Nothing Special   »   [go: up one dir, main page]

JPH0466773A - Fuel injection equipment of internal combustion engine - Google Patents

Fuel injection equipment of internal combustion engine

Info

Publication number
JPH0466773A
JPH0466773A JP17642390A JP17642390A JPH0466773A JP H0466773 A JPH0466773 A JP H0466773A JP 17642390 A JP17642390 A JP 17642390A JP 17642390 A JP17642390 A JP 17642390A JP H0466773 A JPH0466773 A JP H0466773A
Authority
JP
Japan
Prior art keywords
compressed air
fuel
pressure
valve
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17642390A
Other languages
Japanese (ja)
Inventor
Yuichi Takano
雄一 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17642390A priority Critical patent/JPH0466773A/en
Publication of JPH0466773A publication Critical patent/JPH0466773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To surely stop compressed air from entering into a fuel injection valve by providing a compressed air pressure regulating valve which is opened and allows the compressed air n a compressed air passage to escape when pressure of fuel supplied to a fuel injection valve becomes lower than compressed air pressure. CONSTITUTION:An air blast valve 9 comprises a switching valve 33 whose end portion is formed into a nozzle opening 32 located inside a combustion chamber 4 and which is disposed in a compressed air passage 31. A diagonally extending compressed air passage 39 branches off from the compressed air passage 31 and is connected to a compressed air supply opening 40 and is equipped with a fuel injection valve 41 for injecting fuel toward the inside of the compressed air passage 39. Compressed air is supplied to the compressed air supply opening 40 of each cylinder via a compressed air passage 19 and a compressed air distribution chamber 20 by means of actuation of a vane pump 18. A compressed air pressure regulating valve 21 for maintaining compressed air pressure inside the compressed air distribution chamber 20 at fixed pressure is interposed in the compressed air passage 19 so as to prevent the compressed air from flowing into the fuel injection valve 41.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の燃料噴射装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a fuel injection device for an internal combustion engine.

〔従来の技術〕[Conventional technology]

ノズル口と、一端がノズル口に連結され他端が圧縮空気
源に連結された圧縮空気通路と、ノズル口を開閉制御す
る開閉弁と、圧縮空気通路内に燃料を噴射するための燃
料噴射弁とを具備し、燃料噴射弁がばね付勢されたニー
ドルによって開閉制御される噴口を具備し、燃料噴射弁
の噴口から圧縮空気通路内に噴射された燃料が圧縮空気
と共にノズル口から噴出せしめられる燃料噴射装置が公
知である(特表平1−503554号公報参照)。この
燃料噴射装置では上述したように燃料噴射弁の噴口から
圧縮空気通路内に燃料が噴射されるので燃料噴射量は燃
料噴射弁に供給される燃料の圧力と圧縮空気通路内の圧
縮空気圧との差圧および燃料噴射時間によって定まる。
a nozzle port; a compressed air passageway with one end connected to the nozzle port and the other end connected to a compressed air source; an on-off valve for controlling opening and closing of the nozzle port; and a fuel injection valve for injecting fuel into the compressed air passageway. The fuel injection valve has a nozzle whose opening and closing are controlled by a spring-biased needle, and the fuel injected into the compressed air passage from the nozzle of the fuel injection valve is ejected from the nozzle port together with the compressed air. A fuel injection device is known (see Japanese Patent Publication No. Hei 1-503554). In this fuel injection device, as mentioned above, fuel is injected into the compressed air passage from the nozzle of the fuel injection valve, so the fuel injection amount is determined by the pressure of the fuel supplied to the fuel injection valve and the compressed air pressure in the compressed air passage. Determined by differential pressure and fuel injection time.

この燃料噴射装置では燃料噴射時間を制御することによ
って燃料噴射量を制御するようにしており、従って精度
のよい噴射制御を行うた袷には上述の燃料圧と圧縮空気
圧との差圧を一定に維持する必要がある。そこでこの燃
料噴射装置では燃料圧が圧縮空気圧よりも予め定とられ
た圧力以上高くなったときに開弁じて一部の燃料を燃料
タンク内に返戻させ、それによって燃料圧と圧縮空気圧
との差圧を一定に維持するようにした燃料調圧弁を備え
ている。
This fuel injection device controls the fuel injection amount by controlling the fuel injection time. Therefore, in order to perform accurate injection control, it is necessary to maintain a constant differential pressure between the fuel pressure and compressed air pressure. need to be maintained. Therefore, in this fuel injection system, when the fuel pressure becomes higher than the compressed air pressure by more than a predetermined pressure, the valve is opened and some of the fuel is returned to the fuel tank, thereby reducing the difference between the fuel pressure and the compressed air pressure. Equipped with a fuel pressure regulating valve to maintain constant pressure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでこの燃料噴射装置では燃料噴射弁のニードルは
燃料圧とばね力とによって閉弁状態に保持される構造と
なっており、ばね力のみによるニードルの閉弁力はかな
り小さく設定されている。
Incidentally, in this fuel injection device, the needle of the fuel injection valve is structured to be held in a closed state by fuel pressure and spring force, and the valve-closing force of the needle due to only the spring force is set to be quite small.

