JPH0457881B2 - - Google Patents
Info
- Publication number
- JPH0457881B2 JPH0457881B2 JP61061739A JP6173986A JPH0457881B2 JP H0457881 B2 JPH0457881 B2 JP H0457881B2 JP 61061739 A JP61061739 A JP 61061739A JP 6173986 A JP6173986 A JP 6173986A JP H0457881 B2 JPH0457881 B2 JP H0457881B2
- Authority
- JP
- Japan
- Prior art keywords
- spool
- oil chamber
- oil
- hole
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008929 regeneration Effects 0.000 claims description 26
- 238000011069 regeneration method Methods 0.000 claims description 26
- 238000004891 communication Methods 0.000 claims description 21
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000009412 basement excavation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/021—Valves for interconnecting the fluid chambers of an actuator
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は油圧シリンダに供給する圧油の再生
機能の解除を予め設定した条件になつたとき自動
的に、かつ、効率よく行う油圧切換弁に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a hydraulic switching valve that automatically and efficiently cancels the regeneration function of pressure oil supplied to a hydraulic cylinder when a preset condition is met.
従来の技術
油圧シリンダのヘツド側とロツド側の油室とに
一定量の圧油を交互に供給して所要の往復作動を
させる機構では、油圧シリンダの構造上、ロツド
側油室の受圧面積はヘツド側油室のそれよりも、
シリンダロツドの占める面積だけ小さいのでヘツ
ド側油室に圧油を供給するときは、その出力は大
きいが作動速度は遅く、ロツド側油室に圧油を供
給するときは、その出力は前者よりも小さいが作
動速度は早くなる。このことは、油圧シリンダを
伸縮せしめ、伸長時に所定の作業負荷を処理した
後は復帰動作のみといつた単動的な定負荷条件で
は十分満足されるが、作業工程中の負荷変動があ
り予想し難い場合などにおいては、油圧シリンダ
が伸長工程にあるときも、その負荷が小さいとき
は速度を早く、負荷が大きいときは本来の大きい
作動力を発揮することが最も作業能率を高めるこ
ととなり、望まれるところである。これを実現す
るために、従来から油圧シリンダのロツド側油室
からの戻り油をヘツド側油室へ、再生合流させる
方法が講じられてきた。Conventional technology In a mechanism that alternately supplies a fixed amount of pressure oil to the head side and rod side oil chambers of a hydraulic cylinder to perform the required reciprocating operation, due to the structure of the hydraulic cylinder, the pressure receiving area of the rod side oil chamber is than that of the head side oil chamber,
Since the area occupied by the cylinder rod is small, when supplying pressure oil to the head side oil chamber, the output is large but the operating speed is slow, and when pressurized oil is supplied to the rod side oil chamber, the output is smaller than the former. However, the operating speed becomes faster. This can be fully satisfied under single-acting constant load conditions, such as extending and contracting the hydraulic cylinder and only returning after processing a predetermined work load during extension, but there may be load fluctuations during the work process, which can be expected. In cases where it is difficult to do so, even when the hydraulic cylinder is in the extension process, the best way to increase work efficiency is to increase the speed when the load is small, and to exert the original large operating force when the load is large. This is what is desired. In order to achieve this, conventional methods have been used to regenerate and merge the return oil from the rod-side oil chamber of the hydraulic cylinder into the head-side oil chamber.
例えば、第6図に示す油圧シリンダのアーム3
4の作動において、掘削時はアームシリンダ2の
ヘツド側油室Cに油圧ポンプからの圧油が供給さ
れるのでアームシリンダ2による掘削力は大きい
が作業速度は遅くなり、また、バケツト35の位
置復帰のときにはロツド側油室Dへ圧油が流入す
るので、その作動速度は速くなり好条件となる反
面、反復掘削作業時において掘削地点までバケツ
ト35を位置決めするまでに、その負荷が僅かで
あるにもかかわらず、強力な能力を有する状態
で、しかも速度が遅いという好ましくない問題が
生ずる。更に、アームシリンダ2を伸長させつつ
アーム34、バケツト35で土砂を掘削する間
に、掘削抵抗は不規則に大きく変化するものであ
るが、設計上は最大負荷に対応する能力を基準と
して油圧シリンダの能力を設定するので、負荷の
少ないときにおいても必要以上の推力を発揮でき
る能力を付与し、反面、速度はその分だけ遅くな
る。このような不工合点に対処するため、従来技
術として、特開昭59−23104号公報に記載の技術
が知られている。これに類似の技術を、第7図お
よび第8図により説明する。これは油圧切換弁を
使用し、油圧シリンダ伸長時に発生する負荷圧力
が一定置以下のときはロツド側油室からの戻り油
をヘツド側油室へ再生合流させて作動速度を速
め、負荷圧力が増大すると、本来の油圧シリンダ
のヘツド側にのみ圧油を供給する試みがなされて
いる。 For example, arm 3 of the hydraulic cylinder shown in FIG.
4, during excavation, pressure oil from the hydraulic pump is supplied to the head side oil chamber C of the arm cylinder 2, so the excavation force by the arm cylinder 2 is large, but the working speed is slow, and the position of the bucket 35 is At the time of return, pressure oil flows into the rod side oil chamber D, which increases the operating speed and provides favorable conditions. On the other hand, during repeated excavation work, the load required to position the bucket 35 to the excavation point is small. Nevertheless, the undesirable problem of slow speed despite having powerful capabilities arises. Furthermore, while the arm cylinder 2 is extended and the arm 34 and the bucket 35 are used to excavate earth and sand, the excavation resistance changes greatly irregularly. By setting the ability of In order to deal with such defects, a technique described in Japanese Patent Application Laid-Open No. 59-23104 is known as a conventional technique. A technique similar to this will be explained with reference to FIGS. 7 and 8. This uses a hydraulic switching valve, and when the load pressure generated when the hydraulic cylinder is extended is below a certain level, the return oil from the rod side oil chamber is regenerated and merged into the head side oil chamber, increasing the operating speed and reducing the load pressure. As a result, attempts have been made to supply pressure oil only to the head side of the original hydraulic cylinder.
