Nothing Special   »   [go: up one dir, main page]

JPH0481530B2 - - Google Patents

Info

Publication number
JPH0481530B2
JPH0481530B2 JP13571586A JP13571586A JPH0481530B2 JP H0481530 B2 JPH0481530 B2 JP H0481530B2 JP 13571586 A JP13571586 A JP 13571586A JP 13571586 A JP13571586 A JP 13571586A JP H0481530 B2 JPH0481530 B2 JP H0481530B2
Authority
JP
Japan
Prior art keywords
mold
optical glass
press
thin film
press molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13571586A
Other languages
Japanese (ja)
Other versions
JPS62292637A (en
Inventor
Makoto Umetani
Hideto Monji
Kyoshi Kuribayashi
Masaki Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13571586A priority Critical patent/JPS62292637A/en
Publication of JPS62292637A publication Critical patent/JPS62292637A/en
Publication of JPH0481530B2 publication Critical patent/JPH0481530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • C03B2215/17Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals comprising one or more of the noble meals, i.e. Ag, Au, platinum group metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、プレス成形後の研摩工程を必要とし
ない高精度光学ガラス素子をプレス成形によつて
大量に生産するための製造方法に関するものであ
る。 従来の技術 高精度な光学ガラス素子を直接プレスして成形
するためには、型材料として、高温でも安定で、
耐酸化性に優れ、ガラスに対して不活性であり、
プレスした時に形状精度が崩れないように機械的
強度の優れたものが必要であるが、その反面、加
工性に優れ、精密加工が容易にできなくてはなら
ない。 以上のような光学ガラス素子のプレス成形用型
に必要な条件を、ある程度満足する型材料とし
て、特開昭52−45613号公報に示されているよう
に、シリコンカーバイド(SiC)、またはシリコ
ンナイトライド(Si3N4)が用いられ、さらに、
特開昭59−121126号公報に示されているチタンカ
ーバイド(TiC)および金属の混合材料なども検
討されている。 発明が解決しようとする問題点 しかしながら、従来の型材料では、上記の条件
を全て満足するものは得られていない。例えば、
型材としてシリコンカーバイドおよびシリコンナ
イトライドを用いた場合では、非常に硬く、機械
的強度は優れているが、加工性に劣り、さらに
は、光学ガラス素子の構成成分である鉛(Pb)
やアルカリ元素と反応し易いという欠点を有して
いる。また、チカンカーバイドおよび金属の混合
材料を用いた場合も、光学ガラス素子と反応し易
く、型材料としては不適当である。 以上のように、従来の型材では、前述の型材料
としての必要条件を全て満足するには至つていな
い。 本発明では、上記問題点に鑑み、光学ガラス素
子の直接プレス成形法により、光学性能の良い高
精度な光学ガラス素子の成形を可能にするための
プレス成形用型を提供することを目的としてい
る。 問題点を解決するための手段 上記問題点を解決するために、本発明では、加
工性が良く、機械的強度の優れた超硬合金あるい
は、各種サーメツトをプレス成形用型の母材と
し、そのプレス面に30重量%以上のレニウムを含
有するイリジウム−レニウム合金を主成分とする
薄膜あるいは40重量%以上のオスミウムを含有す
るイリジウム−オスミウム合金を主成分とする薄
膜をコーテイングした型を作製し、この型を用い
ることによつて、光学性能の優れた光学ガラス素
子のプレス成形を可能にしたものである。 作 用 本発明は、上記した構成によつて、従来の型材
料では実現できなかつた。前記の必要条件を全て
満足した型を得ることができ、この型を用いるこ
とによつて、光学ガラス素子を直接プレスして成
形することが可能となる。 実施例 以下、本発明の光学ガラス素子の製造方法の一
実施例を図面を参照しながら説明する。 直径20mm、厚さ6mmのタングステンカーバイド
を主成分とする超硬合金を、曲率半径が、それぞ
れ46mmおよび200mmの凹面形状のプレス面を有す
る上下の型からなる一対の光学ガラス素子のプレ
ス成形用型に加工した。これらの型のプレス面を
超微細なダイヤモンド砥粒を用いて鏡面に研摩し
た。次に、この鏡面上に、スパツタ法により5μm
の厚さで第1表に示した組成のIr−Re系合金薄
膜あるいはIr−Os系合金薄膜をコーテイングし
てプレス成形用型を作製した。 このようにして作製した型の断面図を第1図に
示す。第1図において、11は母材、12はプレ
ス面上にコーテイングしたIr−ReあるいはIr−
Os合金を主成分とした薄膜である。 この型を第2図に示したプレス成形機にセツト
する。第2図において、21は上型、22は下
型、23は上型用加熱ヒーター、24は下型用加
熱ヒーター、25は上型用ピストンシリンダー、
26は下型用ピストンシリンダー、27は供給ガ
ラス素子塊状物、28はガラス素子供給用治具、
29はプレス成形した光学ガラス素子の取り出し
口、210は供給ガラス素子塊状物の予備加熱
炉、211は覆いである。 次に、酸化鉛(PbO)70重量%、シリカ
(SiO)27重量%および残りが微量成分からなる
酸化鉛系光学ガラスを半径10mmの球状に加工した
塊状物27を予備加熱炉210で加熱した後、
520℃で保持されている上下の型21および22
の上に置き、窒素雰囲気で、約40Kg/cm2のプレス
圧によりプレスして2分間保持し、その後、その
ままの状態で上下の型を300℃まで冷却して、プ
レス成形された光学ガラス素子を取り出し口29
より取り出して、光学ガラス素子のプレス成形の
工程を完了する。 以上の工程を繰り返して、1000回目のプレス終
了時に、上下の型21および22をプレス成形機
より取りはずして、プレス面の状態を光学顕微鏡
で観察し、その時のプレス面の表面粗さ(RMS
値、Å)を測定して、それぞれの型精度を評価し
た。さらに、比較実験として、従来使用されてい
た炭化ケイ素(SiC)焼結体の型を作製し、第2
図に示したプレス成形機にセツトし、上述の光学
ガラス素子のプレス成形の工程を1000回繰り返し
行い、同様の型精度の評価を行つた。 また、本発明の型に用いたIr−Reスパツタ膜