しかしながらこのようにばね力のみによるニードルの閉
弁力がかなり小さく設定されていても通常は燃料圧のほ
うが圧縮空気圧よりも高いので圧縮空気が噴口を介して
燃料噴射弁内に流入することがない。また、このような
燃料噴射装置では通常燃料供給系のほうが圧縮空気供給
系よりもシール性がよいので機関が停止すると燃料圧に
比べて圧縮空気圧のほうが早期に低下し、斯くして圧縮
空気が噴口を介して燃料噴射弁内に流入することもない
However, even if the valve closing force of the needle due to spring force alone is set to be quite small, the fuel pressure is usually higher than the compressed air pressure, so compressed air does not flow into the fuel injection valve through the nozzle. . In addition, in such a fuel injection system, the fuel supply system usually has better sealing than the compressed air supply system, so when the engine stops, the compressed air pressure decreases earlier than the fuel pressure. The fuel does not flow into the fuel injection valve through the nozzle.

ところが機関を停止したときに何らかの原因でもって燃
料圧が圧縮空気圧よりも早期に低下すると圧縮空気が噴
口を介して燃料噴射弁内に流入してしまう。即ち、前述
した燃料調圧弁は燃料圧と圧縮空気圧との差圧が一定圧
以上にならないように燃料圧を制御しており、従って燃
料圧が圧縮空気圧よりも低下しても圧縮空気圧がそれに
伴なって低下せしtられる構造になっていない。即ち、
燃料圧が低下しても圧縮空気圧は圧力が高い状態に維持
されることになる。従って燃料圧が低下して圧縮空気圧
によるニードルの開弁力が燃料圧およびばね力によるニ
ードルの閉弁力よりも大きくなると圧縮空気圧によって
ニードルが開弁せしとられてしまい、その結果燃料噴射
弁内に圧縮空気が流入してしまうことになる。このよう
に燃料噴射弁内に圧縮空気が流入すると機関を始動した
ときにこの圧縮空気が燃料によって完全に追い出される
まで燃料噴射量が低下するばかりでなく、燃料噴射量が
不安定となり、斯くして良好な機関の始動が得られない
ばかりでなく、始動したとしても暫らくの間安定した燃
焼が得られないという問題を生ずる。
However, if the fuel pressure drops earlier than the compressed air pressure for some reason when the engine is stopped, the compressed air will flow into the fuel injection valve through the injection port. In other words, the fuel pressure regulating valve mentioned above controls the fuel pressure so that the differential pressure between the fuel pressure and the compressed air pressure does not exceed a certain pressure, so even if the fuel pressure falls below the compressed air pressure, the compressed air pressure will not increase accordingly. The structure is not designed to allow the temperature to deteriorate. That is,
Even if the fuel pressure decreases, the compressed air pressure will remain high. Therefore, when the fuel pressure decreases and the valve-opening force of the needle due to compressed air pressure becomes greater than the valve-closing force of the needle due to fuel pressure and spring force, the compressed air pressure forces the needle to open, and as a result, the fuel injection valve Compressed air will flow inside. If compressed air flows into the fuel injection valve in this way, when the engine is started, the fuel injection amount not only decreases until the compressed air is completely driven out by the fuel, but also becomes unstable. This results in the problem that not only is it not possible to start the engine properly, but even if the engine is started, stable combustion cannot be obtained for a while.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために本発明によればノズル口と
、一端がノズル口に連結され他端が圧縮空気源に連結さ
れた圧縮空気通路と、ノズル口を開閉制御する開閉弁と
、圧縮空気通路内に燃料を噴射するたtの燃料噴射弁と
を具備し、燃料噴射弁がばね付勢されたニードルによっ
て開閉制御される噴口を具備し、燃料噴射弁の噴口から
圧縮空気通路内に噴射された燃料が圧縮空気と共にノズ
ル口からの噴出せしめられる燃料噴射装置において、燃
料噴射弁に供給される燃料の圧力と圧縮空気通路内の圧
縮空気圧に応動して燃料の圧力が圧縮空気圧よりも低く
なるか又は予め定められた圧力以上低くなったときに開
弁して圧縮空気通路内の圧縮空気を逃がす圧縮空気調圧
弁を具備している。
In order to solve the above-mentioned problems, the present invention includes a nozzle opening, a compressed air passage whose one end is connected to the nozzle opening and the other end connected to a compressed air source, an on-off valve for controlling opening and closing of the nozzle opening, a fuel injection valve for injecting fuel into the air passage; the fuel injection valve has a nozzle whose opening and closing are controlled by a spring-biased needle; In a fuel injection device in which injected fuel is ejected from a nozzle port together with compressed air, the pressure of the fuel is higher than the compressed air pressure in response to the pressure of the fuel supplied to the fuel injection valve and the compressed air pressure in the compressed air passage. It is equipped with a compressed air pressure regulating valve that opens to release the compressed air in the compressed air passage when the pressure becomes low or lower than a predetermined pressure.

〔作 用〕[For production]

燃料の圧力が圧縮空気圧よりも低くなると、或いは予め
定められた圧力以上低くなると圧縮空気調圧弁が開弁じ
て圧縮空気通路内の圧縮空気が逃がされる。その結果、
圧縮空気圧が低下するので圧縮空気圧によってニードル
が開弁せしめられることがない。
When the pressure of the fuel becomes lower than the compressed air pressure, or becomes lower than a predetermined pressure, the compressed air pressure regulating valve opens and the compressed air in the compressed air passage is released. the result,
Since the compressed air pressure is reduced, the needle is not opened by the compressed air pressure.

〔実施例〕〔Example〕

第1図に2サイクル内燃機関の全体図を示す。 FIG. 1 shows an overall diagram of a two-stroke internal combustion engine.