すなわち、第7図は油圧シリンダ2を作動させ
る油圧切換弁の縦断面を示す図であり、スプール
36を左右に移動させることにより、油圧ポンプ
1からの吐出圧油を油圧シリンダ2のヘツド側油
室C、ロツド側油室Dの何れかに切換えて供給
し、該油圧シリンダ2を伸縮作動させるパイロツ
ト油圧式の油圧切換弁であり、第8図は第7図の
スプール36の部分詳細断面図で、油圧シリンダ
2のヘツド側油室Cに圧油が供給され、油圧シリ
ンダ2を伸長せしめ、これにともなうロツド側油
室Dからの戻り油の経路を示す説明図である。図
においてスプール36の中心穴に小径スプール3
7を摺動自在に嵌装し、油圧シリンダ2の伸長作
動中、その負荷圧力が所定値以下であるときは、
ロツド側油室Dからの戻り油の一部を、小径スプ
ール37の移動により開口した通路を経てブリツ
ジ通路に導入し、再生利用し、油圧シリンダ2の
負荷圧力が所定値を越えると、上記の再生機能を
解除しようとするものである。 That is, FIG. 7 is a diagram showing a vertical cross section of the hydraulic switching valve that operates the hydraulic cylinder 2. By moving the spool 36 left and right, the pressure oil discharged from the hydraulic pump 1 is transferred to the head side oil of the hydraulic cylinder 2. This is a pilot hydraulic type hydraulic switching valve that selectively supplies oil to either the chamber C or the rod side oil chamber D, and telescopically operates the hydraulic cylinder 2. FIG. 8 is a partial detailed sectional view of the spool 36 in FIG. 7. This is an explanatory diagram showing the path of return oil from the rod side oil chamber D when pressure oil is supplied to the head side oil chamber C of the hydraulic cylinder 2, causing the hydraulic cylinder 2 to extend. In the figure, the small diameter spool 3 is inserted into the center hole of the spool 36.
7 is slidably fitted, and when the hydraulic cylinder 2 is being extended and the load pressure is below a predetermined value,
A part of the return oil from the rod-side oil chamber D is introduced into the bridge passage through the passage opened by the movement of the small diameter spool 37 and recycled. When the load pressure of the hydraulic cylinder 2 exceeds a predetermined value, the above This is an attempt to cancel the playback function.
このことを第7図、第8図により詳述すると、
スプール36が左方に移動を開始し、油路が切換
えられ、圧油がポートAを通つてヘツド側油室C
に流入して油圧シリンダ2が伸長し、これにとも
なうロツド側油室Dからの戻り油は、ポートBお
よびスプール36の外周に向け設けられたノツチ
穴38を通り小径スプール37の細胴外周の油室
39に流入し、更に絞り通路となつているノツチ
穴40、タンク連通路16′を通つてタンク3に
戻る。ところが、スプール36の移動ストローク
が増大し、油圧シリンダ2の作動速度の上昇にと
もない、上記ロツド側油室Dからの戻り油が増量
していくと、ノツチ穴40で絞られ、油室39の
圧力は次第に上昇すると同時に、該油室39とス
リツト42で連通した油室41の圧力も上昇し、
該圧力は小径スプール37の右端面に作用し、そ
の左方への押力はスプリング43の付勢力および
油路47により導入されるブリツジ通路17、す
なわち、油圧シリンダ2のヘツド側油室Cの圧油
が上記小径スプール37の左端面に作用する押力
に打勝つて左方へ移動し、今まで閉塞されていた
ノツチ穴44を開口するので、油室39の圧油は
該ノツチ穴44を経てブリツジ通路17へと再生
合流し、ポートAを通つて再びヘツド側油室Cへ
供給され油圧シリンダ2の伸長速度は増大する。 This will be explained in detail with reference to Figures 7 and 8.
The spool 36 starts moving to the left, the oil path is switched, and the pressure oil passes through the port A to the head side oil chamber C.
The hydraulic cylinder 2 expands, and the return oil from the rod-side oil chamber D accordingly passes through the port B and the notch hole 38 provided toward the outer circumference of the spool 36, and reaches the outer circumference of the narrow body of the small diameter spool 37. The oil flows into the oil chamber 39 and returns to the tank 3 through the notch hole 40 serving as a throttle passage and the tank communication passage 16'. However, as the movement stroke of the spool 36 increases and the operating speed of the hydraulic cylinder 2 increases, the amount of oil returned from the rod-side oil chamber D increases. As the pressure gradually increases, the pressure in the oil chamber 41 that communicates with the oil chamber 39 through the slit 42 also increases,
This pressure acts on the right end surface of the small diameter spool 37, and the pushing force to the left is applied to the bridge passage 17 introduced by the biasing force of the spring 43 and the oil passage 47, that is, the head side oil chamber C of the hydraulic cylinder 2. The pressure oil overcomes the pushing force acting on the left end surface of the small diameter spool 37 and moves to the left, opening the notch hole 44 that has been closed until now, so that the pressure oil in the oil chamber 39 flows through the notch hole 44. The oil is regenerated and merged into the bridge passage 17 through the port A, and is again supplied to the head side oil chamber C, where the expansion speed of the hydraulic cylinder 2 increases.
上述の如き再生合流中において、油圧シリンダ
2の負荷が増大すると、それに比例して負荷圧力
も上昇し、その圧油はブリツジ通路17から油路
47を通り小径スプール37の左端面に作用する
ので、油圧シリンダ2の負荷が所定の値以上にな
ると、小径スプール37を右方向へ移動させる押
力が左方向へのそれよりも大きくなり、該小径ス
プール37は右方へ移動する。 During regeneration merging as described above, when the load on the hydraulic cylinder 2 increases, the load pressure also increases proportionally, and the pressure oil passes from the bridge passage 17 through the oil passage 47 and acts on the left end surface of the small diameter spool 37. When the load on the hydraulic cylinder 2 exceeds a predetermined value, the pushing force for moving the small diameter spool 37 to the right becomes greater than the pushing force for moving the small diameter spool 37 to the left, and the small diameter spool 37 moves to the right.
