JPH0462354B2 - - Google Patents
Info
- Publication number
- JPH0462354B2 JPH0462354B2 JP60244986A JP24498685A JPH0462354B2 JP H0462354 B2 JPH0462354 B2 JP H0462354B2 JP 60244986 A JP60244986 A JP 60244986A JP 24498685 A JP24498685 A JP 24498685A JP H0462354 B2 JPH0462354 B2 JP H0462354B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- polarizer
- output
- receiving element
- analyzer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010287 polarization Effects 0.000 claims description 28
- 230000003287 optical effect Effects 0.000 claims description 24
- 238000000605 extraction Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 2
- 230000005284 excitation Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 101100234408 Danio rerio kif7 gene Proteins 0.000 description 1
- 101100221620 Drosophila melanogaster cos gene Proteins 0.000 description 1
- 101100398237 Xenopus tropicalis kif11 gene Proteins 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は高電圧または大電流を光を用いて非
接触で計測する光式計測装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an optical measuring device that measures high voltage or large current using light in a non-contact manner.
従来の技術
従来の光式電流計測装置は、第3図に示すよう
に、発光ダイオードまたはレーザーダイオードな
どの発光素子1から発する光を偏光子2を通して
フアラデイ素子(磁気光学効果素子、フアラデイ
ローテータ)3に入射し、このフアラデイ素子3
から出た光をもう一つのフアラデイ素子4に入射
し、このフアラデイ素子4から出た光を検光子5
を通してPINホトダイオードなどの受光素子6に
入射させるようにしてある。フアラデイ素子3は
検出すべき電流Iが流れる導体7に近接配置し、
もう一つのフアラデイ素子4にはコイル8を巻装
してあり、パワーアンプ9からコイル8に励磁電
流iを流すようになつている。また、受光素子6
の出力は、プリアンプ10を介して最小値検出回
路11に入力され、この最小値検出回路11の出
力をパワーアンプ9に入力として加えるようにな
つている。BACKGROUND ART As shown in FIG. 3, a conventional optical current measuring device passes light emitted from a light emitting element 1 such as a light emitting diode or a laser diode to a Faraday element (magneto-optic effect element, Faraday rotator) through a polarizer 2. ) 3 and this Faraday element 3
The light emitted from the Faraday element 4 is incident on another Faraday element 4, and the light emitted from this Faraday element 4 is sent to an analyzer 5.
The light is made to enter a light receiving element 6 such as a PIN photodiode through the light beam. The Faraday element 3 is placed close to the conductor 7 through which the current I to be detected flows,
A coil 8 is wound around the other Faraday element 4, and an excitation current i is passed through the coil 8 from the power amplifier 9. In addition, the light receiving element 6
The output of is inputted to a minimum value detection circuit 11 via a preamplifier 10, and the output of this minimum value detection circuit 11 is applied as an input to a power amplifier 9.
この光式電流計測装置は、発光素子1から出た
光を偏光子2によつて直線偏光し、偏光された光
をフアラデイ素子3に通すと、このフアラデイ素
子3は電流Iに応じて、すなわち磁界Hに応じて
偏光面を角度θ1だけ回転させることになる。 This optical current measuring device linearly polarizes light emitted from a light emitting element 1 using a polarizer 2, and passes the polarized light through a Faraday element 3. The plane of polarization is rotated by an angle θ 1 in response to the magnetic field H.
偏光面が角度θ1だけ回転した光をもう一つのフ
アラデイ素子4に通し、このフアラデイ素子4中
で偏光面をコイル8に流れる励磁電流iによつて
もとにもどすように回転させる。 The light whose polarization plane has been rotated by an angle θ 1 is passed through another Faraday element 4, and in this Faraday element 4, the polarization plane is rotated back to its original state by the excitation current i flowing through the coil 8.