およびIr−Osスパツタ膜の代わりに、白金(Pt)
スパツタ膜およびIrスパツタ膜をコーテイングし
た型においても、上述のプレス試験を行つた。 本発明の型を用いたプレス試験の結果を第1表
に示し、比較のための型を用いたプレス試験の結
果を第2表に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a manufacturing method for mass producing high-precision optical glass elements by press molding, which does not require a polishing process after press molding. Conventional technology In order to directly press and mold high-precision optical glass elements, the mold material must be stable even at high temperatures.
It has excellent oxidation resistance and is inert to glass.
It needs to have excellent mechanical strength so that the shape accuracy does not collapse when pressed, but on the other hand, it must also have excellent workability and be able to be precisely processed easily. As a mold material that satisfies the above-mentioned conditions necessary for press molding molds for optical glass elements to some extent, silicon carbide (SiC) or siliconite is used as a mold material, as disclosed in Japanese Patent Application Laid-Open No. 52-45613. Ride (Si 3 N 4 ) was used, and
A mixed material of titanium carbide (TiC) and metal, as disclosed in Japanese Patent Application Laid-Open No. 121126/1982, is also being considered. Problems to be Solved by the Invention However, conventional mold materials have not been able to satisfy all of the above conditions. for example,
When silicon carbide and silicon nitride are used as mold materials, they are extremely hard and have excellent mechanical strength, but have poor workability, and furthermore, lead (Pb), a component of optical glass elements, is
It has the disadvantage that it easily reacts with alkali elements. Furthermore, even when a mixed material of Tikan carbide and metal is used, it tends to react with the optical glass element and is unsuitable as a mold material. As described above, conventional mold materials do not satisfy all of the above-mentioned requirements for mold materials. In view of the above-mentioned problems, the present invention aims to provide a press molding mold that enables the molding of highly accurate optical glass elements with good optical performance by a direct press molding method for optical glass elements. . Means for Solving the Problems In order to solve the above problems, the present invention uses cemented carbide or various cermets, which have good workability and excellent mechanical strength, as the base material of the press molding die, and A mold is prepared in which the press surface is coated with a thin film mainly composed of an iridium-rhenium alloy containing 30% by weight or more of rhenium or a thin film mainly composed of an iridium-osmium alloy containing 40% by weight or more of osmium. By using this mold, it is possible to press mold an optical glass element with excellent optical performance. Effects The present invention could not be realized using conventional mold materials due to the above-described configuration. A mold that satisfies all of the above-mentioned requirements can be obtained, and by using this mold, it becomes possible to directly press and mold an optical glass element. Example Hereinafter, an example of the method for manufacturing an optical glass element of the present