なお、第7図における油圧ポンプ1の形式とし
て、その吐出圧力が上昇するにつれて吐出油量が
減少する特性を有する可変容量形が採用されるこ
とが多いが、このときは、負荷の増大とともに油
圧ポンプ1からの供給油量は少なくなるので油圧
シリンダ2の伸長速度は遅くなり、従つてポート
Bからの戻り油量は減少し、ノツチ穴40での絞
り効果が減少して油室41の圧力も低下するので
前述した押力の変化に加えて小径スプール37は
スプリング43の付勢力および油路47からの圧
油押力とにより右方へ移動する。以上の結果とし
て、ノツチ穴44は小径スプール37の大径部で
閉塞され、油圧シリンダ2のロツド側油室Dから
の戻り油は、ヘツド側油室Cへ再生流入すること
なく、直接全量ノツチ穴40、タンク連通路1
6′を通りタンク3に流入するので再生中に比し
低圧となり、油圧シリンダ2の押力は増大する。 In addition, as the type of hydraulic pump 1 shown in Fig. 7, a variable displacement type is often adopted, which has a characteristic that the amount of oil discharged decreases as the discharge pressure increases. Since the amount of oil supplied from the pump 1 decreases, the extension speed of the hydraulic cylinder 2 slows down, and the amount of oil returned from port B decreases, and the throttling effect at the notch hole 40 decreases, causing the pressure in the oil chamber 41 to decrease. In addition to the change in the pushing force described above, the small diameter spool 37 moves to the right due to the biasing force of the spring 43 and the pressure oil pushing force from the oil passage 47. As a result of the above, the notch hole 44 is closed by the large diameter portion of the small diameter spool 37, and the entire amount of the return oil from the rod side oil chamber D of the hydraulic cylinder 2 does not flow into the head side oil chamber C for regeneration, but directly enters the notch hole 44. Hole 40, tank communication path 1
6' and flows into the tank 3, the pressure becomes lower than during regeneration, and the pushing force of the hydraulic cylinder 2 increases.
発明が解決しようとする課題
従来の方法では前述のとおり、タンク3への連
通油路16′に通じるノツチ穴40は絞り通路を
形成し、その絞り効果により小径スプール37を
移動せしめて再生回路を開路するようにしてある
ので、油圧シリンダ2の伸長作動時には、ロツド
側油室からの戻り油が無益に絞られ、再生中にお
いてもその一部がタンク連通路16′へと流出す
るので効率が悪いうえ、再生解除条件は、上記ノ
ツチ穴40を通過する戻り油により発生する絞り
効果と、油圧シリンダ2の負荷圧力とによつて自
動的に決定されるので、多角的な作業に利用され
るような機械に設けられる油圧シリンダ作動回路
用としては好ましくない。Problems to be Solved by the Invention As described above, in the conventional method, the notch hole 40 communicating with the communication oil passage 16' to the tank 3 forms a throttle passage, and the small diameter spool 37 is moved by the throttle effect, thereby opening the regeneration circuit. Since the circuit is opened, when the hydraulic cylinder 2 is extended, the return oil from the rod side oil chamber is wastefully throttled, and even during regeneration, a part of it flows out into the tank communication passage 16', reducing efficiency. Moreover, the regeneration release condition is automatically determined by the throttling effect generated by the return oil passing through the notched hole 40 and the load pressure of the hydraulic cylinder 2, so it cannot be used for a variety of tasks. It is not suitable for use in hydraulic cylinder operating circuits installed in such machines.
この発明は、上記欠点に鑑み、油圧シリンダが
低負荷圧力で作動中は、その戻り油の全量を利用
する再生回路を形成し、負荷圧力が増大すると自
動的に戻り油の再生を解除することは勿論である
が、従来技術の如く再生機能を作動させるため、
回路中に絞りを設けるということもなく、また、
上記負荷圧力と再生解除との関係の設定を外部か
ら遠隔操作可能のパイロツト圧の大小に応じて自
由に選定できるようにしようとするものである。 In view of the above drawbacks, this invention forms a regeneration circuit that utilizes the entire amount of return oil while the hydraulic cylinder is operating at low load pressure, and automatically cancels the regeneration of the return oil when the load pressure increases. Of course, in order to operate the playback function like the conventional technology,
There is no need to provide an aperture in the circuit, and
The purpose of this invention is to enable the setting of the relationship between the load pressure and regeneration release to be freely selected depending on the magnitude of the pilot pressure that can be controlled remotely from the outside.
課題を解決するための手段
この発明は上記課題を解決するものであつて、
以下にその内容を実施例に対応する第1図を用い
て説明する。Means for Solving the Problems This invention solves the above problems, and includes:
The contents will be explained below using FIG. 1 corresponding to the embodiment.
油圧切換弁3のスプール5の油圧シリンダロツ
ド側油室Dに通ずる油路を開閉する側に中空穴を
設け、スプリング13により付勢され、軸線方向
に移動自在に小径スプール12を嵌装し、外周か
ら上記中空穴に通じるノツチ穴20,18,21
を設け、スプール5が中立時においては、上記ノ
ツチ穴20はブリツジ通路17に通じ、ノツチ穴
18はブリツジ通路17と高圧通路15′との中
間に開口し、弁本体4により閉塞され、ノツチ穴
21はタンク連通路16′に連通しているが、ス
プール5を右方に移動させるとノツチ穴20は引
続きブリツジ通路17に連通し、ノツチ穴18は
高圧通路15′に連通し、ノツチ穴21は引続き
タンク連通路16′似通じる位置にある。また、
小径スプール12の中空部は、チエツク弁10を
介し隣接して、ピストン11を端部に乾燥したピ
ストン油室9と、小径スプール油室19とを形成
し、該ピストン油室9は油路24によりブリツジ
通路17に連通している。また、該小径スプール
油室19に連通するノツチ穴18′,21′を設け
るが、それらの配置は、該小径スプール12がス
プリング13の付勢力により左方にあるときは、
ノツチ穴18′はノツチ穴18と連通し、ノツチ
穴21′はスプール5の内壁で閉塞されているが、
小径スプール12がスプリング13の付勢力に抗
して右方に移動すると、ノツチ穴18′はノツチ
穴18に連通を続け、ノツチ穴21′はノツチ穴
21に連通する位置に設ける。またスプリング1
3はスプール5の中空穴にあり、小径スプール1
2をスプール5に対して付勢しており、このスプ
リング室は小径スプール12の端面とプラグ46
とにより油室8を形成し、該油室8にはスプール
5が右方に移動するとパイロツト油口14から外
部圧力信号を導入させる油路25が設けてある。 A hollow hole is provided on the side of the spool 5 of the hydraulic switching valve 3 that opens and closes the oil passage leading to the oil chamber D on the hydraulic cylinder rod side, and a small diameter spool 12 is fitted therein so as to be biased by a spring 13 and movable in the axial direction. Notched holes 20, 18, 21 leading from the hollow hole to the above-mentioned hollow hole
When the spool 5 is in the neutral state, the notched hole 20 communicates with the bridge passage 17, the notched hole 18 opens between the bridge passage 17 and the high pressure passage 15', is closed by the valve body 4, and the notched hole 20 communicates with the bridge passage 17. 21 communicates with the tank communication passage 16', but when the spool 5 is moved to the right, the notched hole 20 continues to communicate with the bridge passage 17, the notched hole 18 communicates with the high pressure passage 15', and the notched hole 21 continues to be located at a position similar to the tank communication passage 16'. Also,
The hollow portion of the small diameter spool 12 forms a dry piston oil chamber 9 with the piston 11 at the end and a small diameter spool oil chamber 19 adjacent to each other via the check valve 10. It communicates with the bridge passage 17 by. Furthermore, notched holes 18' and 21' are provided which communicate with the small diameter spool oil chamber 19, but their arrangement is such that when the small diameter spool 12 is on the left side due to the biasing force of the spring 13,
The notched hole 18' communicates with the notched hole 18, and the notched hole 21' is closed by the inner wall of the spool 5.
