Nothing Special   »   [go: up one dir, main page]

JPH0471494A - Production of alpha-hydroxy acid - Google Patents

Production of alpha-hydroxy acid

Info

Publication number
JPH0471494A
JPH0471494A JP18212590A JP18212590A JPH0471494A JP H0471494 A JPH0471494 A JP H0471494A JP 18212590 A JP18212590 A JP 18212590A JP 18212590 A JP18212590 A JP 18212590A JP H0471494 A JPH0471494 A JP H0471494A
Authority
JP
Japan
Prior art keywords
acid
keto
enzyme
alpha
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18212590A
Other languages
Japanese (ja)
Inventor
Teruyuki Nikaido
輝之 二階堂
Yoshinori Kobayashi
良則 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP18212590A priority Critical patent/JPH0471494A/en
Publication of JPH0471494A publication Critical patent/JPH0471494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as an intermediate for medicines and agricultural chemicals at a low cost by reducing an inorganic salt of an alpha-keto acid sparingly soluble in water with a microorganism, etc. CONSTITUTION:An inorganic salt of an alpha-keto acid (e.g. 2-keto-4methylpentanoic acid) sparingly soluble in water is reduced with a microorganism [e.g. Streptococcus faecalis (IFO 12964)] or an enzyme [Staphyloccocus epideromidis (DSM 20343)] to afford the objective compound.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はα−ヒドロキシ酸の製造法に関する。α−ヒド
ロキシ酸は種々の医農薬中間体として重要であり、取り
分けその光学活性体の効率の良い、安価な製法が求めら
れている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing α-hydroxy acids. α-Hydroxy acids are important as intermediates for various medicines and agrochemicals, and there is a particular need for efficient and inexpensive methods for producing their optically active forms.

(従来の技術) α−ケト酸を微生物又は酵素で還元し、α−ヒドロキシ
酸、取り分けその光学活性体を製造する方法には様々な
ものか知られているが、いずれも工業的製法とはなって
いない(例えば特開昭57−198096、特開昭57
−198097、特開昭63−32492、特開昭63
−32493.特開昭59−74983、特公昭61−
11591、特開昭60−12975、特開昭62−1
00286、特開平2−39893、特開平1−211
494など)。
(Prior Art) Various methods are known for producing α-hydroxy acids, especially their optically active forms, by reducing α-keto acids with microorganisms or enzymes, but none of them are industrial production methods. (For example, JP-A-57-198096, JP-A-57-198096,
-198097, JP-A-63-32492, JP-A-63
-32493. Japanese Patent Publication No. 59-74983, Special Publication No. 61-
11591, JP-A-60-12975, JP-A-62-1
00286, JP 2-39893, JP 1-211
494 etc.).

この原因は基質阻害、又は生成物阻害のため、基質であ
るα−ケト酸の仕込み濃度、α−ヒドロキシ酸の蓄積濃
度は高くても1%止まりであり、生成効率が悪いため、
コストが高くなるからである。また補酵素あるNADH
又はNADPHも高価であり、その再生系を組み込んで
連続反応するのも容易ではない、これらを解決するため
、種々のりアクタ−か考案されているが、実用化にまで
は至っていない、[山崎幸苗ら、バイオインダストリー
5 (4)、261〜268 (1988)、Simo
nE、S、PlanteR,&Whitesides 
 G。
The cause of this is substrate inhibition or product inhibition, and the concentration of the substrate α-keto acid and the accumulated concentration of α-hydroxy acid are only 1% at most, and the production efficiency is low.
This is because the cost increases. There is also a coenzyme NADH
Alternatively, NADPH is also expensive, and it is not easy to incorporate a regeneration system for continuous reaction.In order to solve these problems, various glue actors have been devised, but they have not yet been put to practical use. Nae et al., Bioindustry 5 (4), 261-268 (1988), Simo
nE, S, PlanteR, & Whitesides
G.

M、、Appl、Biochem、Biotech、。M,,Appl,Biochem,Biotech,.

22.169〜179 (1989)]。22.169-179 (1989)].