第1図を参照すると、1はシリンダブロック、2はプリ
ンダブロック1内において往復動するピストン、3はシ
リンダブロック1上に固締されたシリンダヘッド、4は
ピストン2とシリンダヘッド3間に形成された燃焼室、
5は給気弁、6は給気ボート、7は排気弁、8は排気ポ
ート、9は燃焼室4内に向けて燃料を圧縮空気と共に噴
射するエアブラスト弁を夫々示す。図面には示さないが
シリンダヘッド3の内壁面中央部には点火栓が配置され
る。給気ボート6は給気枝管10を介してサージタンク
11に連結され、サージタンク11は機関駆動の機械式
過給機12、給気ダクト13およびエアフローメータ1
4を介してエアクリーナ15に連結される。給気ダクト
13内にはスロットル弁16が配置される。
Referring to FIG. 1, 1 is a cylinder block, 2 is a piston that reciprocates within printer block 1, 3 is a cylinder head fixed on cylinder block 1, and 4 is formed between piston 2 and cylinder head 3. combustion chamber,
5 is an air supply valve, 6 is an air supply boat, 7 is an exhaust valve, 8 is an exhaust port, and 9 is an air blast valve that injects fuel together with compressed air into the combustion chamber 4. Although not shown in the drawings, an ignition plug is arranged at the center of the inner wall surface of the cylinder head 3. The air supply boat 6 is connected to a surge tank 11 via an air supply branch pipe 10, and the surge tank 11 is connected to an engine-driven mechanical supercharger 12, an air supply duct 13, and an air flow meter 1.
It is connected to the air cleaner 15 via 4. A throttle valve 16 is arranged within the air supply duct 13.

第2図にエアブラスト弁9の拡大断面図を示す。FIG. 2 shows an enlarged sectional view of the air blast valve 9.

第2図を参照するとエアブラスト弁9のハウジング30
内にはまっすぐに延びる圧縮空気通路31が形成され、
この圧縮空気通路31の先端部には燃焼室4 (第1図
)内に位置するノズル口32が形成される。圧縮空気通
路31内には開閉弁33が配置され、この開閉弁33の
外端部にはノズル口32の開閉制御をする弁体34が一
体形成される。ハウジング30内には開閉弁33と共軸
的に配置されかつ圧縮ばね35によって開閉弁33に向
けて付勢された可動コア36と、可動コア36を吸引す
るたtのソレノイド37が配置される。開閉弁33の内
端部は圧縮ばね38によって可動コア36の端面に当接
せしめられており、圧縮ばね38のばね力は圧縮ばね3
5のばね力よりも強いので通常ノズル口32は開閉弁3
3の弁体34によって閉鎖されている。ソレノイド37
が付勢されると可動コア36が開閉弁33の方向に移動
し、その結果開閉弁33の弁体34がノズル口32を開
口せしめる。
Referring to FIG. 2, the housing 30 of the air blast valve 9
A compressed air passage 31 extending straight is formed inside.
A nozzle port 32 located within the combustion chamber 4 (FIG. 1) is formed at the tip of this compressed air passage 31. An on-off valve 33 is disposed within the compressed air passage 31, and a valve body 34 for controlling opening and closing of the nozzle port 32 is integrally formed at the outer end of the on-off valve 33. Inside the housing 30, a movable core 36 which is disposed coaxially with the on-off valve 33 and is biased toward the on-off valve 33 by a compression spring 35, and a solenoid 37 for attracting the movable core 36 are arranged. . The inner end of the on-off valve 33 is brought into contact with the end surface of the movable core 36 by a compression spring 38, and the spring force of the compression spring 38 is
Since the spring force is stronger than the spring force of 5, the nozzle port 32 is normally used as the on-off valve 3.
It is closed by a valve body 34 of No. 3. solenoid 37
When the movable core 36 is energized, the movable core 36 moves toward the on-off valve 33, and as a result, the valve body 34 of the on-off valve 33 opens the nozzle port 32.

一方、圧縮空気通路31からは圧縮空気通路31から斜
めに延びる圧縮空気通路39が分岐され、この圧縮空気
通路39は圧縮空気供給口40に連結される。
On the other hand, a compressed air passage 39 that extends obliquely from the compressed air passage 31 branches off from the compressed air passage 31, and this compressed air passage 39 is connected to a compressed air supply port 40.

ハウジング30には燃料噴射弁41が取付けられる。A fuel injection valve 41 is attached to the housing 30.

この燃料噴射弁41はばね付勢されたニードル43によ
って開閉制御される噴口42を具備し、この噴口42か
ら燃料が圧縮空気通路39内に向けて噴射される。
The fuel injection valve 41 includes a nozzle 42 that is controlled to open and close by a spring-biased needle 43, and fuel is injected into the compressed air passage 39 from the nozzle 42.