When the small diameter spool 12 moves to the right against the urging force of the spring 13, the notched hole 18' continues to communicate with the notched hole 18, and the notched hole 21' is provided at a position communicating with the notched hole 21. Also spring 1
3 is located in the hollow hole of spool 5, and small diameter spool 1
2 is biased against the spool 5, and this spring chamber is connected to the end face of the small diameter spool 12 and the plug 46.
This forms an oil chamber 8, and the oil chamber 8 is provided with an oil passage 25 through which an external pressure signal is introduced from the pilot oil port 14 when the spool 5 moves to the right.
作 用
スプール5を右方に切換え油圧シリンダ2を伸
長させるとき、負荷が低い場合には、ロツド側油
室Dからの戻り油は、高圧通路15′、ノツチ穴
18,18′、小径スプール油室19、チエツク
弁10、ノツチ穴20を通りブリツジ通路17に
合流する再生回路を形成する。Operation When the spool 5 is switched to the right and the hydraulic cylinder 2 is extended, if the load is low, the return oil from the rod side oil chamber D is transferred to the high pressure passage 15', the notch holes 18, 18', and the small diameter spool oil. A regeneration circuit is formed which passes through the chamber 19, the check valve 10, and the notch hole 20 and joins the bridge passage 17.
油圧シリンダ2の負荷が増大していくと、ブリ
ツジ通路17の圧力が上昇し、その圧油は油路2
4を通りピストン油室9に流入するのでピストン
11は外方に抜け出そうとし、その反力がスプリ
ング13の付勢力よりも大きくなると小径スプー
ル12はピストン5の内部を右方に移動してい
き、閉塞されていたノツチ穴21,21′が連通
して小径スプール油室19とタンク連通路16′
は連通するのでロツド側油室Dの戻り油の再生は
解除される。なお、前記ノツチ穴18,18′,
21,21′は、従来技術の如く絞り穴とする必
要はなく、また、パイロツト油口14から信号圧
力を油室8に送油すると、その圧力に比例した力
が小径スプール12に、スプリング13の付勢力
に付加して作用するので、上記信号圧力を適宜設
定することにより再生回路の解除を必要に応じ選
択できる。 As the load on the hydraulic cylinder 2 increases, the pressure in the bridge passage 17 increases, and the pressure oil flows through the oil passage 2.
4 into the piston oil chamber 9, the piston 11 tries to escape outward, and when the reaction force becomes larger than the biasing force of the spring 13, the small diameter spool 12 moves inside the piston 5 to the right. The previously blocked notch holes 21, 21' communicate with each other, and the small diameter spool oil chamber 19 and tank communication passage 16'
are in communication, so the regeneration of the return oil in the rod side oil chamber D is canceled. Note that the notched holes 18, 18',
21 and 21' do not need to be throttle holes as in the prior art, and when signal pressure is sent from the pilot oil port 14 to the oil chamber 8, a force proportional to that pressure is applied to the small diameter spool 12 and the spring 13. Since it acts in addition to the biasing force of , it is possible to select whether or not to release the regeneration circuit as necessary by appropriately setting the signal pressure.
実施例
第1図は本発明の一実施例を示す図である。第
1図において、4は油圧シリンダ2の伸縮作動を
つかさどる油圧切換弁3の弁本体であり、パイロ
ツト油室6または6′に作用する油圧信号により、
左右に移動するスプール5を内装し、油圧シリン
ダ2のヘツド側油室Cと、ポートAを経由して連
通している高圧通路15、ロツド側油室Dと、ポ
ートBを経由して連通している高圧通路15′、
油圧シリンダ2からの戻り油ならびにリリーフ弁
7,7′のリリーフ油、その他リーク油なども集
合し、タンクに導くタンク連通路16,16′、
油圧ポンプからロードチエツク弁45を経て流入
する高圧油を高圧通路15または15′の何れか
へ選択的に供給するブリツジ通路17があり、ま
た該弁本体4に付属して、スプール5を中立位置
に、一定の強制力で保持するスプリングセンタ装
置を有しているなどは、既知の油圧切換弁と全く
同様である。Embodiment FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, 4 is the valve body of a hydraulic switching valve 3 that controls the expansion and contraction of the hydraulic cylinder 2, and is controlled by a hydraulic signal acting on the pilot oil chamber 6 or 6'.
A spool 5 that moves from side to side is installed inside, and communicates with the head side oil chamber C of the hydraulic cylinder 2 via port A, and the high pressure passage 15 which communicates with the rod side oil chamber D via port B. high pressure passage 15',
Tank communication passages 16, 16' where return oil from the hydraulic cylinder 2, relief oil from the relief valves 7, 7', and other leakage oil are collected and led to the tank;
There is a bridge passage 17 that selectively supplies high-pressure oil flowing from the hydraulic pump via the load check valve 45 to either the high-pressure passage 15 or 15', and is attached to the valve body 4 to keep the spool 5 in the neutral position. It is exactly the same as known hydraulic switching valves in that it has a spring center device that holds it with a constant force.
