference to FIG. Figure 2 (a
) is the frequency distribution of detected sounds during normal plant operation. Further, FIG. 2(b) shows the frequency distribution of the detected sound when a leak occurs, and it can be seen that the amplitude is partially increased in the high frequency region compared to the environmental noise. FIG. 2(c) shows the difference in frequency distribution between the detected sounds (a) and (b) and the representative value of the environmental noise. In this case, when monitoring with the effective value of the detected sound, the effective value is dominated by the amplitude of low frequencies, so there is no big difference between the effective values of the detected sound in (a) and (b), and the normal sound It is hidden by pressure fluctuations.
しかし、(c)の差信号の周波数分布かられかるように
、漏洩が発生していない実線の場合は、実効値を支配す
る主たる成分はない。つまり、検出音から環境騒音を差
し引くことで、検出点特有の環境騒音特性はキャンセル
されることになる。However, as can be seen from the frequency distribution of the difference signal in (c), in the case of the solid line where no leakage occurs, there is no main component that dominates the effective value. In other words, by subtracting the environmental noise from the detected sound, the environmental noise characteristics specific to the detection point are canceled.
方、漏洩が発生した場合、その差信号は(c)の点線で
示すように漏洩で環境騒音を越えた成分のみの周波数分
布となる。(c)の点線の場合の実効値は、その最大振
幅で支配されるため、結局バントパスフィルタの最適周
波数を選択した場合と同等の感度が得られることとなる
。On the other hand, if leakage occurs, the difference signal will have a frequency distribution of only components that exceed the environmental noise due to leakage, as shown by the dotted line in (c). Since the effective value in the case of the dotted line in (c) is dominated by its maximum amplitude, the same sensitivity as in the case where the optimal frequency of the bandpass filter is selected is ultimately obtained.
スペクトル減算器3を実現するには周波数分析部31に
は、実時間処理の必要性からDSP (ディジタルシグ
ナルプロセッサ)を用いている。To realize the spectrum subtractor 3, a DSP (digital signal processor) is used in the frequency analysis section 31 due to the necessity of real-time processing.
CCD (チャージカップルドデバイス)を用いる方式
等、その他の周波数分析ハードウェアを採用することも
可能である。It is also possible to employ other frequency analysis hardware, such as a system using a CCD (charge coupled device).
スペクトル減算部も単に二つの周波数分布の差を演算で
きれば良いわけで、ここではDSPを用いているが、そ
の他の汎用プロセッサを用いることも可能である。実効
値演算器では、差の周波数分布の積分値から実効値を得
ているが、自己相関からの算出法等の他の演算法を適用
することも可能である。スペクトル累積部34は、環境
騒音の平均値算出に、DSPを用いたディジタル処理を
実施しているが、他のディジタル演算素子の組み合せで
も実現できる。The spectral subtraction section only needs to be able to calculate the difference between two frequency distributions, and although a DSP is used here, it is also possible to use other general-purpose processors. Although the effective value calculator obtains the effective value from the integral value of the frequency distribution of the difference, it is also possible to apply other calculation methods such as a calculation method based on autocorrelation. Although the spectrum accumulator 34 performs digital processing using DSP to calculate the average value of the environmental noise, it can also be realized by a combination of other digital arithmetic elements.
本実施例の特有の効果は、
(1)漏洩検出器の測定点の決定において、騒音の測定
や、漏洩位置毎の漏洩音の評価を詳細に実施する必要が
なくなるため、漏洩検出器のコスト低減が可能となる。The unique effects of this embodiment are as follows: (1) In determining the measurement points of the leak detector, there is no need to measure noise or evaluate the leak sound for each leak position in detail, which reduces the cost of the leak detector. reduction is possible.
(2)運転条件毎に環境騒音の周波数分布を測定して、
検出音に対応した運転条件における環境騒音の代表値を
差し引くようにしているため、運転条件に環境騒音が依
存しないとする場合に比べて漏洩検出の感度向上が図れ
、かつ、装置の誤動作の低減ができ装置性能向上の効果
がある。(2) Measure the frequency distribution of environmental noise for each operating condition,
Since the representative value of the environmental noise under the operating conditions corresponding to the detected sound is subtracted, the sensitivity of leak detection can be improved compared to the case where the environmental noise does not depend on the operating conditions, and the malfunction of the equipment can be reduced. This has the effect of improving equipment performance.
(3)信号周波数帯域および、騒音周波数帯域を限定す
る必要がないため、定期検査等に伴う環境騒音の変化に
検出性能が大きく影響されないようになるため、漏洩検
出器の検出性能を長期に安定して維持できるようになる
。(3) Since there is no need to limit the signal frequency band and noise frequency band, the detection performance will not be greatly affected by changes in environmental noise due to periodic inspections, etc., so the detection performance of the leak detector will be stable over the long term. and be able to maintain it.