そして、フアラデイ素子4から出た光を検光子
(検光面が偏光子2の偏光面と直交している)5
を通して受光素子6に入射させ、この受光素子6
の出力をプリアンプ10で増幅したのち最小値検
出回路11に加える。 Then, the light emitted from the Faraday element 4 is passed through an analyzer 5 (the analysis plane is perpendicular to the polarization plane of the polarizer 2).
through the light receiving element 6, and this light receiving element 6
After the output is amplified by a preamplifier 10, it is applied to a minimum value detection circuit 11.
最小値検出回路11において、プリアンプ10
の出力レベルを検出し、プリアンプ10の出力レ
ベルが最小となるようにパワーアンプ9への入力
電圧Vを調整すると、パワーアンプ9への入力電
圧Vに比例した励磁電流iがコイル8に流れ、こ
れによつて生じる磁界によるフアラデイ素子4に
おける偏光面の回転角θ2が電流Iによるフアラデ
イ素子3の偏光面の回転角θ1の極性を反転したも
のに等しくなる(θ2=−θ1)。このときの電流i、
すなわち電圧Vは電流Iに比例することになり、
電圧Vを求めれば電流Iを計測したことになる。 In the minimum value detection circuit 11, the preamplifier 10
When the output level of the preamplifier 10 is detected and the input voltage V to the power amplifier 9 is adjusted so that the output level of the preamplifier 10 is minimized, an excitation current i proportional to the input voltage V to the power amplifier 9 flows through the coil 8. The rotation angle θ 2 of the polarization plane in the Faraday element 4 due to the magnetic field generated by this becomes equal to the polarity of the rotation angle θ 1 of the polarization plane of the Faraday element 3 due to the current I (θ 2 = −θ 1 ). . Current i at this time,
In other words, voltage V is proportional to current I,
If the voltage V is determined, the current I is measured.
ここで、計測原理について数式を用いて説明す
る。フアラデイ素子3における偏光面の回転角
θ′は、フアラデイ素子3の長さをl、電流Iによ
る磁界をH、導体7のターン数をN、v1、v1′を
定数とすれば、
θ1=v1Hl=v1′NI
で表わされ、またフアラデイ素子4における偏光
面の回転角θ2は、コイル8に流れる励磁電流を
i、コイル8の巻数をn、v2を定数とすれば、
θ2=v2ni
となる。今、励磁電流iの調整によつて
θ1=θ2
となつたとすれば、
v1Hl=v1′NI=v2ni
となり、また、電圧Vと励磁電流iは、kを定数
としたときに
V=ki
の関係があるため、電圧Vがわかれば、電流Iま
たは磁界Hがわかることになる。なお、フアラデ
イ素子3に代えてポツケルス素子(電気光学効果
素子)を用いると電圧または電界を計測できる。 Here, the measurement principle will be explained using mathematical formulas. The rotation angle θ' of the plane of polarization in the Faraday element 3 is given by θ, where the length of the Faraday element 3 is l, the magnetic field due to the current I is H, the number of turns of the conductor 7 is N, and v 1 and v 1 ' are constants. 1 = v 1 Hl = v 1 'NI, and the rotation angle θ 2 of the plane of polarization in the Faraday element 4 is expressed as follows: where i is the excitation current flowing through the coil 8, n is the number of turns of the coil 8, and v 2 is a constant. Then, θ 2 =v 2 ni. Now, if θ 1 = θ 2 by adjusting the excitation current i, then v 1 Hl = v 1 'NI = v 2 ni, and the voltage V and excitation current i are expressed as follows, where k is a constant. Since there is sometimes a relationship of V=ki, if the voltage V is known, the current I or the magnetic field H can be found. Note that if a Pockels element (electro-optic effect element) is used in place of the Faraday element 3, the voltage or electric field can be measured.