本発明の油圧切換弁3のスプール5は、内部に
スプリング13により付勢され、ストツパ26に
より移動量を規制した小径スプール12を摺動自
在に嵌装し、油圧シリンダ2のロツド側油室Dに
関与する側の外周に、中立時においてはブリツジ
通路17に通じるノツチ穴20、ブリツジ通路1
7と高圧通路15′との中間に開口し、弁本体4
により閉塞されているノツチ穴18、タンク連通
路16′に連通するノツチ穴21が設けてあり、
これらのノツチ穴は、スプール5が右方、すなわ
ちシリンダ2を伸長させる方向に作動させたとき
は、ノツチ穴20は引続きブリツジ通路17に連
通し、同時に油路24を通つて小径スプール12
の中を摺動するピストン11、チエツク弁10で
形成されるピストン油室9に通じ、ノツチ穴18
は高圧通路15′に連通し、ノツチ穴21は引続
いてタンク連通路16′に通じる位置に設けてあ
る。また、スプール5の内部に嵌装された小径ス
プール12には、上述のピストン油室9の他に、
チエツク弁10を介し隣接した中心穴に形成され
た小径スプール油室19があり、該油室19は、
小径スプール12がスプリング13の付勢力によ
り左方にあるときは、外周に設けられた環状溝を
介してノツチ穴18と連通するノツチ穴18′が
設けてあり、スプリング13の付勢力に抗し、ス
トツパ26に接するまで右に移動すると、ノツチ
穴18,18′は連通したままであるが、閉塞さ
れていたノツチ穴21が小径スプール油室19に
連通するノツチ穴21′が設けてある。なお、小
径スプール12を常時付勢しているスプリング1
3は、スプール5の中空穴に内蔵され、小径スプ
ール12の端面と、プラグ46とにより密閉状の
油室8を形成しており、スプール5が右方に移動
すると、パイロツト油口14からの外部圧力信号
を、スプール5のノツチ穴25を経て該油室8に
導入できるようになつている。また、22はスプ
ール5の軸心方向に穿設された油路であり、スプ
ール5、小径スプール12、ピストン11などの
内外周の〓間から漏出するドレンの通路となつて
おり、ノツチ穴23を経て常時タンク連通路16
に通じている。 The spool 5 of the hydraulic switching valve 3 of the present invention has a small diameter spool 12 slidably fitted therein, which is biased by a spring 13 and whose movement amount is regulated by a stopper 26. On the outer periphery of the side involved in the
7 and the high pressure passage 15', and the valve body 4
A notched hole 18 that is closed by a notched hole 18, and a notched hole 21 that communicates with the tank communication passage 16' are provided.
These notched holes are such that when the spool 5 is actuated to the right, that is, in the direction of extending the cylinder 2, the notched holes 20 continue to communicate with the bridge passage 17, and at the same time are connected to the small diameter spool 12 through the oil passage 24.
It communicates with a piston oil chamber 9 formed by a piston 11 sliding therein and a check valve 10, and a notch hole 18.
communicates with the high pressure passage 15', and the notched hole 21 is provided at a position that subsequently communicates with the tank communication passage 16'. In addition to the above-mentioned piston oil chamber 9, the small diameter spool 12 fitted inside the spool 5 includes:
There is a small diameter spool oil chamber 19 formed in the center hole adjacent to the check valve 10, and the oil chamber 19 includes:
When the small diameter spool 12 is on the left side due to the biasing force of the spring 13, a notched hole 18' is provided which communicates with the notched hole 18 through an annular groove provided on the outer periphery, so that the small diameter spool 12 resists the biasing force of the spring 13. When the notched holes 18 and 18' are moved to the right until they come into contact with the stopper 26, the notched holes 18 and 18' remain in communication, but a notched hole 21' is provided in which the notched hole 21, which had been blocked, communicates with the small diameter spool oil chamber 19. Note that the spring 1 that constantly biases the small diameter spool 12
3 is built in the hollow hole of the spool 5, and forms a sealed oil chamber 8 with the end face of the small diameter spool 12 and the plug 46. When the spool 5 moves to the right, the oil from the pilot oil port 14 is An external pressure signal can be introduced into the oil chamber 8 through the notched hole 25 of the spool 5. Further, 22 is an oil passage bored in the axial direction of the spool 5, and serves as a passage for drain leaking from between the inner and outer circumferences of the spool 5, the small diameter spool 12, the piston 11, etc. Continuous tank communication path 16 via
It is familiar to
以上の構成からなる本発明の再生回路弁の作動
について説明する。 The operation of the regeneration circuit valve of the present invention having the above configuration will be explained.
第1図におけるパイロツト油室6′に圧力信号
を送り、油圧切換弁3のスプール5を左方に移動
させると、ブリツジ通路17の圧油は高圧通路1
5′、ポートBを通り油圧シリンダ2のロツド側
油室Dに流入し、該油圧シリンダ2を縮小させ、
ヘツド側油室Cの油はポートA、高圧通路15、
タンク連通路16を通りタンクに戻ることは、従
来の既知の油圧切換弁の作動と全く同一である
が、パイロツト油室6に圧力信号を送り、スプー
ル5を、第2図の如く右方に移動させると、ブリ
ツジ通路17の圧油は、上記と逆に、油圧切換弁
3の切換通路、ポートAを経て、ヘツド側油室C
に流入し、油圧シリンダ2を伸長させ同時にロツ
ド側油室Dからの戻り油はポートB、高圧通路1
5′、ノツチ穴18を通つて小径スプール油室1
9へ流入するが、このとき、タンク連通路16′
に通ずるノツチ穴21は小径スプール12頂部の
外周により閉塞されているため流入油の圧力は油
圧シリンダ2が増圧器の働きをするので、遂には
ブリツジ通路17の圧力を越えチエツク弁10を
押し開き、ノツチ穴20を経てブリツジ通路17
の圧油と合流する再生回路が生じ、合流油は油圧
シリンダ2のヘツド側油室Cへと、流入油量が増
大して、その伸長速度は早くなる。この状態の作
動においては、ロツド側油室Dからの戻り油は全
量ブリツジ通路17へ合流し、油圧シリンダ2の
作動力は、ポートA,Bにおける圧油の圧力が、
ほぼ同一となつているので、その圧力とヘツド側
油室C、ロツド側油室Dの受圧面積差との積に等
しくなつている。 When a pressure signal is sent to the pilot oil chamber 6' in FIG. 1 and the spool 5 of the hydraulic switching valve 3 is moved to the left, the pressure oil in the bridge passage 17 is transferred to the high pressure passage 1
5', flows into the rod side oil chamber D of the hydraulic cylinder 2 through port B, and contracts the hydraulic cylinder 2;
The oil in the head side oil chamber C is connected to port A, high pressure passage 15,
Returning to the tank through the tank communication passage 16 is exactly the same as the operation of a conventionally known hydraulic switching valve, but a pressure signal is sent to the pilot oil chamber 6 to move the spool 5 to the right as shown in FIG. When the bridge passage 17 is moved, the pressure oil in the bridge passage 17 passes through the switching passage of the hydraulic switching valve 3 and the port A, and then flows into the head side oil chamber C.