(発明が解決しようとする課題) 上述の状況に鑑みて、本発明の課題は種々の医農薬中間
体として重要なα−ヒドロキシ酸を簡便で効率の良い方
法で、工業的に生産するため、酵素又は微生物でα−ケ
ト酸を還元するに際して、α−ヒドロキシ酸の蓄積濃度
を画期的に向上させる方法を提供することにある6(問
題点を解決するための手段) 本発明者らは簡便で、かつ高い生成物蓄積濃度を達成す
る実用的な方法を鋭意検討した結果、α−ケト酸及び又
はα−ヒドロキシ酸を難溶性の塩で存在させれば基質阻
害、生成物阻害がほとんどかからないことを見出し本発
明を完成した。即ち、本発明によればα−ケト酸を微生
物又は酵素で還元し、α−ヒドロキシ酸とするに際し、
α−ケト酸を水に難溶性の無機塩とするか、又は/及び
α−ケト酸の中和剤として無機塩を用いる事によって、
酵素反応特有の欠点である基質阻害、生成物阻害を回避
することができ、生成物であるα−ヒドロキシ酸の蓄積
濃度の飛躍的向上がはかれる。
(Problem to be Solved by the Invention) In view of the above-mentioned situation, the problem of the present invention is to industrially produce α-hydroxy acids, which are important as intermediates for various medicines and agrochemicals, by a simple and efficient method. An object of the present inventors is to provide a method for dramatically increasing the accumulated concentration of α-hydroxy acids when reducing α-keto acids with enzymes or microorganisms.6 (Means for solving the problem) The present inventors As a result of intensive investigation into a simple and practical method for achieving high product accumulation concentrations, we found that if α-keto acids and/or α-hydroxy acids are present in the form of sparingly soluble salts, substrate inhibition and product inhibition will be minimal. The present invention was completed by discovering that this problem does not occur. That is, according to the present invention, when reducing an α-keto acid with a microorganism or an enzyme to form an α-hydroxy acid,
By converting the α-keto acid into an inorganic salt that is poorly soluble in water, or/and using the inorganic salt as a neutralizing agent for the α-keto acid,
Substrate inhibition and product inhibition, which are disadvantages peculiar to enzyme reactions, can be avoided, and the accumulated concentration of the product α-hydroxy acid can be dramatically improved.

本発明で用いられるα−ケト酸としては、2−ケト4−
メチルペンタン酸、2−ケト酪酸、2−ゲトベンタン酸
、2−メチル酪酸、2−ケトヘキサン酸、2−ケト3−
メチルペンタン酸、2−ゲトオクタン酸、2−ケト−3
−メルカプト10ピオン酸、2−ケト−4−(メチルメ
ルカプ1〜)−酪酸、2−ケト−3−フェニルプロピオ
ン酸、2−ケト−4−フェニル醋酸、ベンゾイルギ酸、
フェニルピルビン酸等があけられる。
The α-keto acids used in the present invention include 2-keto 4-
Methylpentanoic acid, 2-ketobutyric acid, 2-getobentanoic acid, 2-methylbutyric acid, 2-ketohexanoic acid, 2-keto3-
Methylpentanoic acid, 2-getooctanoic acid, 2-keto-3
-mercapto-10pionic acid, 2-keto-4-(methylmercap1-)-butyric acid, 2-keto-3-phenylpropionic acid, 2-keto-4-phenylacetic acid, benzoylformic acid,
Phenylpyruvic acid etc. can be used.

α−ケト酸としては水に難溶性を有すればよく、例えば
α−ケト酸の2価金属塩、更に具体的にはアルカリ土類
金属であるカルシウム、バリウム、ストロンチウム塩を
あげることができる。
The α-keto acid only needs to be sparingly soluble in water, and examples include divalent metal salts of α-keto acids, more specifically alkaline earth metals such as calcium, barium, and strontium salts.

又、中和剤としては、α−ケト酸、α−ヒドロキシ酸と
水にH,溶性の塩を形成するものであればいずれも公的
に用いることかできるが、例えば2価金属イオンを形成
するカルシウム、バリウム、ストロンチウム等のアルカ
リ土類金属塩かあけられる。具体的中和剤としては前述
の金属のもの、つまり、炭酸カルシウム、炭酸バリウム
、炭酸ストロンチウム等があげられる。
In addition, as a neutralizing agent, any agent that forms a water-soluble salt with α-keto acid or α-hydroxy acid can be used, but for example, neutralizing agents that form divalent metal ions can be used. Alkaline earth metal salts such as calcium, barium, strontium etc. Specific neutralizing agents include those of the metals mentioned above, ie, calcium carbonate, barium carbonate, strontium carbonate, and the like.