invention will be described with reference to the drawings. A pair of press-molding molds for optical glass elements made of cemented carbide mainly composed of tungsten carbide with a diameter of 20 mm and a thickness of 6 mm, consisting of an upper and lower mold having concave press surfaces with radii of curvature of 46 mm and 200 mm, respectively. Processed into. The press surfaces of these molds were polished to a mirror surface using ultrafine diamond abrasive grains. Next, on this mirror surface, a 5 μm thick film was applied using the sputtering method.
A mold for press molding was prepared by coating an Ir-Re alloy thin film or an Ir-Os alloy thin film having a composition shown in Table 1 to a thickness of . A cross-sectional view of the mold thus produced is shown in FIG. In Fig. 1, 11 is the base material, 12 is Ir-Re or Ir-Re coated on the press surface.
It is a thin film mainly composed of Os alloy. This mold is set in the press molding machine shown in FIG. In FIG. 2, 21 is an upper mold, 22 is a lower mold, 23 is a heater for the upper mold, 24 is a heater for the lower mold, 25 is a piston cylinder for the upper mold,
26 is a piston cylinder for the lower mold, 27 is a supply glass element block, 28 is a jig for supplying glass elements,
29 is an outlet for taking out the press-molded optical glass element, 210 is a preheating furnace for the supplied glass element block, and 211 is a cover. Next, a lump 27 made of a lead oxide-based optical glass consisting of 70% by weight of lead oxide (PbO), 27% by weight of silica (SiO), and the rest being trace components was processed into a spherical shape with a radius of 10 mm, and was heated in a preheating furnace 210. rear,
Upper and lower molds 21 and 22 held at 520°C
The optical glass element was pressed and held for 2 minutes in a nitrogen atmosphere with a press pressure of approximately 40 kg/cm 2 .Then, the upper and lower molds were cooled to 300°C in that state to form a press-molded optical glass element. Take out port 29
The optical glass element is then taken out to complete the process of press molding the optical glass element. By repeating the above process, at the end of the 1000th press, remove the upper and lower molds 21 and 22 from the press molding machine, observe the state of the pressed surface with an optical microscope, and check the surface roughness (RMS) of the pressed surface at that time.
The accuracy of each mold was evaluated by measuring the value (A). Furthermore, as a comparative experiment, we created a mold of a conventionally used silicon carbide (SiC) sintered body, and
It was set in the press molding machine shown in the figure, and the process of press molding the optical glass element described above was repeated 1000 times, and the mold accuracy was similarly evaluated. In addition, platinum (Pt) was used instead of the Ir-Re sputtered film and Ir-Os sputtered film used in the mold of the present invention.
The above-mentioned press test was also conducted on the molds coated with the sputtered film and the Ir sputtered film. The results of the press test using the mold of the present invention are shown in Table 1, and the results of the press test using the mold for comparison are shown in Table 2.