本発明によれば、漏洩検出感度の高い周波数域の信号を
自動的に選択して検出できるようになるため、プラント
内の騒音発生状態や音響伝播特性の変化毎にフィルタの
周波数設定変更が不要となり、漏洩検出器のメンテナン
ス作業が削減できる。According to the present invention, it becomes possible to automatically select and detect signals in a frequency range with high leakage detection sensitivity, so there is no need to change the filter frequency setting every time the noise generation state or acoustic propagation characteristics in the plant changes. Therefore, maintenance work for leak detectors can be reduced.
第1図は本発明の一実施例の漏洩検出器のブロック図、
第2図は検出音と差信号の周波数分布図である。FIG. 1 is a block diagram of a leak detector according to an embodiment of the present invention;
FIG. 2 is a frequency distribution diagram of the detected sound and the difference signal.
Claims (1)
変化したときに漏洩の発生と判定する手段を備えた漏洩
検出器において、 漏洩判定用信号が検出音信号と漏洩が発生していない正
常時の環境騒音信号との周波数分布の差であることを特
徴とする漏洩検出器。 2、請求項1において、正常時の環境騒音として、あら
かじめプラントの運転条件毎に測定した騒音信号を用い
る漏洩検出器。[Claims] 1. In a leak detector equipped with means for detecting sound and means for determining that a leak has occurred when the signal level changes beyond a set value, the leak determination signal is a detected sound signal. A leakage detector characterized in that the frequency distribution is the difference between the noise signal and an environmental noise signal in a normal state where no leakage occurs. 2. The leak detector according to claim 1, which uses a noise signal measured in advance for each operating condition of the plant as the environmental noise during normal operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19491790A JPH0481633A (en) | 1990-07-25 | 1990-07-25 | Leak detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19491790A JPH0481633A (en) | 1990-07-25 | 1990-07-25 | Leak detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0481633A true JPH0481633A (en) | 1992-03-16 |
Family
ID=16332494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19491790A Pending JPH0481633A (en) | 1990-07-25 | 1990-07-25 | Leak detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0481633A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651242A1 (en) * | 1993-10-29 | 1995-05-03 | Commissariat A L'energie Atomique | Procedure and device for the detection and localisation of gas leak in a double-walled containment vessel |
US6923850B2 (en) | 2001-09-11 | 2005-08-02 | S.T. Chemical Co., Ltd. | Dehumidifying agent of coating film delaminating type |
-
1990
- 1990-07-25 JP JP19491790A patent/JPH0481633A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651242A1 (en) * | 1993-10-29 | 1995-05-03 | Commissariat A L'energie Atomique | Procedure and device for the detection and localisation of gas leak in a double-walled containment vessel |
FR2711793A1 (en) * | 1993-10-29 | 1995-05-05 | Commissariat Energie Atomique | Method and device for detecting and locating gas leakage from a double wall containment enclosure |
US6923850B2 (en) | 2001-09-11 | 2005-08-02 | S.T. Chemical Co., Ltd. | Dehumidifying agent of coating film delaminating type |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5398542A (en) | Method for determining direction of travel of a wave front and apparatus therefor | |
JP3046426B2 (en) | Monitoring equipment for plant equipment | |
RU2434143C2 (en) | Procedure and system for determination of excess over limit of working parameter in system of steam turbine | |
JP5375435B2 (en) | Seismic intensity measuring device | |
US5005415A (en) | Method and apparatus for detecting variations in a process by processing emitted acoustic signals | |
US5176032A (en) | Method and apparatus for processing electrical signals and a stress wave sensor | |
US11733125B2 (en) | Auto-adjusting analog ultrasonic sensor | |
JP2575810B2 (en) | Valve leak monitoring device | |
JPH0481633A (en) | Leak detector | |
JPS57172218A (en) | Detector for tool defect | |
JP3604322B2 (en) | Ultrasonic flow meter | |
JP2512657B2 (en) | Boiler tube break inspection method and inspection device | |
JPH04204031A (en) | Acoustic type leakage detector | |
CN115836193A (en) | Method for monitoring the tightness of a pipe fitted with a flow stop element and for detecting leaks | |
JPS6370138A (en) | Leak detector | |
WO2024160369A1 (en) | Acoustic leakage detection system and method for detection of leakage in a fluid containing structure | |
JPS6141940A (en) | Detection of fluid leak position | |
JPH0337541A (en) | Method and apparatus for judging cause of leak from valve and pipe | |
EP4184160A1 (en) | Auto-adjusting analog ultrasonic sensor | |
JPH0749265A (en) | Vibration monitor | |
Meegan et al. | Fault detection in engines through higher order spectral analysis of acoustic signatures | |
JP3655006B2 (en) | Active silencer | |
JPH01234083A (en) | Abnormality inspecting device for rotary machine | |
EP0443714A2 (en) | A method and apparatus for processing electrical signals and a stress wave sensor | |
JPH05172689A (en) | Leak detector |