第1図に示されるようにエアフローメータ14とスロッ
トル弁16間の給気ダクト13からはエアブラスト用空
気通路17が分岐され、このエアブラスト用空気通路1
7は機関駆動のベーンポンプ18および圧縮空気通路1
9を介して圧縮空気分配室20に連結される。この圧縮
空気分配室20は各気筒に対して夫々設けられたエアブ
ラスト弁9の圧縮空気供給口40に連結される。圧縮空
気通路19には圧縮空気分配室20内の圧縮空気圧を予
約定められた一定圧、例えば3kg/cfflに維持す
るための圧縮空気調圧弁21が取付けられる。一方、燃
料噴射弁41は燃料通路22および機関駆動の燃料ポン
プ23を介して燃料タンク24に連結され、従って燃料
ポンプ23から吐出された燃料が燃料通路22を介して
燃料噴射弁41に供給される。燃料通路22には燃料噴
射弁41に供給される燃料圧を圧縮空気圧よりも予め定
められた一定圧、例えば2.5 kg / Cn!だけ
高く維持するた約の、即ち燃料噴射弁41に供給される
燃料圧を予め定められた一定圧、例えば5.5 kg 
/ Crlに維持するための燃料調圧弁25が取付けら
れる。
As shown in FIG. 1, an air blasting air passage 17 is branched from the air supply duct 13 between the air flow meter 14 and the throttle valve 16.
7 is an engine-driven vane pump 18 and a compressed air passage 1
It is connected via 9 to a compressed air distribution chamber 20 . This compressed air distribution chamber 20 is connected to a compressed air supply port 40 of an air blast valve 9 provided for each cylinder. A compressed air pressure regulating valve 21 is attached to the compressed air passage 19 to maintain the compressed air pressure in the compressed air distribution chamber 20 at a predetermined constant pressure, for example, 3 kg/cffl. On the other hand, the fuel injection valve 41 is connected to the fuel tank 24 via the fuel passage 22 and the engine-driven fuel pump 23, so that fuel discharged from the fuel pump 23 is supplied to the fuel injection valve 41 via the fuel passage 22. Ru. The fuel pressure supplied to the fuel injection valve 41 is set in the fuel passage 22 at a predetermined constant pressure, for example, 2.5 kg/Cn!, which is lower than the compressed air pressure. In other words, the fuel pressure supplied to the fuel injection valve 41 is maintained at a predetermined constant pressure, for example, 5.5 kg.
A fuel pressure regulating valve 25 is installed to maintain the pressure at /Crl.

圧縮空気調圧弁21はボール50を担持した可動弁体5
1とベローズ52とダイアフラム53とを具備し、ボー
ル50にはプレート54が固定される。ベローズ52の
一端部は可動弁体51の周縁部に固定され、ベローズ5
2の他端はハウジングの内壁面に固定される。可動弁体
51とベローズ52とは可動弁55を形成し、圧縮空気
調圧弁21の内部はダイアフラム53および可動弁55
によって三つの部屋、即ちダイアフラム53の上方に位
置する大気圧室56と、ダイアフラム53および可動弁
55間に形成された燃料室57と、可動弁55の下方に
形成された圧縮空気室58に分割される。大気圧室56
は大気連通孔59を介して大気に開放されており、燃料
室57は燃料通路60を介して燃料通路22に連結され
ており、圧縮空気室58は圧縮空気入口ポート61を介
して圧縮空気通路19に連結されている。また、圧縮空
気室58内には圧縮空気出口ポート62が開口しており
、この圧縮空気出口ポート62はプレート54によって
開閉制御される。この圧縮空気出口ポート62は圧縮空
気返戻通路63を介して給気ダクト13に連結される。
The compressed air pressure regulating valve 21 has a movable valve body 5 supporting a ball 50.
1, a bellows 52, and a diaphragm 53, and a plate 54 is fixed to the ball 50. One end of the bellows 52 is fixed to the peripheral edge of the movable valve body 51.
The other end of 2 is fixed to the inner wall surface of the housing. The movable valve body 51 and the bellows 52 form a movable valve 55, and the inside of the compressed air pressure regulating valve 21 includes a diaphragm 53 and a movable valve 55.
is divided into three chambers: an atmospheric pressure chamber 56 located above the diaphragm 53, a fuel chamber 57 formed between the diaphragm 53 and the movable valve 55, and a compressed air chamber 58 formed below the movable valve 55. be done. Atmospheric pressure chamber 56
is open to the atmosphere through an atmosphere communication hole 59, the fuel chamber 57 is connected to the fuel passage 22 through a fuel passage 60, and the compressed air chamber 58 is connected to the compressed air passage through a compressed air inlet port 61. It is connected to 19. Further, a compressed air outlet port 62 is opened in the compressed air chamber 58, and the opening and closing of this compressed air outlet port 62 is controlled by the plate 54. This compressed air outlet port 62 is connected to the air supply duct 13 via a compressed air return passage 63.

大気圧室56内にはダイアフラム53を可動弁55に向
けて押圧する圧縮ばね64が挿入され、ダイアフラム5
3と可動弁体51間にも圧縮ばね65が挿入される。更
に、ダイアフラム53と可動弁体51は遊び連結機構6
6を介して互いに連結されている。この遊び連結機構6
6は可動弁体51に固定された中空スリーブ67と、拡
大頭部68を有しダイアフラム53に連結されたロッド
69からなり、この拡大頭部68は中空スリーブ67内
で移動可能でかつ中空スリーブ67の先端部内壁面と係
合可能に配置される。
A compression spring 64 is inserted into the atmospheric pressure chamber 56 to press the diaphragm 53 toward the movable valve 55.
A compression spring 65 is also inserted between the valve body 3 and the movable valve body 51. Furthermore, the diaphragm 53 and the movable valve body 51 are connected to each other by a loose connection mechanism 6.
They are connected to each other via 6. This play connection mechanism 6
6 consists of a hollow sleeve 67 fixed to the movable valve body 51 and a rod 69 having an enlarged head 68 and connected to the diaphragm 53. The enlarged head 68 is movable within the hollow sleeve 67 and is connected to the hollow sleeve 67. It is arranged so as to be able to engage with the inner wall surface of the distal end portion of 67.