【表】【table】

【表】【table】

【表】 第2表、試料No.37の従来、使用されているSiC
焼結体を用いた型においては、数回ガラスをプレ
スしただけで、型とガラスが反応し、プレス面に
ガラスが付着し、全く使用することができなくな
つた。 また、第2表、試料No.38および39のように、
PtあるいはIrスパツタ膜でコーテイングした型で
は、ガラスの付着は起こらないが、1000回プレス
後には、表面粗さ(RMS値)で、それぞれ、
253.5Åおよび87.3Åと非常に粗くなり、表面が
白濁し実用的ではないことがわかる。 以上の比較試料に対して、第1表から明らかな
ように、本発明の型、すなわち、WCを主成分と
した超硬合金を母材とし、そのプレス面に30重量
%以上のReを含有するIr−Re合金を主成分とす
る薄膜あるいは40重量%以上のOsを含有するIr
−Os合金を主成分とする薄膜をコーテイングし
て構成される型を用いると、1000回プレスした時
点でも、表面粗さは、ほとんどプレス前を変化が
なく、型寿命が著しく延び、高精度な光学ガラス
素子を大量にプレス成形することが可能となつ
た。 また、第1表から明らかなように、Ir−Re合
金薄膜に、OsあるいはTaの少なくとも一つの元
素を各10重量%まで添加してやると、1000回プレ
ス時の表面粗さは、OsあるいはTaの含有率が増
すに従つて小さくなり、さらに、型寿命が延びる
ことがわかる。同様に、Ir−Os合金薄膜に、Re
あるいはTaの少なくとも一つの元素を各10重量
%まで添加してやると、1000回プレス時の表面粗
さは、ReあるいはTaの含有率が増すに従つて小
さくなり、同様に型寿命が延びることがわかる。
このように、本発明の型は、前述した高精度な光
学ガラス素子を直接プレス成形するための必要条
件を全て満足したものが得られ、従来のものに比
べて、著しく型寿命が延び高精度な光学ガラス素
子を大量にプレス成形することが可能となつた。 なお、本発明を説明するために、実施例におい
て、プレス成形用型の母材として、WCを主成分
とする超硬合金を用いた型を例に挙げたが、
TiN、TiC、Cr3C2あるいはAl2O3を主成分とす
るサーメツトを母材とし、そのプレス面に30重量
%以上のReを含有するIr−Re合金を主成分とす
る薄膜あるいは40重量%以上のOsを含有するIr
−Os合金を主成分とする薄膜をコーテイングし
て構成される型を用いても、同様に型寿命が延
び、高精度な光学ガラス素子の量産化が可能とな
つた。 発明の効果 以上のように、本発明は光学ガラス素子のプレ
ス成形用型を作製するにあたり、母材として超硬
合金あるいはサーメツトを用い、そのプレス面に
30重量%以上のReを含有するIr−Re合金を主成
分とする薄膜あるいは40重量%以上のOsを含有
するIr−Os合金を主成分とする薄膜をコーテイ
ングすることによつて、前述した型材料としての
必要条件を全て満足した光学ガラス素子のプレス
成形用型を提供したものであり、高精度な光学ガ
ラス素子を安価に、かつ、大量に製造するため
に、極めて有用な発明である。
[Table] Table 2, SiC used conventionally in sample No. 37
In a mold using a sintered body, after pressing the glass only a few times, the mold and glass reacted and the glass adhered to the pressing surface, making it completely unusable. Also, as in Table 2, Sample No. 38 and 39,
Glass does not adhere to molds coated with Pt or Ir spatter films, but after 1000 presses, the surface roughness (RMS value) is
It can be seen that the surface becomes very rough at 253.5 Å and 87.3 Å, and the surface becomes cloudy, making it impractical. As is clear from Table 1, compared to the above comparative samples, the mold of the present invention, that is, the mold of the present invention has a base material made of cemented carbide mainly composed of WC, and contains 30% by weight or more of Re on its press surface. thin film mainly composed of Ir-Re alloy or Ir containing 40% by weight or more of Os
- When using a die coated with a thin film mainly composed of Os alloy, the surface roughness remains almost the same even after 1000 presses, significantly extending the life of the die and achieving high precision. It has become possible to press-mold optical glass elements in large quantities. Furthermore, as is clear from Table 1, if at least one element of Os or Ta is added to the Ir-Re alloy thin film up to 10% by weight each, the surface roughness after 1000 presses will be lower than that of Os or Ta. It can be seen that as the content increases, the size becomes smaller and the mold life becomes longer. Similarly, Re