本発明に用いられる酵素としては、α−ケト酸を還元し
α−ヒドロキシ酸とする酵素であればいずれも好適に用
いることができる0例えばウシ心臓由来のし一乳酸デヒ
ドロゲナーゼ、微生物由来の酵素としてはスタフィロコ
ッカス エピデーミジス(Staphylococcu
s ep+derol−dis) DSH203430
イコノストツク・メセンテロイデス(Leuconos
tocnesenteroides) DSH2034
3由来のD−乳酸デヒドロゲナーゼ、ラクトバチルス・
カセイ(Lacto−bacillus casei 
) DSH20008由来のD−2−ヒドロキシイソカ
プロン酸デヒドロゲナーゼ、ラクトバチルス・コア77
、:L−サス(Lactobacillus conf
usus) DSH20196由来のL−2−ヒドロキ
シイソカプロン酸デヒドロゲナーゼ、ラクトバチルス・
クルバラス(Lactobac i l lus c−
urvatus ) DSH2001由来のD−7ンデ
ル酸デヒドロゲナーゼ等があげられる。補酵素NADH
を再生するための酵素としてはキャンディダ・ボイジニ
ー(Candia bo+b−nii) 、クロストリ
ジウム・フォルミコアセチカム(C−ostridiu
n forlicoaceticun) DSH92由
来のギ酸デヒドロギナーゼ、パン酵母由来のアルコール
デヒドロゲナーゼ等があげられる。NADPHを再生す
るための酵素としては、ロイコノストック・メセンテロ
イデス(Leuco−nostoc ncsenter
oides)由来のグルコース−6−リン酸デヒドロゲ
ナーゼが挙げられる。これらの酵素は市販品でも好適に
用いることができるし、生物より分離した天然そのまま
の酵素でも良いし、化学的に修飾した酵素、蛋白質工学
的に変異させた酵素であっても良い、更に、アクリルア
ミド、アルギン酸カルシウム等に固定化したしのでも良
い。
As the enzyme used in the present invention, any enzyme that reduces α-keto acid to α-hydroxy acid can be suitably used. For example, monolactate dehydrogenase derived from bovine heart, enzyme derived from microorganism, etc. is Staphylococcus epidemidis (Staphylococcus epidemidis)
sep+derol-dis) DSH203430
Iconostoc mesenteroides (Leuconos)
tocnesenteroides) DSH2034
D-lactate dehydrogenase from Lactobacillus 3
Lacto-bacillus casei
) D-2-hydroxyisocaproate dehydrogenase from DSH20008, Lactobacillus core 77
, :L-sus (Lactobacillus conf
L-2-hydroxyisocaproate dehydrogenase derived from DSH20196, Lactobacillus
Lactobacillus c-
urvatus) D-7 nderate dehydrogenase derived from DSH2001. Coenzyme NADH
The enzymes used to regenerate the
Examples include formic acid dehydrogenase derived from DSH92 and alcohol dehydrogenase derived from baker's yeast. As an enzyme for regenerating NADPH, Leuco-nostoc ncsenter
Examples include glucose-6-phosphate dehydrogenase derived from P. oides). These enzymes can be suitably used as commercially available enzymes, or may be natural enzymes isolated from living organisms, chemically modified enzymes, or enzymes mutated through protein engineering. It may also be immobilized on acrylamide, calcium alginate, or the like.

また、微生物自体としては例えばストレプトコッカス・
フェカリス(Streptococcus faeca
lis) IFo 12964、ラクトバチルス・カセ
イ(Lactobacillus casei ) I
FO12004、ロイコンス1〜ツク・メセンテロイデ
ス・サブ・スピーシズ・テキストラニカム(Leuco
nostoc nesente−roides 5ub
sp、 dextranicu > IFO3349、
ロイコメスl−ツタ テキストラニカム(Leucon
ostoc dextranicun )IFO334
7、ロイコノストック・メセンテロイデス(Leu−c
onostoc 11esenteroides) A
HU 1067、ラクトバチルス・1ランクラム(Le
uconostoc plantarul) AHU 
3070等があげられる。
In addition, microorganisms such as Streptococcus
Streptococcus faeca
lis) IFo 12964, Lactobacillus casei I
FO12004, Leucons 1~Tsuku mesenteroides subspecies Textlanicum (Leuco
nostoc nesente-roides 5ub
sp, dextranicu > IFO3349,
Leucomes l-ivy Textlanicum (Leucon)
ostoc dextranicun) IFO334
7. Leuconostoc mesenteroides (Leu-c
onostoc 11esenteroides) A
HU 1067, Lactobacillus 1 rankrum (Le
uconostoc plantarul) AHU
Examples include 3070.