The hydraulic cylinder 2 is expanded, and at the same time, the return oil from the rod side oil chamber D flows into port B and high pressure passage 1.
5', through the notched hole 18 to the small diameter spool oil chamber 1
9, but at this time, the tank communication passage 16'
Since the notched hole 21 leading to the spool 12 is blocked by the outer periphery of the top of the small diameter spool 12, the pressure of the inflowing oil eventually exceeds the pressure in the bridge passage 17 and the check valve 10 is pushed open as the hydraulic cylinder 2 acts as a pressure intensifier. , the bridge passage 17 via the notch hole 20
A regeneration circuit is created in which the combined oil flows into the head side oil chamber C of the hydraulic cylinder 2, the amount of oil flowing in increases, and its expansion speed becomes faster. In operation in this state, all of the return oil from the rod-side oil chamber D merges into the bridge passage 17, and the operating force of the hydraulic cylinder 2 is determined by the pressure of the pressure oil at ports A and B.
Since they are almost the same, the pressure is equal to the product of the pressure receiving area difference between the head side oil chamber C and the rod side oil chamber D.
次いで、油圧シリンダ2の伸長時負荷が、上記
発生力よりも大きくなり、より高圧が要求される
ようになるとブリツジ通路17はそれに対応する
圧力まで上昇するが、この高圧油は同時に、ノツ
チ穴20の環状溝、油路24により連通したピス
トン油室9へ導かれ、その圧力によりチエツク弁
10は着座して小径スプール油室19からノツチ
穴20を介してブリツジ通路17へと通じる合流
回路は閉塞されるとともに、ピストン11は、そ
の圧力により小径スプール12から左方に押出さ
れようとし、その反力により小径スプール12は
第3図に示す如く、スプリング13の付勢力に抗
して、スプール5の内部を右方へと、ストツパ2
6に当接するまで移動する。その結果小径スプー
ル油室19とノツチ穴21とが連通し、ロツド側
油室DからポートBを通つて小径スプール油室1
9に流入する圧油は、ノツチ穴21を経てタンク
連通路16′へと流入する。このように、ロツド
側油室Dからの戻り油はブリツジ通路17へ再生
流入することはなく、タンク圧となるので、油圧
シリンダ2の作動力はヘツド側油室Cに流入する
圧油の圧力と、その受圧面積との積となり、伸長
速度は再生時よりも遅くなるが強大な作動力を発
揮することとなる。 Next, when the extension load of the hydraulic cylinder 2 becomes larger than the generated force and a higher pressure is required, the bridge passage 17 rises to the corresponding pressure, but this high pressure oil simultaneously flows into the notch hole 20. The pressure is guided to the piston oil chamber 9 which is in communication with the annular groove and oil passage 24, and the check valve 10 is seated due to the pressure, and the confluence circuit leading from the small diameter spool oil chamber 19 to the bridge passage 17 via the notch hole 20 is closed. At the same time, the piston 11 tends to be pushed leftward from the small diameter spool 12 due to the pressure, and due to the reaction force, the small diameter spool 12 resists the biasing force of the spring 13 and pushes the spool 5. To the right inside the stopper 2
Move until it touches 6. As a result, the small diameter spool oil chamber 19 and the notch hole 21 communicate with each other, and the small diameter spool oil chamber 1 is connected from the rod side oil chamber D through the port B.
The pressure oil flowing into the tank 9 flows into the tank communication passage 16' through the notched hole 21. In this way, the return oil from the rod side oil chamber D does not regenerate and flow into the bridge passage 17 and becomes tank pressure, so the operating force of the hydraulic cylinder 2 is equal to the pressure of the pressure oil flowing into the head side oil chamber C. is the product of the pressure-receiving area and the extension speed is slower than during regeneration, but a powerful operating force is exerted.
また弁本体4に設けてあるパイロツト油口14
には、第5図に例示するような、パイロツトポン
プ33の分岐油路に設けたパイロツト弁32から
の調整可能のパイロツト圧を導いてあり、該パイ
ロツト圧はスプール5が右方に移動するとノツチ
穴25を通つて油室8に流入するので、このパイ
ロツト圧の大きさに比例する作用力がスプリング
13の付勢力に加担してピストン11の作用力に
対抗する。その結果、上記パイロツト圧を外部か
ら適宜加減することにより小径スプール12が右
方に移動するときのブリツジ通路17の圧力、す
なわち、再生合流の解除の条件を任意に選定可能
である。 In addition, a pilot oil port 14 provided in the valve body 4
As shown in FIG. 5, an adjustable pilot pressure is introduced from a pilot valve 32 provided in a branch oil passage of a pilot pump 33, and when the spool 5 moves to the right, the pilot pressure reaches a notch. Since the oil flows into the oil chamber 8 through the hole 25, an acting force proportional to the magnitude of this pilot pressure adds to the biasing force of the spring 13 and counteracts the acting force of the piston 11. As a result, the pressure in the bridge passage 17 when the small-diameter spool 12 moves to the right, that is, the condition for canceling the regeneration merging, can be arbitrarily selected by adjusting the pilot pressure from the outside.