Alternatively, if at least one element of Ta is added up to 10% by weight each, the surface roughness after 1000 presses becomes smaller as the content of Re or Ta increases, and it can be seen that the mold life is similarly extended. .
As described above, the mold of the present invention satisfies all the requirements for direct press molding of the above-mentioned high-precision optical glass elements, and compared to conventional molds, the mold life is significantly extended and high precision is achieved. It has become possible to press-mold optical glass elements in large quantities. In addition, in order to explain the present invention, in the examples, a mold using a cemented carbide whose main component is WC as the base material of a press molding mold was given as an example.
The base material is a cermet whose main component is TiN, TiC, Cr 3 C 2 or Al 2 O 3 , and the pressed surface is a thin film whose main component is an Ir-Re alloy containing 30% or more of Re or 40% by weight. Ir containing more than % Os
Using a mold coated with a thin film containing -Os alloy as the main component also extended the mold life, making it possible to mass-produce high-precision optical glass elements. Effects of the Invention As described above, the present invention uses cemented carbide or cermet as the base material when producing a press-molding mold for an optical glass element, and
By coating a thin film mainly composed of an Ir-Re alloy containing 30% by weight or more of Re or a thin film mainly containing an Ir-Os alloy containing 40% by weight or more Os, the above-mentioned type can be produced. This invention provides a press-molding mold for optical glass elements that satisfies all of the material requirements, and is an extremely useful invention for producing high-precision optical glass elements at low cost and in large quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光学ガラス素子のプレス成
形用型の断面の概略図、第2図は、実施例におけ
る光学ガラス素子のプレス成形用型を組み込んだ
プレス成形機の概略図である。 11……母材、12……プレス面上にコーテイ
ングしたIr−Re合金あるいはIr−Os合金を主成
分としたスパツタ薄膜。
FIG. 1 is a schematic cross-sectional view of a press molding mold for an optical glass element of the present invention, and FIG. 2 is a schematic diagram of a press molding machine incorporating the press molding mold for an optical glass element in an example. 11... Base material, 12... Sputter thin film coated on the pressed surface and mainly composed of Ir-Re alloy or Ir-Os alloy.