これらの微生物は、野生株、変異株、又は、細胞融合も
しくは遺伝子操作法等の遺伝的手法により誘導される組
み替え株など、いずれの株でも好適に用いることかでき
る。
Any strain of these microorganisms can be suitably used, such as a wild strain, a mutant strain, or a recombinant strain induced by genetic techniques such as cell fusion or genetic manipulation.

尚、IFO番号の付された微生物は(財)醗酵研究所(
IFO)醗酵のLi5t  of  Cu1tures
、第8版、第1巻(1988)に記載されており、該I
F0から入手することができる。AHU番号の付された
微生物は日本微生物株保存連盟(JFCC)醗酵のCa
talogue  of  Cu1tur’es、第4
版、(1987)に記載されており、北海道大学農学部
から入手することができる。
In addition, microorganisms with IFO numbers are designated by the Fermentation Research Institute (Foundation).
IFO) Fermentation of Li5t of Cultures
, 8th edition, Volume 1 (1988),
It can be obtained from F0. The microorganisms with AHU numbers are the Japan Microorganism Strain Conservation Federation (JFCC) fermentation Ca
Talogue of Cultur'es, No. 4
(1987) and is available from the Faculty of Agriculture, Hokkaido University.

本発明に使用される微生物の培養には、該微生物が増殖
し得るものであれば、いずれも好適に用いることができ
るか、具体的には、グルコース、フルクトース、シュク
ロース、デキストリン、デンプン等の糖類、ソルビトー
ル、エタノール、クリセロール等のアルコール類、フマ
ール類、クエン酸、酢酸、プロピオン酸などの有FR酸
類及びその塩類、パラフィン等の炭化水素類などあるい
はこれらの混合物を炭素源とし、硫酸アンモニウム、硝
酸アンモニウム等の無機窒素源、酵母エキス、麦芽エキ
ス、ペプトン、肉エキス等の有機窒素源を単独あるいは
混合物として窒素源とすることかできる。他に無機塩、
微量金属塩、ビタミン類等、通常の培養に用いられる栄
養源を適宜混合して用いることかできる。また、必要に
応じて、微生物の増殖を促進する因子、本発明の目的化
合物の生成能力を高める因子、あるいは培地のPH保持
に有効な物質も添加できる。培養方法としてはPHは3
゜0〜9,5、好ましくは5〜8、培養温度は20〜4
5°C1好ましくは25〜37゛Cで、嫌気的あるいは
好気的に、その微生物の生育に適した条件下5〜120
時間、好ましくは12〜72時間程度培養する。
For culturing the microorganisms used in the present invention, any material that allows the microorganisms to grow can be suitably used. Specifically, glucose, fructose, sucrose, dextrin, starch, etc. can be suitably used. Carbon sources include sugars, alcohols such as sorbitol, ethanol, and chrycerol, fumars, FR acids and their salts such as citric acid, acetic acid, and propionic acid, hydrocarbons such as paraffin, or mixtures thereof, and ammonium sulfate and ammonium nitrate. Inorganic nitrogen sources such as yeast extract, malt extract, peptone, meat extract and the like can be used alone or as a mixture as the nitrogen source. In addition, inorganic salts,
Nutrient sources used in normal culture, such as trace metal salts and vitamins, can be mixed and used as appropriate. Further, if necessary, a factor that promotes the growth of microorganisms, a factor that increases the ability to produce the target compound of the present invention, or a substance that is effective in maintaining the pH of the culture medium can also be added. As for the culture method, the pH is 3.
°0-9.5, preferably 5-8, culture temperature 20-4
5°C, preferably 25 to 37°C, anaerobically or aerobically, under conditions suitable for the growth of the microorganism.
Cultivate for a period of time, preferably about 12 to 72 hours.