第4図は、本発明の第2実施例を示す油圧切換
弁の縦断面図で第1実施例の作動、機能はすべて
具備したうえで構造をより簡単にしたものであ
る。すなわち、スプール27の内部穴にピストン
29を嵌装し、該スプール27を右方に移動させ
たときブリツジ通路17の圧油を油路31により
導き上記ピストン29により小径スプール30を
作動させるようにしてある。また、小径スプール
30には、スプリングにより付勢された再生回路
切換用のチエツク弁28が組込まれているほか
は、スプール27の外周に向け設けられたノツチ
穴など、第1実施例と同様の関係配置となつてお
り、それらの作動も同じである。 FIG. 4 is a vertical cross-sectional view of a hydraulic switching valve showing a second embodiment of the present invention, which has all the operations and functions of the first embodiment but has a simpler structure. That is, the piston 29 is fitted into the internal hole of the spool 27, and when the spool 27 is moved to the right, the pressure oil in the bridge passage 17 is guided through the oil passage 31 and the small diameter spool 30 is actuated by the piston 29. There is. In addition, the small diameter spool 30 includes a check valve 28 for switching the regeneration circuit that is biased by a spring, and other features such as a notch hole provided toward the outer periphery of the spool 27 are the same as in the first embodiment. They are arranged in a related manner and their operation is the same.
発明の効果
本発明は油圧シリンダ作動用再生回路弁におけ
る再生および解除の切換えをする手段として、従
来技術の如き油圧シリンダのロツド側油室からの
戻り油通路を絞り、その絞り圧力と油圧シリンダ
の負荷圧力との関係によることなく、常時戻り油
の全量が、スプール、小径スプールに設けたノツ
チ穴、チエツク弁を介してブリツジ通路へ流入さ
せ、該ブリツジ通路の圧力が所定値を越えると、
その圧力で、スプールに内装されスプリングで付
勢された小径スプールが切換わり、戻り油路がタ
ンクポートへと、ノツチ穴を介して連通するよう
にしたから、その回路中に特定の絞りを配置する
必要もなく、また、再生中は戻り油の全量が利用
されるので効率のよい再生回路弁が得られる。さ
らに、上記小径スプールを付勢しているスプリン
グ室には外部からの圧力調整可能なパイロツト圧
を導き、このパイロツト圧に比例する押力が、上
記スプリングの付勢力に加担する構造としたの
で、パイロツト圧を予め調整しておくことによ
り、再生機能の解除条件を自由に外部から指令す
ることができる。従つて、負荷状態が作業対象に
より異なる場合や負荷変動の多い油圧シリンダ作
動回路においてもそれぞれに適した上記解除条件
を設定しておくことで油圧シリンダの作動を効率
よく迅速に、または、運転操作性のよい安定した
作動速度が得られる。Effects of the Invention The present invention, as a means for switching between regeneration and release in a regeneration circuit valve for operating a hydraulic cylinder, throttles the return oil passage from the rod side oil chamber of the hydraulic cylinder, as in the prior art, and reduces the throttle pressure and pressure of the hydraulic cylinder. Regardless of the relationship with the load pressure, the entire amount of return oil is constantly allowed to flow into the bridge passage through the spool, the notch hole provided in the small diameter spool, and the check valve, and when the pressure in the bridge passage exceeds a predetermined value,
With that pressure, a small diameter spool built into the spool and biased by a spring was switched, and the return oil path was communicated to the tank port through the notch hole, so a specific throttle was placed in that circuit. Moreover, since the entire amount of return oil is utilized during regeneration, an efficient regeneration circuit valve can be obtained. Furthermore, an adjustable pilot pressure from the outside is introduced into the spring chamber that biases the small diameter spool, and a pushing force proportional to this pilot pressure adds to the biasing force of the spring. By adjusting the pilot pressure in advance, the conditions for canceling the regeneration function can be freely commanded from the outside. Therefore, even if the load condition differs depending on the work object or in a hydraulic cylinder operating circuit where the load fluctuates frequently, by setting the above-mentioned release conditions suitable for each case, it is possible to operate the hydraulic cylinder efficiently and quickly, or to improve operation. A stable operating speed with good performance can be obtained.
第1図は本発明の再生回路弁の構造を示す縦断
面図、第2図は第1図におけるスプールが右方に
移動したときの油路を示す縦断面図、第3図は第
2図の状態から更に小径スプールが作動したとき
の油路を示す縦断面図、第4図は本発明の第2実
施例を示す縦断面図、第5図は油圧シリンダ作動
システムの一例を示す油圧回路図、第6図は油圧
シヨベルのアームシリンダ作動システムを示す
図、第7図および第8図は従来の再生弁の一例を
示す縦断面図である。
8……油室、9……ピストン油室、10……チ
エツク弁、11……ピストン、12……小径スプ
ール、19……小径スプール油室、28……チエ
ツク弁、29……ピストン、30……小径スプー
ル、37……小径スプール、39……油室、41
……油室。
Fig. 1 is a longitudinal sectional view showing the structure of the regeneration circuit valve of the present invention, Fig. 2 is a longitudinal sectional view showing the oil passage when the spool in Fig. 1 moves to the right, and Fig. 3 is Fig. 2. FIG. 4 is a vertical cross-sectional view showing the oil passage when the small-diameter spool is further activated from the state shown in FIG. 6 are diagrams showing an arm cylinder operating system of a hydraulic excavator, and FIGS. 7 and 8 are longitudinal sectional views showing an example of a conventional regeneration valve. 8... Oil chamber, 9... Piston oil chamber, 10... Check valve, 11... Piston, 12... Small diameter spool, 19... Small diameter spool oil chamber, 28... Check valve, 29... Piston, 30 ...Small diameter spool, 37...Small diameter spool, 39...Oil chamber, 41
...Oil room.