発明が解決しようとする問題点
このような従来の光式電流計測装置は、フアラ
デイ素子3の偏光面の回転角θ1とフアラデイ素子
4の偏光面の回転角θ2とを正確に合致させる必要
があり、必要な計測精度を得るためには、プリア
ンプ10、最小値検出回路11およびパワーアン
プ9としてきわめて精度が高く、雑音の少いもの
が必要であるという問題があつた。Problems to be Solved by the Invention In such a conventional optical current measuring device, it is necessary to accurately match the rotation angle θ 1 of the polarization plane of the Faraday element 3 with the rotation angle θ 2 of the polarization plane of the Faraday element 4. Therefore, in order to obtain the necessary measurement accuracy, the preamplifier 10, the minimum value detection circuit 11, and the power amplifier 9 need to be extremely accurate and have little noise.
この発明は、精度の高い機器を必要とせずに電
流または電圧を計測することができる光式計測装
置を提供することを目的とする。 An object of the present invention is to provide an optical measuring device that can measure current or voltage without requiring highly accurate equipment.
問題点を解決するための手段
この発明の光式計測装置は、発光素子と、この
発光素子から出た光を受ける受光素子と、前記発
光素子から前記受光素子へ至る光路の発光素子側
に配置した偏光子と、前記光路の受光素子側に検
光面が前記偏光子の偏光面と45度の角度で交差す
るように配置した検光子と、前記偏光子および検
光子の間において前記光路中に配置され前記偏光
子から出た光の偏光面を前記被計測信号に応じて
回転させる第1の光変調素子と、前記偏光子およ
び検光子の間において前記光路中に前記第1の光
変調素子と直列に配置された第2の光変調素子
と、前記第2の光変調素子に三角波または鋸歯状
のキヤリア信号を与え前記偏光面を前記キヤリア
信号に応じて高速回転させるキヤリア信号発生器
と、前記受光素子の出力の直流分を抽出する直流
分抽出回路と、この直流分抽出回路の出力と前記
受光素子の出力とのレベル比較を行う比較回路
と、この比較回路の出力を復調する復調回路とを
備える構成にしたことを特徴とする。Means for Solving the Problems The optical measuring device of the present invention includes a light emitting element, a light receiving element that receives light emitted from the light emitting element, and a light receiving element arranged on the light emitting element side of an optical path from the light emitting element to the light receiving element. a polarizer disposed on the light-receiving element side of the optical path so that its analysis plane intersects the polarization plane of the polarizer at an angle of 45 degrees; a first light modulation element that is arranged in the polarizer and rotates the plane of polarization of the light emitted from the polarizer according to the signal to be measured; and a first light modulation element that is arranged in the optical path between the polarizer and the analyzer. a second optical modulation element disposed in series with the element; a carrier signal generator that applies a triangular wave or sawtooth carrier signal to the second optical modulation element and rotates the polarization plane at high speed in accordance with the carrier signal; , a DC component extraction circuit that extracts a DC component of the output of the light receiving element, a comparison circuit that compares the levels of the output of the DC component extraction circuit and the output of the light reception element, and a demodulator that demodulates the output of the comparison circuit. The present invention is characterized by having a configuration including a circuit.