還元反応の方法としては、還元すべきα−ケト酸又はα
ゲト酸塩の存在下に培養後の菌体培養物、そこから採取
した気体又はその処理物をα−ケト酸又はα−ケト酸塩
に作用させる場合、又は精製酵素及びその処理物を用い
る場合、のいずれでも実施することかできる。ここでい
う菌体の処理物とは、例えはホモジナイザー等による菌
体破砕物、アセトン処理、凍結乾燥などの処理を施した
もの、またこれらの菌体あるいは前述の処理を施したも
のを、例えばポリアクリルアミドゲル法、含硫酸多糖ゲ
ル法(カラギーナンゲル法)、アルギン酸ゲル法、寒天
ゲル法などの公知の方法で固定化した物をも含む。
As a method of reduction reaction, α-keto acid or α-keto acid to be reduced
When a bacterial cell culture after culturing in the presence of a goto acid salt, a gas collected therefrom, or a processed product thereof is allowed to act on an α-keto acid or an α-keto acid salt, or when a purified enzyme and its processed product are used. It is possible to implement either of the following. The treated bacterial cells here include, for example, crushed bacterial cells using a homogenizer, those treated with acetone, freeze-drying, etc., and those that have been subjected to these treatments or the above-mentioned treatments, for example. It also includes substances immobilized by known methods such as polyacrylamide gel method, sulfated polysaccharide gel method (carrageenan gel method), alginate gel method, and agar gel method.

微生物培養後の菌体培養物から菌体を採取して反応させ
る場合、遠心分離などの方法で菌体を集めた後、そのま
ま、あるいは水または生理食塩水で洗浄した後、適当な
緩衝液に懸濁して、α−ケト酸又はその2価金属塩、あ
るいは2価金属塩の炭酸塩を加えて反応させる。
When collecting bacterial cells from a bacterial culture after culturing microorganisms for reaction, collect the bacterial cells by a method such as centrifugation, and then add them to an appropriate buffer solution, either as is or after washing with water or physiological saline. The mixture is suspended, and an α-keto acid or a divalent metal salt thereof, or a carbonate of a divalent metal salt is added and reacted.

この反応の際、グルコース、シュクロース等の炭酸源を
エネルギー源とし添加したほうがよい場合もある。
During this reaction, it may be better to add a carbonate source such as glucose or sucrose as an energy source.

基質であるα−ケト酸の加え方としては一遊離のα−ケ
ト酸を加える場合、2価金属の炭酸塩とともに加えても
良い。
When adding a free α-keto acid as a substrate, it may be added together with a carbonate of a divalent metal.

精製酵素を用いる場合は、α−ケト酸を還元する酵素、
基質であるα−ケト酸、又はその2価金属塩、遊離酸の
場合はさらに2価金属の炭酸塩、補酵素であるNADH
又はNADPH(これは該酵素により適当なほうを選択
する)を加え、さらに工業的に有利に実施するためには
、補酵素をリサイクルするための酵素、リサイクル酵素
の基質を加えて反応させる。酵素の量としては有利には
、N A D HあるいはNADPHリサイクル酵素の
活性と基質α−ケト酸還元酵素の活性の比が1:0.1
〜1:5であるような量でもって用いられる。NADH
リサイクル酵素とその基質の組み合わせとしては、ギ酸
デヒドロゲナーゼ/ギ酸、又は、そのアルカリ金属塩系
、アルコールデヒドロゲナーゼ/エタノール系が有利で
あり、NA D P Hリサイクル酵素とその基質の組
み合わせとじては、グルコース−6−リン酸デヒドロゲ
ナーゼ/グルコース−6−リン酸、又はそのアルカリ金
属塩系が好適に用いられる。
When using a purified enzyme, an enzyme that reduces α-keto acids,
α-keto acid as a substrate, or its divalent metal salt, in the case of a free acid, a carbonate of a divalent metal, and NADH as a coenzyme.
Alternatively, NADPH (the appropriate one is selected depending on the enzyme) is added, and for industrially advantageous implementation, an enzyme for recycling the coenzyme and a substrate for the recycling enzyme are added and the reaction is carried out. The amount of enzyme is preferably such that the ratio of the activity of the NAD H or NADPH recycling enzyme to the activity of the substrate α-keto acid reductase is 1:0.1.
It is used in an amount such that the ratio is ˜1:5. NADH
As the combination of the recycling enzyme and its substrate, formate dehydrogenase/formic acid or its alkali metal salt system, and alcohol dehydrogenase/ethanol system are advantageous, and as the combination of the NADPH recycling enzyme and its substrate, glucose- 6-phosphate dehydrogenase/glucose-6-phosphate or an alkali metal salt thereof is preferably used.