一方、燃料調圧弁25はボール70を担持した可動弁体
71と、この可動弁体71を担持したダイアフラム72
とを具備し、ボール70にはプレート73が固定される
。燃料調圧弁25の内部はダイアフラム72によって二
つの部屋、即ちダイアフラム72の上方に位置する圧縮
空気室74と、ダイアフラム72の下方に位置する燃料
室75に分割される。圧縮空気室74は圧縮空気通路7
6を介して圧縮空気通路19に連結され、燃料室75は
燃料入口ポート77を介して燃料通路22に連結される
。また、燃料室75内には燃料出口ポート78が開口し
ており、この燃料出口ボート78はプレート73によっ
て開閉制御される。この燃料出口ボート78は燃料返戻
通路79を介して燃料タンク24に連結される。圧縮空
気室74内にはダイアフラム72を燃料室75に向けて
押圧する圧縮ばね80が挿入される。
On the other hand, the fuel pressure regulating valve 25 includes a movable valve body 71 supporting a ball 70 and a diaphragm 72 supporting the movable valve body 71.
A plate 73 is fixed to the ball 70. The interior of the fuel pressure regulating valve 25 is divided by the diaphragm 72 into two chambers: a compressed air chamber 74 located above the diaphragm 72 and a fuel chamber 75 located below the diaphragm 72. The compressed air chamber 74 is the compressed air passage 7
6 to the compressed air passage 19, and the fuel chamber 75 to the fuel passage 22 via a fuel inlet port 77. Further, a fuel outlet port 78 is open in the fuel chamber 75, and the opening and closing of this fuel outlet port 78 is controlled by a plate 73. This fuel outlet boat 78 is connected to the fuel tank 24 via a fuel return passage 79. A compression spring 80 that presses the diaphragm 72 toward the fuel chamber 75 is inserted into the compressed air chamber 74 .

機関運転時には圧縮空気調圧弁21の燃料室57は燃料
圧が5.5 kg / cfIt程度の燃料で満たされ
ている。
During engine operation, the fuel chamber 57 of the compressed air pressure regulating valve 21 is filled with fuel at a fuel pressure of approximately 5.5 kg/cfIt.

このとき可動弁体51とダイアフラム53は互いに最も
離れた位置、即ち遊び連結機構66のロッド69の拡大
頭868と中空スリーブ67の先端部内壁面とが係合し
ている状態に保持されている。従ってこのとき燃料室5
7内の燃料圧が圧縮空気室58内の圧縮空気圧よりも高
ければ可動弁体51とダイアフラム53とが一緒に上下
動する。即ち、このとき圧縮空気室58内の圧縮空気圧
が高くなると可動弁体51およびダイアフラム53は圧
縮ばね64のばね力に抗して上昇し、プレート54が圧
縮空気出口ポート62を開口する。その結果、圧縮空気
室58内の圧縮空気が圧縮空気返戻通路63を介して給
気ダクト13内に逃がされるたtに圧縮空気室58およ
び圧縮空気通路19内の圧縮空気圧が低下する。一方、
圧縮空気室58内の圧縮空気圧が低下すると可動弁体5
1およびダイアフラム53は圧縮ばね64のばね力に抗
して下降し、プレート54が圧縮空気出口ポート62を
閉鎖する。その結果、圧縮空気室58および圧縮空気通
路19内の圧縮空気圧は徐々に上昇する。このようにし
て圧縮空気室58および圧縮空気通路19内の圧縮空気
圧は圧縮ばね64のばね力に定まる一定圧に維持される
。第1図に示す実施例では圧縮空気室58および圧縮空
気通路19内の圧縮空気圧が3.0kg / crlと
なるように圧縮ばね64のばね力が定められている。
At this time, the movable valve body 51 and the diaphragm 53 are held in a position farthest from each other, that is, in a state where the enlarged head 868 of the rod 69 of the loose coupling mechanism 66 and the inner wall surface of the distal end portion of the hollow sleeve 67 are engaged. Therefore, at this time, the fuel chamber 5
If the fuel pressure in the compressed air chamber 58 is higher than the compressed air pressure in the compressed air chamber 58, the movable valve body 51 and the diaphragm 53 move up and down together. That is, at this time, when the compressed air pressure in the compressed air chamber 58 increases, the movable valve body 51 and the diaphragm 53 rise against the spring force of the compression spring 64, and the plate 54 opens the compressed air outlet port 62. As a result, the compressed air pressure in the compressed air chamber 58 and the compressed air passage 19 decreases as the compressed air in the compressed air chamber 58 is released into the air supply duct 13 via the compressed air return passage 63. on the other hand,
When the compressed air pressure in the compressed air chamber 58 decreases, the movable valve body 5
1 and diaphragm 53 are lowered against the spring force of compression spring 64, and plate 54 closes compressed air outlet port 62. As a result, the compressed air pressure within the compressed air chamber 58 and the compressed air passage 19 gradually increases. In this way, the compressed air pressure in the compressed air chamber 58 and the compressed air passage 19 is maintained at a constant pressure determined by the spring force of the compression spring 64. In the embodiment shown in FIG. 1, the spring force of the compression spring 64 is determined so that the compressed air pressure in the compressed air chamber 58 and the compressed air passage 19 is 3.0 kg/crl.

一方、このように圧縮空気通路19内の圧縮空気圧が3
.0 kg / crlに維持されると燃料調圧弁25
の圧縮空気室74内の圧縮空気圧も3.0kg/crl
に維持される。この燃料調圧弁25では燃料室75内の
燃料圧から圧縮空気室74内の圧縮空気圧を差し引いた
差圧が2.5 kg / cr1以上になるとプレート
73が燃料出口ポート78を開口し、この差圧が2.5
 kg / cI11以下になるとプレート73が燃料
出口ポート78を閉鎖する。従って燃料調圧弁25によ
って燃料通路22内の燃料圧と圧縮空気圧との差圧が2
.5 kg / cmに維持され、即ち燃料通路22内
の燃料圧が5.5 kg / cmに維持される。この
ようにして機関運転時には圧縮空気圧は3.0kg/c
rlに維持され、燃料圧は5.5 kg/crlに維持
される。
On the other hand, in this way, the compressed air pressure in the compressed air passage 19 is 3.
.. When maintained at 0 kg/crl, the fuel pressure regulating valve 25
The compressed air pressure in the compressed air chamber 74 is also 3.0 kg/crl.
will be maintained. In this fuel pressure regulating valve 25, when the differential pressure obtained by subtracting the compressed air pressure in the compressed air chamber 74 from the fuel pressure in the fuel chamber 75 becomes 2.5 kg/cr1 or more, the plate 73 opens the fuel outlet port 78, and this difference pressure is 2.5
kg/cI11 or less, plate 73 closes fuel outlet port 78. Therefore, the fuel pressure regulating valve 25 reduces the pressure difference between the fuel pressure in the fuel passage 22 and the compressed air pressure by 2.
.. 5 kg/cm, i.e. the fuel pressure in the fuel passage 22 is maintained at 5.5 kg/cm. In this way, when the engine is running, the compressed air pressure is 3.0 kg/c.
fuel pressure is maintained at 5.5 kg/crl.

第3図に給気弁5および排気弁7の開弁期間、燃料噴射
弁41からの燃料噴射期間および開閉弁33の弁体34
の開弁期間、即ちエアブラスト弁9の開弁期間を示す。
FIG. 3 shows the opening period of the intake valve 5 and the exhaust valve 7, the period of fuel injection from the fuel injection valve 41, and the valve body 34 of the on-off valve 33.
In other words, the valve opening period of the air blast valve 9 is shown.

第3図に示されるように第1図に示す実施例では排気弁
7が給気弁5よりも先に開弁し、先に閉弁する。また、
第3図に示されるように開閉弁33の弁体34が開弁す
る前に、即ちエアブラスト弁9が開弁する前に燃料噴射
弁41から圧縮空気通路39内の圧縮空気内に向けて燃
料が噴射される。次いてエアブラスト弁9が開弁すると
ノズル口32から噴射燃料が圧縮空気と共に燃焼室4内
に噴射される。一方、第1図に示されるように排気弁7
側の給気弁5の開口を給気弁5の全開弁期間に亘って覆
うマスク壁26がンリンダヘッド3の内壁面上に形成さ
れる。従って給気弁5が開弁すると新気は給気ポート6
から排気弁7と反対側の給気弁5の開口を通って燃焼室
4内に供給される。その結果新気は矢印Sで示すように
燃焼室4の周壁面に沿って流れ、斯くして良好なループ
掃気が行なわれることになる。
As shown in FIG. 3, in the embodiment shown in FIG. 1, the exhaust valve 7 opens before the intake valve 5 and closes before the intake valve 5. Also,
As shown in FIG. 3, before the valve element 34 of the on-off valve 33 opens, that is, before the air blast valve 9 opens, the fuel injection valve 41 directs the compressed air into the compressed air passage 39. Fuel is injected. Next, when the air blast valve 9 opens, the injected fuel is injected from the nozzle port 32 into the combustion chamber 4 together with compressed air. On the other hand, as shown in FIG.
A mask wall 26 is formed on the inner wall surface of the cylinder head 3 to cover the opening of the side air supply valve 5 during the period when the air supply valve 5 is fully open. Therefore, when the air supply valve 5 opens, fresh air flows to the air supply port 6.
The air is supplied into the combustion chamber 4 through the opening of the intake valve 5 on the side opposite to the exhaust valve 7. As a result, the fresh air flows along the peripheral wall surface of the combustion chamber 4 as shown by arrow S, thus achieving good loop scavenging.

機関が停止するとベーンポンプ18および燃料ポンプ2
3の駆動が停止せしめられる。このとき燃料ポンプ23
の方がベーンポンプ18よりもシール性がよいので通常
は圧縮空気通路19内の圧縮空気圧の方が燃料通路19
内の燃料圧よりも先に低下する。
When the engine stops, vane pump 18 and fuel pump 2
3 is stopped. At this time, the fuel pump 23
Since the sealing performance of the vane pump 18 is better than that of the vane pump 18, the compressed air pressure in the compressed air passage 19 is normally applied to the fuel passage 19.
The fuel pressure drops before the internal fuel pressure.

圧縮空気通路19内の圧縮空気圧が低下すると燃料調圧
弁25の作用によって燃料通路22内の燃料は圧縮空気
圧に対して2.5 kg / cfflだけ高い圧力を
維持しつつ下降する。従ってこのときには燃料噴射弁4
1内の燃料圧が圧縮空気通路39内の圧縮空気圧よりも
高く維持されるので圧縮空気通路39内の圧縮空気によ
ってニードル43が開弁せしめられ、それによって圧縮
空気が噴口42を介して燃料噴射弁41内に侵入するこ
とがない。
When the compressed air pressure in the compressed air passage 19 decreases, the fuel in the fuel passage 22 descends by the action of the fuel pressure regulating valve 25 while maintaining a pressure 2.5 kg/cffl higher than the compressed air pressure. Therefore, at this time, the fuel injection valve 4
Since the fuel pressure in the compressed air passage 39 is maintained higher than the compressed air pressure in the compressed air passage 39, the needle 43 is opened by the compressed air in the compressed air passage 39, whereby the compressed air is injected through the nozzle 42. No intrusion into the valve 41 occurs.