作 用
この発明の光式計測装置は、発光素子と受光素
子の間に偏光面と検光面とが45度の角度をなすよ
うに偏光子と検光子を配置し、さらに偏光子およ
び検光子の間に第1および第2の光変調素子を直
列に配置し、第1の光変調素子によつて被計測信
号を光変調するとともに第2の光変調素子によつ
て三角波または鋸歯状波キヤリア信号を光変調
し、受光素子の出力の直流分を抽出し、この直流
分と受光素子出力とのレベル比較を行うことによ
り被計測信号をパルス幅変調してなるパルス幅変
調波を作成し、このパルス幅変調波を復調回路に
通すことにより被計測信号に比例した電圧信号を
取出すようにしたものであるため、従来例のよう
に高精度かつ低雑音の機器を必要とせずに計測を
行うことができ、さらに第1の光変調素子による
回転角と第2の光変調素子による回転角の一致を
検出してパルス幅変調を行つているため、発光素
子の光量や光路の減衰量の経時変化に全く影響を
受けることがない。Function The optical measurement device of the present invention has a polarizer and an analyzer arranged between a light emitting element and a light receiving element so that the polarization plane and the analysis plane form an angle of 45 degrees, and further includes a polarizer and an analyzer. A first and a second light modulation element are arranged in series between the two, and the first light modulation element optically modulates the signal to be measured, and the second light modulation element modulates a triangular wave or sawtooth wave carrier. By optically modulating the signal, extracting the DC component of the output of the light-receiving element, and comparing the levels of this DC component and the output of the light-receiving element, the measured signal is pulse-width-modulated to create a pulse-width modulated wave, By passing this pulse width modulated wave through a demodulation circuit, a voltage signal proportional to the signal being measured is extracted, so measurements can be performed without the need for high-precision, low-noise equipment as in conventional methods. Furthermore, since pulse width modulation is performed by detecting the coincidence of the rotation angle of the first light modulation element and the rotation angle of the second light modulation element, the amount of light of the light emitting element and the amount of attenuation of the optical path change over time. Not affected by change at all.
実施例
この発明の一実施例を第1図および第2図に基
づいて説明する。この光式電流計測装置は、第1
図に示すように、発光ダイオードまたはレーザー
ダイオードなどの発光素子1から発する光を偏光
子2を通して第1の光変調素子であるフアラデイ
素子3に入射し、このフアラデイ素子3から出た
光を第2の光変調素子であるフアラデイ素子4に
入射し、このフアラデイ素子4から出た光を検光
子(検光面が偏光子2の偏光面に対して45度傾斜
している)5を通してPINホトダイオードなどの
受光素子6に入射させるように構成してある。Embodiment An embodiment of the present invention will be described based on FIGS. 1 and 2. This optical current measuring device
As shown in the figure, light emitted from a light emitting element 1 such as a light emitting diode or a laser diode is incident on a Faraday element 3 which is a first light modulation element through a polarizer 2, and the light emitted from this Faraday element 3 is transmitted to a second Faraday element 3. The light enters the Faraday element 4, which is a light modulation element, and the light emitted from the Faraday element 4 is passed through an analyzer 5 (the analysis plane is inclined at 45 degrees with respect to the polarization plane of the polarizer 2) to a PIN photodiode, etc. It is configured such that the light is incident on the light receiving element 6 of.
フアラデイ素子3は検出すべき電流Iが流れる
導体7に近接配置し、もう一つのフアラデイ素子
4にはコイル8を巻装してあり、このコイル8に
三角波キヤリア信号発生器12から出力される三
角波キヤリア信号を加えるようになつている。こ
の場合、三角波キヤリア信号の周波数は、被計測
信号に含まれる最大周波数の10倍以上が望まし
く、例えば被計測信号の周波数範囲が2KHz以下
なら、三角波キヤリア信号の周波数20KHz以上と
なる。 The Faraday element 3 is placed close to the conductor 7 through which the current I to be detected flows, and the other Faraday element 4 is wound with a coil 8, and this coil 8 receives the triangular wave output from the triangular wave carrier signal generator 12. A carrier signal is now added. In this case, the frequency of the triangular wave carrier signal is desirably 10 times or more the maximum frequency included in the signal to be measured. For example, if the frequency range of the signal to be measured is 2 KHz or less, the frequency of the triangular wave carrier signal is 20 KHz or more.
また、受光素子6の出力は直流抽出回路13に
より直流分が抽出され、この直流分抽出回路13
により抽出された直流分と受光素子6の出力とを
比較回路14で比較することにより計測すべき電
流I(被計測信号)を三角波キヤリア信号でパル
ス幅変調してなるパルス幅変調信号に変換し、こ
のパルス幅変調信号中の高周波成分を復調回路1
5で除去することにより電流Iに比例した電圧信
号を取り出すようになつている。 Further, a DC component of the output of the light receiving element 6 is extracted by a DC extraction circuit 13, and this DC component extraction circuit 13
The current I to be measured (signal to be measured) is converted into a pulse width modulated signal obtained by pulse width modulating the triangular wave carrier signal by comparing the DC component extracted by the comparator circuit 14 with the output of the light receiving element 6. , the high frequency components in this pulse width modulation signal are demodulated by the demodulation circuit 1.