反応の混合物は酵素反応に通常用いられているように、
pH3〜9、好ましくはpH5〜8の範囲で、温度は1
0〜60℃、好ましくは、20〜40°Cの範囲で、1
〜120時間程度、攪拌下あるいは静置下で行う、基質
の添加濃度は0.1〜20%、好ましくは0.5〜10
%であるが、−括仕込みでもよいし、分割仕込みあるい
は連続仕込みを行うこともできる。中和剤の添加濃度は
、反応に好適なPHが保てる範囲となるよう必要量を加
えれば良いか、−殻内には0.01〜10%より、好ま
しくは0.5〜5%加える。補酵素は使用する酵素量に
よるが、−殻内には0.01〜10iH好ましくは0、
HgH程度加える。
The reaction mixture is as commonly used for enzymatic reactions.
pH in the range 3-9, preferably pH 5-8, temperature 1
1 in the range of 0 to 60°C, preferably 20 to 40°C.
The concentration of the substrate added is 0.1 to 20%, preferably 0.5 to 10%, for about 120 hours under stirring or standing still.
%, but it may be prepared in one batch, divided into parts, or continuously. The concentration of the neutralizing agent to be added may be such that the necessary amount is added to maintain a pH suitable for the reaction. The amount of coenzyme depends on the amount of enzyme used, but preferably 0.01 to 10iH in the shell.
Add about HgH.

反応によって生成したα−ヒドロキシ酸の採取は、α−
ヒドロキシ酸の大半が不溶性の塩を形成しているので、
反応終了液を鉱酸類で酸性にし、α−ヒドロキシ酸を遊
離の酸とした後、適当な有機溶媒で抽出するのが効率的
である。抽出後は種々のカラムクロマトグラフィー、晶
折、活性炭処理等通常の方法で容易に生成することがで
きる。
The α-hydroxy acid produced by the reaction is collected by α-
Since most hydroxy acids form insoluble salts,
It is efficient to acidify the reaction-completed solution with a mineral acid to convert the α-hydroxy acid into a free acid, and then extract it with a suitable organic solvent. After extraction, it can be easily produced by conventional methods such as various column chromatography, crystallization, and activated carbon treatment.

(実施例) 以下、本発明を具体的に実施例にて説明するが、本発明
はこれらの実施例のみに限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically explained using Examples, but the present invention is not limited only to these Examples.

実施例に置ける反応生成物の定量は、逆相カラムを用い
る高速液体クロマトグラフィーにて行った(カラム:N
ucleosil 10C18+64.6m1x250
nl、移動相:40nHカリウムリン酸バツフアーpH
3,0/アセトニトリル=4=1、流速: 1 、 O
nl/nin、検出:254ni)。
The quantitative determination of the reaction products in the examples was carried out by high performance liquid chromatography using a reversed phase column (column: N
ucleosil 10C18+64.6m1x250
nl, mobile phase: 40 nH potassium phosphate buffer pH
3,0/acetonitrile=4=1, flow rate: 1, O
nl/nin, detection: 254ni).

また、光学純度の測定は、光学分割カラムを用いる高速
液体クロマトグラフィーにて行った(カラム:ダイセル
化学工業製 キラルパックWH1φ4.6nrt x2
50u、移動相: 0.25nHCuSO4/アセトニ
トリル=4:Li速:1 、 Onl/nin 、検出
:254r+n)。
In addition, the optical purity was measured by high performance liquid chromatography using an optical resolution column (column: Daicel Chemical Industries, Ltd. Chiralpak WH1φ4.6nrt x2
50u, mobile phase: 0.25nHCuSO4/acetonitrile=4:Li rate: 1, Onl/nin, detection: 254r+n).