Claims (1)

【特許請求の範囲】 1 耐熱性があり、加工性に優れた材料をプレス
成形用型の母材とし、そのプレス面に30重量%以
上のレニウム(Re)を含有するイリジウム−レ
ニウム(Ir−Re)合金を主成分とする薄膜ある
いは40重量%以上のオスミウム(Os)を含有す
るイリジウム−オスミウム(Ir−Os)合金を主
成分とする薄膜をコーテイングして構成される型
でプレス成形することを特徴とする光学ガラス素
子の製造方法。 2 プレス成形用型の母材として、タングステン
カーバイド(WC)を主成分とする超硬合金、ま
たは、チタンナイトライド(TiN)、チタンカー
バイド(TiC)、クロムカーバイド(Cr3C2)、あ
るいは、アルミナ(Al2O3)を主成分とするサー
メツトを用いたことを特徴とする特許請求の範囲
第1項記載の光学ガラス素子の製造方法。 3 プレス成形用型にコーテイングするIr−Re
薄膜中に、Osあるいはタンタル(Ta)の少なく
とも一つの元素を、各10重量%以内含有すること
を特徴とする特許請求の範囲第1項記載の光学ガ
ラス素子の製造方法。 4 プレス成形用型にコーテイングするIr−Os
薄膜中に、ReあるりいはTaの少なくとも一つの
元素を、各10重量%以内含有することを特徴とす
る特許請求の範囲第1項記載の光学ガラス素子の
製造方法。
[Scope of Claims] 1. A material with heat resistance and excellent workability is used as a base material for a press molding die, and the press surface is made of iridium-rhenium (Ir-) containing 30% by weight or more of rhenium (Re). Re) Press forming with a mold made by coating a thin film mainly composed of an alloy or a thin film mainly composed of an iridium-osmium (Ir-Os) alloy containing 40% by weight or more of osmium (Os). A method for manufacturing an optical glass element characterized by: 2. As a base material for the press molding die, a cemented carbide whose main component is tungsten carbide (WC), titanium nitride (TiN), titanium carbide (TiC), chromium carbide (Cr 3 C 2 ), or The method for manufacturing an optical glass element according to claim 1, characterized in that a cermet whose main component is alumina (Al 2 O 3 ) is used. 3 Ir-Re coating on press molding mold
2. The method of manufacturing an optical glass element according to claim 1, wherein the thin film contains at least one element of Os or tantalum (Ta) within 10% by weight. 4 Ir-Os coating on press molding mold
2. The method for producing an optical glass element according to claim 1, wherein the thin film contains at least one of the following elements: Re, Ri, and Ta, each within 10% by weight.
JP13571586A 1986-06-11 1986-06-11 Production of optical glass element Granted JPS62292637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13571586A JPS62292637A (en) 1986-06-11 1986-06-11 Production of optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13571586A JPS62292637A (en) 1986-06-11 1986-06-11 Production of optical glass element

Publications (2)

Publication Number Publication Date
JPS62292637A JPS62292637A (en) 1987-12-19
JPH0481530B2 true JPH0481530B2 (en) 1992-12-24

Family

ID=15158188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13571586A Granted JPS62292637A (en) 1986-06-11 1986-06-11 Production of optical glass element

Country Status (1)

Country Link
JP (1) JPS62292637A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634805A (en) * 1992-07-21 1994-02-10 Matsushita Electric Ind Co Ltd Press molding die for diffraction grating, production therefor and manufacture of diffraction grating
TWI240704B (en) 2003-12-26 2005-10-01 Asia Optical Co Inc Molding die for molding glass
CN1293003C (en) * 2004-02-18 2007-01-03 亚洲光学股份有限公司 Core of mould for moulding glass

Also Published As

Publication number Publication date
JPS62292637A (en) 1987-12-19

Similar Documents

Publication Publication Date Title
KR900002704B1 (en) Elements and a molding method using the same
EP0164930B1 (en) Molding method for producing optical glass element
JPS6228091B2 (en)
JPS61183133A (en) Die for press-forming optical glass element
JPH0481530B2 (en)
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPH0421608B2 (en)
JPH0542376B2 (en)
JPH0542375B2 (en)
JPS63103836A (en) Mold for molding optical glass element
JPH0361614B2 (en)
JPH0653579B2 (en) Method for manufacturing optical glass element
JPH0572336B2 (en)
JPH0712942B2 (en) Method for manufacturing optical glass element
JPH06102554B2 (en) Optical element molding method and molding die thereof
JPH0416415B2 (en)
JPH01111738A (en) Molding die for molded glass
JPS627639A (en) Method for molding optical glass element
JPH02102135A (en) Mold for molding of optical glass
JPS61256931A (en) Molding method for optical glass element
JPS6217029A (en) Production of optical glass element
JPH0193430A (en) Production of optical glass element
JPH0573699B2 (en)
JPH0421609B2 (en)
JPS6395128A (en) Production of optical glass element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term