5, a voltage signal proportional to the current I is extracted.
より詳しく説明すると、この光式電流計測装置
は、発光素子1から出た光を偏光子2によつて直
線偏光し、偏光された光をフアラデイ素子3に通
すと、このフアラデイ素子3は電流Iに応じて偏
光面を第2図の実線A1のように回転させる。 To explain in more detail, this optical current measuring device linearly polarizes light emitted from a light emitting element 1 using a polarizer 2, and passes the polarized light through a Faraday element 3, which causes the Faraday element 3 to generate a current I. The plane of polarization is rotated according to the solid line A1 in FIG.
つぎに、フアラデイ素子3から出た光はフアラ
デイ素子4に入射するが、このフアラデイ素子4
には三角波キヤリア信号が加えられているため、
フアラデイ素子4中で光は第2図の実線A2で示
すように偏光面の回転角が変化することになる。
この場合、偏光子2の偏光面と検光子5の検光面
とが45度の角度で交差しているため、電流Iによ
る偏光面の回転角および三角波キヤリア信号によ
る偏光面の回転角の合成回転角と検光子5を通過
する光量との間に第2図の実線A3に示すような
関係(1+cos2(θ−45°))があり、合成回転角
が−45度のときに零となり、+45度のときに最大
となる。したがつて、上記の回転角は±45度の範
囲内におさめる必要がある。 Next, the light emitted from the Faraday element 3 enters the Faraday element 4.
Since a triangular wave carrier signal is added to
In the Faraday element 4, the rotation angle of the plane of polarization of the light changes as shown by the solid line A2 in FIG.
In this case, since the polarization plane of the polarizer 2 and the analysis plane of the analyzer 5 intersect at an angle of 45 degrees, the rotation angle of the polarization plane due to the current I and the rotation angle of the polarization plane due to the triangular wave carrier signal are synthesized. There is a relationship (1 + cos2 (θ-45°)) between the rotation angle and the amount of light passing through the analyzer 5 as shown by the solid line A3 in Figure 2, and it becomes zero when the composite rotation angle is -45 degrees. , reaches its maximum at +45 degrees. Therefore, the above rotation angle needs to be within the range of ±45 degrees.
今、電流Iによる偏光面の回転に対して三角波
キヤリア信号による偏光面の回転方向を逆方向と
なるように設定しておけば、フアラデイ素子4か
ら出た光を検光子5を通して受ける受光素子6の
出力は、第2図の実線A4で示すように電流Iと
三角波キヤリア信号とを合成した信号波形とな
る。この実線A4で示す受光素子6の出力は、電
流Iによる回転角の変化に応じた出力成分(第2
図の破線A5で示す)と三角波キヤリア信号によ
る回転角の変化に応じた出力成分(第2図の破線
A6で示す)とが合成されたものである。 Now, if the rotation direction of the polarization plane by the triangular wave carrier signal is set to be opposite to the rotation of the polarization plane by the current I, the light receiving element 6 receives the light emitted from the Faraday element 4 through the analyzer 5. The output has a signal waveform that is a combination of the current I and the triangular carrier signal, as shown by the solid line A4 in FIG. The output of the light receiving element 6 shown by this solid line A4 is an output component (second
(shown by the broken line A5 in the figure) and the output component according to the change in rotation angle due to the triangular wave carrier signal (shown by the broken line A5 in Fig. 2).
A 6 ) is synthesized.
上記受光素子6の出力を直流分抽出回路13に
加えて直流分(前記の合成回転角が0度に相当す
る受光素子出力レベル)を抽出し、この直流分と
前記受光素子6の出力とのレベル比較を比較回路
14にて行えば、第2図の実線A7に示すような
パルス幅変調波が得られ、このパルス幅変調波を
復調回路15で復調(高周波成分を除去)すると
電流Iに比例した電圧信号が得られることにな
り、この電圧を求めれば、電流Iを計測したこと
になる。 The output of the light-receiving element 6 is added to the DC component extraction circuit 13 to extract the DC component (the light-receiving element output level corresponding to the composite rotation angle of 0 degrees), and the output of the light-receiving element 6 is combined with the DC component. If level comparison is performed in the comparator circuit 14, a pulse width modulated wave as shown by the solid line A7 in FIG. A voltage signal proportional to is obtained, and if this voltage is determined, the current I is measured.
このように、この実施例は、電流Iによつてフ
アラデイ素子3の回転角を変化させるとともに三
角波キヤリア信号によつてフアラデイ素子4の回
転角を逆方向に変化させ、かつ検光子5の検光面
と偏光子2の偏光面とが45度の角度で交差するよ
うに両者を配置し、フアラデイ素子3,4の合成
回転角と受光素子6の出力がほぼ比例関係にある
領域で検光を行うことにより電流Iと三角波キヤ
リア信号との合成信号を受光素子6から取り出
し、この合成信号をその中に含まれる直流分とレ
ベル比較することにより、パルス幅変調波を作
り、これを復調するようにしたため、従来例のよ
うな零調整は不要で精度が高く低雑音の機器は不
要となる。また、パルス幅変調を行つているた
め、フアラデイ素子3,4における偏光面の回転
角が一致するタイミングを検出するだけであつ
て、発光素子1の光量の大小は計測値に無関係で
あるため、発光素子1の光量や光路の減衰量の経
時変化に全く影響を受けることはない。 In this way, in this embodiment, the rotation angle of the Faraday element 3 is changed by the current I, and the rotation angle of the Faraday element 4 is changed in the opposite direction by the triangular wave carrier signal, and the analysis by the analyzer 5 is performed. The plane and the polarization plane of the polarizer 2 are arranged so that they intersect at an angle of 45 degrees, and the light is analyzed in a region where the combined rotation angle of the Faraday elements 3 and 4 and the output of the light receiving element 6 are approximately proportional. By doing this, a composite signal of the current I and the triangular wave carrier signal is extracted from the light receiving element 6, and by comparing the level of this composite signal with the DC component contained therein, a pulse width modulated wave is created and this is demodulated. This eliminates the need for zero adjustment as in the conventional example, and eliminates the need for high-precision, low-noise equipment. Furthermore, since pulse width modulation is performed, the timing at which the rotation angles of the planes of polarization in the Faraday elements 3 and 4 coincide is simply detected, and the magnitude of the light amount of the light emitting element 1 is irrelevant to the measured value. It is completely unaffected by changes over time in the amount of light from the light emitting element 1 or the amount of attenuation of the optical path.
なお、上記実施例では三角波キヤリア信号を用
いてパルス幅変調を行つたが、鋸歯状波をキヤリ
ア信号として用いてもパルス幅変調を行うことが
でき、鋸歯状波でパルス幅変調を行う実施例につ
いてもこの発明範囲に含まれるものである。 In addition, in the above embodiment, pulse width modulation was performed using a triangular wave carrier signal, but pulse width modulation can also be performed using a sawtooth wave as a carrier signal. are also included within the scope of this invention.
また、上記実施例では、フアラデイ素子3を用
いて電流を計測するようにしたが、ポツケルス素
子(電気光学効果素子)を使用すれば、電圧を計
測することができる。また、フアラデイ素子4に
よつて変調を行うようにしたが、ポツケスル素子
う用いて変調を行うこともできる。 Further, in the above embodiment, the Faraday element 3 is used to measure the current, but a Pockels element (electro-optic effect element) can be used to measure the voltage. Further, although the Faraday element 4 is used for modulation, a pocket element may also be used for modulation.