実施例1、比較例1  (R)−2−ヒドロキシ−4−
フェニル醋酸の製造 グルコース8%、酵母エキス1%、MnSO4・4〜5
5H2O10ppよりなる借地2000m1を2.6L
容ミニジヤー(丸菱バイオエンジ製)にいれ、滅菌後、
teuconos tcmesenteroides 
5ubsp、 dextranicun IFO334
9を植菌し、30°C1100rpiで17時間培養し
た4培養植にはpH電極を取り付け、25%NaOHに
て、pHを6.5〜7.0調節しなから培養した。培養
終了後、遠心分離にて菌体を分離し、菌体濃度0D66
oが40となるように蒸溜水に懸濁した。これを200
m1ずつ同じ2.6し容ミニジャーにいれ、さらに40
%グルコース20C)nl、6%2−ケト−4−フェニ
ル酪酸400nl< K OHにて中和し、pH7゜0
に調整済み)を加えた。
Example 1, Comparative Example 1 (R)-2-hydroxy-4-
Production of phenyl acetic acid Glucose 8%, yeast extract 1%, MnSO4.4-5
2.6L of 2000m1 of leased land consisting of 5H2O10pp
After sterilization, put it in a mini jar (manufactured by Marubishi Bioengine),
teuconos tcmesenteroides
5ubsp, dextranicun IFO334
9 was inoculated and cultured at 30° C. and 1100 rpi for 17 hours. A pH electrode was attached to the 4 cultured inocula, and the pH was adjusted to 6.5 to 7.0 with 25% NaOH before culturing. After the culture is completed, the bacterial cells are separated by centrifugation, and the bacterial cell concentration is 0D66.
It was suspended in distilled water so that o was 40. This is 200
Pour the same 2.6 m each into a mini jar and add 40 m.
% glucose 20C) nl, 6% 2-keto-4-phenylbutyric acid 400 nl < Neutralized with KOH, pH 7°0
(adjusted) was added.

培養槽AについてはさらにCa CO3を2%加え、培
養槽Bにはp)l電極を取り付け、25%N a OH
T p Hを6.5〜7.0に保ちながら、それぞれ3
0℃、1100rpで反応させた。(終濃度:2−ケト
−4−フェニル酪酸3%、グルコース10%、菌体濃度
 0D66o−反応結果を表1に示す。
For culture tank A, 2% CaCO3 was added, and for culture tank B, a p)l electrode was attached and 25% Na OH was added.
3 each while keeping the T pH between 6.5 and 7.0.
The reaction was carried out at 0°C and 1100 rpm. (Final concentration: 2-keto-4-phenylbutyric acid 3%, glucose 10%, bacterial cell concentration 0D66o-Reaction results are shown in Table 1.

実施例22−ヒドロキシ−4−フェニル酪酸の製造クル
コース8%、酵母エキス1%、ペプトン1%、CaCO
35%、HnSO4−5〜6H2010ppn、 Fe
SO4・7H2010001、N a CI 10DD
Ilよりなる信地100m1を500m1容三角フラス
コに入れ、滅菌後、teuconostoc dex−
tranicun IFO3347、Leuconos
toc nesenteroides 5ub−3D、
 dextranicun IFO3349、teuc
onostoc IIeSenterOld−es A
HU 1067を植菌した。30℃で40時間培養後、
それぞれ遠心分離にて菌体を分離し、蒸溜水に懸濁した
Example 2 Production of 2-hydroxy-4-phenylbutyric acid 8% glucose, 1% yeast extract, 1% peptone, CaCO
35%, HnSO4-5~6H2010ppn, Fe
SO4・7H2010001, N a CI 10DD
Pour 100 ml of Il into a 500 ml Erlenmeyer flask, and after sterilizing it, teuconostoc dex-
tranicun IFO3347, Leuconos
toc nesenteroides 5ub-3D,
dextranicun IFO3349, teuc
onostoc IIeSenterOld-es A
HU 1067 was inoculated. After culturing at 30°C for 40 hours,
Bacterial cells were separated by centrifugation and suspended in distilled water.