これに対して機関停止時に何らかの原因で燃料通路22
内の燃料圧が圧縮空気圧よりも先に低下した場合には圧
縮空気調圧弁21の燃料室57内の燃料圧が圧縮空気室
58内の圧縮空気圧よりも先に低下する。このとき燃料
室57内に設けられた圧縮ばね65のばね力が極めて弱
いとすると燃料室57内の燃料圧が3kg/cnf以下
まで低下しかつ燃料室57内の燃料圧が圧縮空気室58
内の圧縮空気圧よりも低くなると遊び連結機構66のロ
ッド69の拡大頭部68が中空スリーブ67の先端部内
壁面から離れ、可動弁体51が上昇する。その結果、プ
レート54が圧縮空気出口ボート62を開口するために
圧縮空気室58内の圧縮空気圧が低下する。次いで、圧
縮空気室58内の圧縮空気圧が燃料室57内の燃料圧よ
りも低くなればプレート54が圧縮空気出口ボート62
を閉鎖する。このように圧縮ばね65のばね力が極めて
弱い場合には燃料圧が圧縮空気圧よりも先に低下すると
圧縮空気室58および圧縮空気通路19内の圧縮空気圧
は燃料圧とほぼ同じ圧力を保ちながら燃料圧と共に低下
する。ところで燃料噴射弁41は燃料圧と、ニードル4
3に対する付勢ばね力とによりニードル43に閉弁方向
の力が作用しており、燃料圧と圧縮空気圧がほぼ等しく
なってもニードル43に対する付勢ばね力によってニー
ドル43は閉弁状態に保持される。従って上述したよう
に圧縮空気圧が燃料圧とほぼ同じ圧力を保ちながら燃料
圧と共に低下すると燃料噴射弁41のニードル43は閉
弁状態に保持され、斯くして圧縮空気が噴口42を介し
て燃料噴射弁41内に侵入することがない。
On the other hand, when the engine is stopped, for some reason the fuel passage 22
When the fuel pressure within the fuel chamber 57 of the compressed air pressure regulating valve 21 decreases before the compressed air pressure within the compressed air chamber 58, the fuel pressure within the fuel chamber 57 of the compressed air pressure regulating valve 21 decreases before the compressed air pressure within the compressed air chamber 58. At this time, if the spring force of the compression spring 65 provided in the fuel chamber 57 is extremely weak, the fuel pressure in the fuel chamber 57 decreases to 3 kg/cnf or less, and the fuel pressure in the fuel chamber 57 decreases to the compressed air chamber 58.
When the pressure becomes lower than the compressed air pressure within, the enlarged head 68 of the rod 69 of the idle connection mechanism 66 separates from the inner wall surface of the distal end portion of the hollow sleeve 67, and the movable valve body 51 rises. As a result, the compressed air pressure in the compressed air chamber 58 decreases because the plate 54 opens the compressed air outlet boat 62. Next, when the compressed air pressure in the compressed air chamber 58 becomes lower than the fuel pressure in the fuel chamber 57, the plate 54 closes to the compressed air outlet boat 62.
will be closed. In this way, if the spring force of the compression spring 65 is extremely weak, and the fuel pressure decreases before the compressed air pressure, the compressed air pressure in the compressed air chamber 58 and the compressed air passage 19 will increase while maintaining almost the same pressure as the fuel pressure. Decrease with pressure. By the way, the fuel injection valve 41 controls the fuel pressure and the needle 4.
A force in the valve closing direction is applied to the needle 43 due to the biasing spring force on the needle 43, and even if the fuel pressure and the compressed air pressure become approximately equal, the needle 43 is held in the valve closed state by the biasing spring force on the needle 43. Ru. Therefore, as described above, when the compressed air pressure decreases with the fuel pressure while maintaining almost the same pressure as the fuel pressure, the needle 43 of the fuel injection valve 41 is held in the closed state, and the compressed air is injected into the fuel via the nozzle 42. No intrusion into the valve 41 occurs.

一方、燃料室57内に設けられた圧縮ばね65のばね力
を強くすれば燃料圧が圧縮空気圧よりも先に低下したと
きに圧縮空気圧は圧縮ばね65のばね力により定まる一
定差圧だけ燃料圧よりも高い状態で燃料圧と共に低下す
る。この場合でもこの差圧によりニードル43に作用す
るニードル開弁方向の力がニードル43の付勢ばねによ
るニードル閉弁方向の力よりも弱い限り、圧縮空気が噴
口42を介して燃料噴射弁41内に侵入するのが阻止さ
れる。云い換えると圧縮空気調圧弁21の圧縮ばね65
のばね力は上述の差圧によりニードル43に作用するニ
ードル開弁方向の力がニードル43の付勢ばね力による
ニードル閉弁方向の力よりも弱い限り、いくらでも強く
することができる。
On the other hand, if the spring force of the compression spring 65 provided in the fuel chamber 57 is strengthened, when the fuel pressure decreases before the compressed air pressure, the compressed air pressure will increase by a certain differential pressure determined by the spring force of the compression spring 65. decreases with fuel pressure. Even in this case, as long as the force in the needle valve opening direction acting on the needle 43 due to this differential pressure is weaker than the force in the needle valve closing direction due to the biasing spring of the needle 43, compressed air flows into the fuel injection valve 41 through the nozzle 42. will be prevented from entering. In other words, the compression spring 65 of the compressed air pressure regulating valve 21
The spring force can be made as strong as desired as long as the force in the needle valve opening direction acting on the needle 43 due to the above-mentioned differential pressure is weaker than the force in the needle valve closing direction due to the biasing spring force of the needle 43.