また、キヤリアとして、正弦波を用いて位相変
調を行うことによつて電流または電圧を計測する
こともできる。この場合の受光素子出力Qは、
X、Yを定数、ωCを搬送波周波数、ωSを信号周
波数とすれば、
Q=Xcos(sin ωC t−Ysin ωS t)
で表わされることになる。 Further, current or voltage can also be measured by performing phase modulation using a sine wave as a carrier. In this case, the light receiving element output Q is:
If X and Y are constants, ω C is the carrier frequency, and ω S is the signal frequency, it is expressed as Q=Xcos(sin ω C t−Ysin ω S t).
発明の効果
この発明の光式計測装置は、発光素子と受光素
子の間に偏光面と検光面が45度の角度をなすよう
に偏光子と検光子を配置し、さらに偏光子および
検光子の間に第1および第2の光変調素子を直列
に配置し、第1の光変調素子によつて被計測信号
を光変調するとともに第2の光変調素子によつて
三角波または鋸歯状波キヤリア信号を光変調し、
受光素子の出力の直流分を抽出し、この直流分と
受光素子出力とのレベル比較を行うことにより被
計測信号をパルス幅変調してなるパルス幅変調波
を作成し、このパルス幅変調波を復調回路に通す
ことにより被計測信号に比例した電圧信号を取出
すようにしたものであるため、従来例のように高
精度かつ低雑音の機器を必要とせずに計測を行う
ことができ、さらに第1の光変調素子による回転
角と第2の光変調素子による回転角の一致を検出
してパルス幅変調を行つているため、発光素子の
光量や光路の減衰量の経時変化に全く影響を受け
ることがない。Effects of the Invention The optical measuring device of the present invention has a polarizer and an analyzer arranged between a light emitting element and a light receiving element so that the polarization plane and the analysis plane form an angle of 45 degrees, and further includes a polarizer and an analyzer. A first and a second light modulation element are arranged in series between the two, and the first light modulation element optically modulates the signal to be measured, and the second light modulation element modulates a triangular wave or sawtooth wave carrier. optically modulate the signal,
By extracting the DC component of the output of the light receiving element and comparing the levels of this DC component and the output of the light receiving element, a pulse width modulated wave is created by pulse width modulating the measured signal, and this pulse width modulated wave is Since the voltage signal proportional to the measured signal is extracted by passing it through a demodulation circuit, measurement can be performed without the need for high-precision, low-noise equipment as in conventional methods. Since pulse width modulation is performed by detecting the coincidence of the rotation angle of the first light modulation element and the rotation angle of the second light modulation element, it is completely unaffected by changes over time in the light amount of the light emitting element and the amount of attenuation of the optical path. Never.
第1図はこの発明の一実施例を示すブロツク
図、第2図はその動作説明図、第3図は従来例の
ブロツク図である。
1……発光素子、2……偏光子、3……フアラ
デイ素子(第1の光変調素子)、4……フアラデ
イ素子(第2の光変調素子)、5……検光子、6
……受光素子、13……直流分抽出回路、14…
…比較回路、15……復調回路。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIG. 3 is a block diagram of a conventional example. DESCRIPTION OF SYMBOLS 1... Light emitting element, 2... Polarizer, 3... Faraday element (first light modulation element), 4... Faraday element (second light modulation element), 5... Analyzer, 6
... Light receiving element, 13 ... DC component extraction circuit, 14 ...
... Comparison circuit, 15 ... Demodulation circuit.
Claims (1)
る受光素子と、前記発光素子から前記受光素子へ
至る光路の発光素子側に配置した偏光子と、前記
光路の受光素子側に検光面が前記偏光子の偏光面
と45度の角度で交差するように配置した検光子
と、前記偏光子および検光子の間において前記光
路中に配置され前記偏光子から出た光の偏光面を
被計測信号に応じて回転させる第1の光変調素子
と、前記偏光子および検光子の間において前記光
路中に前記第1の光変調素子と直列に配置された
第2の光変調素子と、前記第2の光変調素子に三
角波または鋸歯状のキヤリア信号を与え前記偏光
面を前記キヤリア信号に応じて高速回転させるキ
ヤリア信号発生器と、前記受光素子の出力の直流
分を抽出する直流分抽出回路と、この直流分抽出
回路の出力と前記受光素子の出力とのレベル比較
を行う比較回路と、この比較回路の出力を復調す
る復調回路とを備えた光式計測装置。1. A light-emitting element, a light-receiving element that receives light emitted from the light-emitting element, a polarizer disposed on the light-emitting element side of the optical path from the light-emitting element to the light-receiving element, and an analysis surface on the light-receiving element side of the optical path. an analyzer arranged to intersect the polarization plane of the polarizer at an angle of 45 degrees; and an analyzer arranged in the optical path between the polarizer and the analyzer to measure the polarization plane of the light emitted from the polarizer. a first light modulation element rotated according to a signal; a second light modulation element disposed in series with the first light modulation element in the optical path between the polarizer and the analyzer; a carrier signal generator that applies a triangular wave or sawtooth carrier signal to the second optical modulation element and rotates the polarization plane at high speed according to the carrier signal; and a DC component extraction circuit that extracts the DC component of the output of the light receiving element. An optical measuring device comprising: a comparison circuit that compares the levels of the output of the DC component extraction circuit and the output of the light receiving element; and a demodulation circuit that demodulates the output of the comparison circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60244986A JPS62105066A (en) | 1985-10-31 | 1985-10-31 | Optical measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60244986A JPS62105066A (en) | 1985-10-31 | 1985-10-31 | Optical measuring instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62105066A JPS62105066A (en) | 1987-05-15 |
JPH0462354B2 true JPH0462354B2 (en) | 1992-10-06 |
Family
ID=17126882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60244986A Granted JPS62105066A (en) | 1985-10-31 | 1985-10-31 | Optical measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62105066A (en) |
-
1985
- 1985-10-31 JP JP60244986A patent/JPS62105066A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62105066A (en) | 1987-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4046243B2 (en) | Optical fiber apparatus and method for precision current sensing | |
US4539521A (en) | Magnetic field measuring device | |
JP4853474B2 (en) | Photosensor and photocurrent / voltage sensor | |
WO2000019217A9 (en) | In-line electro-optic voltage sensor | |
JPH0670651B2 (en) | Method and device for measuring electric and magnetic quantities by light | |
KR100376139B1 (en) | Light sensor | |
JPH0668508B2 (en) | Photocurrent and magnetic field measurement method and device | |
US4232264A (en) | Arrangement for the magneto-optical measurement of currents | |
JP2986503B2 (en) | Optical DC voltage transformer | |
JPH0462354B2 (en) | ||
JPH08146066A (en) | Electrical signal-measuring method and device | |
JPH0462353B2 (en) | ||
JPH0462356B2 (en) | ||
JP3179316B2 (en) | Optical sensor | |
KR100228416B1 (en) | Complete current-voltage measuring apparatus using light | |
JP2698935B2 (en) | High sensitivity automatic birefringence measurement device | |
JPH07306095A (en) | Polarization analysis evaluation method of polarization modulated optical signal | |
JPH0743397B2 (en) | Optical DC transformer | |
SU1580298A1 (en) | Magnetometer | |
JPH0462355B2 (en) | ||
GB1207540A (en) | Apparatus for responding to a magnetic field or to an electric current producing a magnetic field | |
SU757990A1 (en) | Optronic current meter | |
SU966631A1 (en) | Method of measuring thin magnetic film magnetic anisotropy field | |
JPS5935156A (en) | Optical current transformer | |
SU1282029A1 (en) | Magnetooptical hysteresis curve recorder |