終濃度で菌体濃度0D66o−10、グルコース10%
、Ca CO31%、2−ケト−4−フェニル酪酸4.
5%、反応液量2mlとなるように反応液を調整し、 
φ21mm試験管中、30℃、43時間反応させた。結
果を表2に示す。
Final concentration of bacterial cell concentration 0D66o-10, glucose 10%
, Ca CO31%, 2-keto-4-phenylbutyric acid 4.
Adjust the reaction solution so that it is 5% and the reaction solution volume is 2 ml.
The reaction was carried out in a φ21 mm test tube at 30° C. for 43 hours. The results are shown in Table 2.

Claims (1)

【特許請求の範囲】 1 水に難溶なα−ケト酸の無機塩を微生物又は酵素で
還元させることを特徴とするα−ヒドロキシ酸の製法 2 α−ケト酸を水に難溶な無機塩の存在下で微生物又
は酵素で還元させることを特徴とするα−ヒドロキシ酸
の製法
[Claims] 1. A method for producing α-hydroxy acid characterized by reducing an inorganic salt of an α-keto acid that is sparingly soluble in water using a microorganism or an enzyme. 2. A process for producing an inorganic salt of an α-keto acid that is sparingly soluble in water. A method for producing α-hydroxy acid characterized by reduction with microorganisms or enzymes in the presence of
JP18212590A 1990-07-10 1990-07-10 Production of alpha-hydroxy acid Pending JPH0471494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18212590A JPH0471494A (en) 1990-07-10 1990-07-10 Production of alpha-hydroxy acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18212590A JPH0471494A (en) 1990-07-10 1990-07-10 Production of alpha-hydroxy acid

Publications (1)

Publication Number Publication Date
JPH0471494A true JPH0471494A (en) 1992-03-06

Family

ID=16112768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18212590A Pending JPH0471494A (en) 1990-07-10 1990-07-10 Production of alpha-hydroxy acid

Country Status (1)

Country Link
JP (1) JPH0471494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885955B2 (en) * 2005-07-21 2012-02-29 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Smoking goods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885955B2 (en) * 2005-07-21 2012-02-29 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Smoking goods

Similar Documents

Publication Publication Date Title
Leonida Redox enzymes used in chiral syntheses coupled to coenzyme regeneration
US4221869A (en) Enzymatic synthesis of L-carnitine
JPS6137919B2 (en)
JP3858505B2 (en) Method for producing R-3-quinuclidinol
WO2007026860A1 (en) METHOD FOR PRODUCTION OF OPTICALLY ACTIVE α-HYDROXYCARBOXYLIC ACID
JP3014171B2 (en) Method for producing 4-halo-3-hydroxybutyramide
JP3117092B2 (en) Method for continuously converting cephalosporin derivative to glutaryl-7-aminocephalosporanic acid derivative
JPH0471494A (en) Production of alpha-hydroxy acid
JP2936551B2 (en) Method for producing (R)-(+)-3-halolactic acid
JP2840723B2 (en) Method for producing 4-halo-3-hydroxybutyronitrile
JP3061422B2 (en) Method for producing optically active (S) -2-chloro-1-phenylpropanol
JP3030916B2 (en) Method for producing β-glucooligosaccharide
JP2752754B2 (en) Method for producing optically active 2-hydroxy-4-phenylbutyric acid
JP2002204699A (en) METHOD FOR PRODUCING beta-HYDROXY-gamma-BUTYROLACTONE
JPH0998779A (en) Trehalose synthetase, its production and production of trehalose using the enzyme
Maksimova et al. Productive biofilms of nitrile hydrolyzing bacteria
JP2983695B2 (en) Method for producing 4-halo-3-hydroxybutyric acid
JP2523825B2 (en) Method for producing (R) -2-hydroxy-4-phenyl-3-butenoic acid
JP3165040B2 (en) Novel microorganism and method for producing L-aspartic acid, fumaric acid and / or L-malic acid
JP3659123B2 (en) Method for optical resolution of 4-halogeno-3-alkanoyloxybutyronitrile
JP2519980B2 (en) Method for producing (S) -2-hydroxy-4-phenyl-3-butenoic acid
JPH03183499A (en) Production of optically active 3-hydroxybutyric acid
JPH0515394A (en) Production of optically active (s)-3-phenyl-1,3propanediol
JP2946055B2 (en) Method for producing optically active (S)-(+)-3-halo-1,2-propanediol
JPS5840471B2 (en) Method for producing glutamate dehydrogenase