〔発明の効果〕〔Effect of the invention〕

機関停止時において圧縮空気圧が燃料圧よりも先に低下
したときはもとより、燃料圧が圧縮空気圧よりも先に低
下した場合であっても圧縮空気が燃料噴射弁内に侵入す
るのを阻止することができる。
To prevent compressed air from entering the fuel injection valve not only when the compressed air pressure drops before the fuel pressure when the engine is stopped, but also when the fuel pressure drops before the compressed air pressure. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2サイクル内燃機関の全体図、第2図はエアブ
ラスト弁の拡大側面断面図、第3図は給排気弁の開弁期
間、エアブラスト弁の開弁期間等を示す線図である。 9・・・エアブラスト弁、 21・・・圧縮空気調圧弁
、25・・・燃料調圧弁、   41・・・燃料噴射弁
Figure 1 is an overall view of a two-stroke internal combustion engine, Figure 2 is an enlarged side sectional view of the air blast valve, and Figure 3 is a line diagram showing the opening periods of the supply and exhaust valves, the opening periods of the air blast valve, etc. be. 9... Air blast valve, 21... Compressed air pressure regulating valve, 25... Fuel pressure regulating valve, 41... Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims]  ノズル口と、一端がノズル口に連結され他端が圧縮空
気源に連結された圧縮空気通路と、ノズル口を開閉制御
する開閉弁と、圧縮空気通路内に燃料を噴射するための
燃料噴射弁とを具備し、燃料噴射弁がばね付勢されたニ
ードルによって開閉制御される噴口を具備し、燃料噴射
弁の噴口から圧縮空気通路内に噴射された燃料が圧縮空
気と共にノズル口から噴出せしめられる燃料噴射装置に
おいて、燃料噴射弁に供給される燃料の圧力と圧縮空気
通路内の圧縮空気圧に応動して該燃料の圧力が圧縮空気
圧よりも低くなるか又は予め定められた圧力以上低くな
ったときに開弁して圧縮空気通路内の圧縮空気を逃がす
圧縮空気調圧弁を具備した内燃機関の燃料噴射装置。
a nozzle port; a compressed air passageway with one end connected to the nozzle port and the other end connected to a compressed air source; an on-off valve for controlling opening and closing of the nozzle port; and a fuel injection valve for injecting fuel into the compressed air passageway. The fuel injection valve has a nozzle whose opening and closing are controlled by a spring-biased needle, and the fuel injected into the compressed air passage from the nozzle of the fuel injection valve is ejected from the nozzle port together with the compressed air. In a fuel injection device, when the pressure of the fuel becomes lower than the compressed air pressure or lower than a predetermined pressure in response to the pressure of the fuel supplied to the fuel injection valve and the compressed air pressure in the compressed air passage. A fuel injection device for an internal combustion engine equipped with a compressed air pressure regulating valve that opens to release compressed air in a compressed air passage.
JP17642390A 1990-07-05 1990-07-05 Fuel injection equipment of internal combustion engine Pending JPH0466773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17642390A JPH0466773A (en) 1990-07-05 1990-07-05 Fuel injection equipment of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17642390A JPH0466773A (en) 1990-07-05 1990-07-05 Fuel injection equipment of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0466773A true JPH0466773A (en) 1992-03-03

Family

ID=16013442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17642390A Pending JPH0466773A (en) 1990-07-05 1990-07-05 Fuel injection equipment of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0466773A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166268A (en) * 1987-12-23 1989-06-30 Matsushita Electric Ind Co Ltd Data structure converting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166268A (en) * 1987-12-23 1989-06-30 Matsushita Electric Ind Co Ltd Data structure converting device

Similar Documents

Publication Publication Date Title
JP2725468B2 (en) Fuel injection device for internal combustion engine
EP0375789B1 (en) Two-stroke internal combustion engine
US4073202A (en) System to feed exhaust gas into the intake manifold
EP0353763B2 (en) A fuel supply device of an engine
US4559185A (en) Variable venturi type carburetor
JPH0466773A (en) Fuel injection equipment of internal combustion engine
JP2761422B2 (en) Fuel injection engine
RU2109971C1 (en) Air starter control device
US4191154A (en) Evaporated fuel vapor control device for use in an internal combustion engine
JPH0634611Y2 (en) Fuel injection device for internal combustion engine
JPH04259653A (en) Rust preventive device for egr valve
JP2602710B2 (en) Fuel injection device for internal combustion engine
JP2518278Y2 (en) Fuel injection device for internal combustion engine
JPH0419359A (en) Multicylinder two-cycle internal combustion engine
JP2780435B2 (en) Fuel injection device for internal combustion engine
JP2767003B2 (en) Air blast valve
JPH0636289Y2 (en) Fuel injection device for internal combustion engine
JPS6114610Y2 (en)
JP2501710Y2 (en) Fuel injection device for internal combustion engine
SU1186819A1 (en) Arrangement for cutting off fuel feed into internal combustion engine
JPH0330613Y2 (en)
JP3676905B2 (en) Engine fuel supply system
KR0134202Y1 (en) Injector for dual intake system
JPH0631586B2 (en) Fuel injection device for multi-intake valve internal combustion engine
JP3708657B2 (en) Engine fuel supply system