Claims (1)
ヘツド側油室へ再生圧油として供給する機能を有
する油圧切換弁であつて、油路切換用スプールの
油圧シリンダロツド側油室に通ずる油路を開閉す
る側において、中心部に設けた中空穴と、該中空
穴に嵌装しスプリングにより付勢され軸線方向に
移動自在に設けた小径スプールと、上記中空穴
が、常時、ブリツジ通路17に連通するノツチ穴
20と、スプールが中立時においてはブリツジ通
路17と高圧通路15′との中間に開口し弁本体
により閉塞され、スプールが右方に移動すると油
圧シリンダのロツド側油室に通じる高圧通路1
5′に連通するノツチ穴18と、タンク連通路1
6′に常時連通するノツチ穴21と、上記小径ス
プールの中心部に設けた中空部と、該中空部に設
けたチエツク弁10を介して隣接し、ピストン1
1を端部に嵌装したピストン油室9と小径スプー
ル油室19と、該小径スプール油室19から前記
スプールに設けたノツチ穴18に、常時、連通す
るノツチ穴18′と、小径スプールが前記スプリ
ングの付勢力に抗して右方に移動したときのみス
プールに設けたノツチ穴21に連通するノツチ穴
21′と、前記スプールの中空穴にあつてスプリ
ングを内蔵し、小径スプール端面とプラグ46と
により形成される油室8と、スプールの外周に設
け、該スプールを右方に切換えたとき、外部から
圧力調整可能のパイロツト圧信号を上記油室8に
導入できるノツチ穴と、からなる油圧シリンダの
可変式再生回路弁。1 A hydraulic switching valve that has the function of supplying the return oil from the rod-side oil chamber of the hydraulic cylinder to the head-side oil chamber as recycled pressure oil, and which connects the oil path of the oil path switching spool to the hydraulic cylinder rod side oil chamber. On the opening/closing side, a hollow hole provided in the center, a small diameter spool fitted into the hollow hole and biased by a spring so as to be movable in the axial direction, and the hollow hole are always in communication with the bridge passage 17. When the spool is in the neutral position, the notched hole 20 opens between the bridge passage 17 and the high pressure passage 15' and is closed by the valve body, and when the spool moves to the right, the high pressure passage opens to the rod side oil chamber of the hydraulic cylinder. 1
Notched hole 18 communicating with 5' and tank communication path 1
A notched hole 21 that is always in communication with the piston 6' and a hollow part provided in the center of the small diameter spool are adjacent to each other via a check valve 10 provided in the hollow part.
The piston oil chamber 9 and the small-diameter spool oil chamber 19 in which a piston 1 is fitted at the end, a notch hole 18' which is always in communication from the small-diameter spool oil chamber 19 to the notch hole 18 provided in the spool, and a small-diameter spool A notched hole 21' that communicates with the notched hole 21 provided in the spool only when the spool moves to the right against the biasing force of the spring, and a hollow hole in the spool with a built-in spring, which connects the small diameter spool end face and the plug. 46, and a notch hole provided on the outer periphery of the spool, through which a pilot pressure signal whose pressure can be adjusted from the outside can be introduced into the oil chamber 8 when the spool is switched to the right. Variable regeneration circuit valve for hydraulic cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61061739A JPS62220705A (en) | 1986-03-18 | 1986-03-18 | Variable regeneration circuit valve for hydraulic cylinder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61061739A JPS62220705A (en) | 1986-03-18 | 1986-03-18 | Variable regeneration circuit valve for hydraulic cylinder |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2240421A Division JPH03117704A (en) | 1990-09-10 | 1990-09-10 | Recycling and combining method for hydraulic cylinder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62220705A JPS62220705A (en) | 1987-09-28 |
JPH0457881B2 true JPH0457881B2 (en) | 1992-09-16 |
Family
ID=13179859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61061739A Granted JPS62220705A (en) | 1986-03-18 | 1986-03-18 | Variable regeneration circuit valve for hydraulic cylinder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62220705A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010531420A (en) * | 2007-06-26 | 2010-09-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method for supplying pressure medium to at least one hydraulic consumer and hydraulic control device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02134401A (en) * | 1988-11-10 | 1990-05-23 | Diesel Kiki Co Ltd | Hydraulic control unit |
JPH0749164Y2 (en) * | 1992-12-01 | 1995-11-13 | 株式会社小松製作所 | Open / close valve device |
EP0629781B1 (en) * | 1992-12-04 | 1996-03-27 | Hitachi Construction Machinery Co., Ltd. | Hydraulic regenerator |
JP4859786B2 (en) * | 2007-08-10 | 2012-01-25 | カヤバ工業株式会社 | Control device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54158583A (en) * | 1978-06-05 | 1979-12-14 | Toyooki Kogyo Kk | Hydraulic controller |
JPS5923104A (en) * | 1982-07-30 | 1984-02-06 | Kayaba Ind Co Ltd | Hydraulic pressure control device with combined regeneration and preferential operation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56115001U (en) * | 1980-02-06 | 1981-09-03 |
-
1986
- 1986-03-18 JP JP61061739A patent/JPS62220705A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54158583A (en) * | 1978-06-05 | 1979-12-14 | Toyooki Kogyo Kk | Hydraulic controller |
JPS5923104A (en) * | 1982-07-30 | 1984-02-06 | Kayaba Ind Co Ltd | Hydraulic pressure control device with combined regeneration and preferential operation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010531420A (en) * | 2007-06-26 | 2010-09-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method for supplying pressure medium to at least one hydraulic consumer and hydraulic control device |
Also Published As
Publication number | Publication date |
---|---|
JPS62220705A (en) | 1987-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4192346A (en) | Control valve | |
US5826486A (en) | Hydraulic circuit | |
KR20150110517A (en) | Fluid pressure control device | |
JP2744004B2 (en) | Hydraulic pressure control device | |
US3906840A (en) | Hydraulic control system for load supporting hydraulic motors | |
US20080295681A1 (en) | Hydraulic system having an external pressure compensator | |
JPH0716943Y2 (en) | Directional control valve | |
US3800670A (en) | High pressure implement hydraulic circuit | |
US7258058B2 (en) | Metering valve with integral relief and makeup function | |
JP3549126B2 (en) | Directional control valve | |
JPS58121305A (en) | Hydraulic circuit for maintaining expansion and contraction of hydraulic cylinder | |
JP4824777B2 (en) | Hydraulic control device with a descent brake valve | |
JPH0457881B2 (en) | ||
JPH0459484B2 (en) | ||
JPS5925881B2 (en) | hydraulic control device | |
US4723476A (en) | Regenerative valve | |
JP2923050B2 (en) | Quick down valve | |
US3776273A (en) | Directional control valve | |
JPH0245521Y2 (en) | ||
JP3062171B1 (en) | Hydraulic equipment for industrial machinery | |
JP2630775B2 (en) | Priority operation control device for high load actuator | |
US3872883A (en) | Spool-type relief valve | |
JPH058323Y2 (en) | ||
JPS6143835Y2 (en) | ||
JP2537219B2 (en) | Hydraulic cylinder hydraulic control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |