JPH0454205A - Power generation and refrigeration combined cycle device - Google Patents
Power generation and refrigeration combined cycle deviceInfo
- Publication number
- JPH0454205A JPH0454205A JP16290190A JP16290190A JPH0454205A JP H0454205 A JPH0454205 A JP H0454205A JP 16290190 A JP16290190 A JP 16290190A JP 16290190 A JP16290190 A JP 16290190A JP H0454205 A JPH0454205 A JP H0454205A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- generator
- compressor
- cooling water
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 33
- 238000005057 refrigeration Methods 0.000 title claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000498 cooling water Substances 0.000 abstract description 34
- 238000001816 cooling Methods 0.000 abstract description 21
- 238000009434 installation Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 15
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 238000005338 heat storage Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は中・低温の熱源を利用する発電と、夜間の余剰
電力を利用する冷熱発生に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to power generation using medium- and low-temperature heat sources and cold generation using surplus electricity at night.
(従来の技術)
地熱や産業廃熱のような中・低温の熱を利用して動力や
電力を得る手法として、フロンや揮発性の炭化水素等の
低沸点有機媒体をこれらの熱で蒸発させ、その蒸発で原
動機、たとえば有機媒体タービンを駆動する技術がある
。(Conventional technology) As a method of obtaining motive power and electric power using medium- to low-temperature heat such as geothermal heat and industrial waste heat, low-boiling organic media such as fluorocarbons and volatile hydrocarbons are evaporated using this heat. There is a technology that uses its evaporation to drive a prime mover, such as an organic medium turbine.
また、夜間の余剰電力を利用して、電動の冷凍機により
冷熱を発生させ、この冷熱を蓄えておき。In addition, surplus electricity at night is used to generate cold energy using an electric refrigerator, and this cold energy is stored.
昼間の冷房等に使用する技術がある。There is a technology used for daytime cooling.
従来技術の概要を第8図で説明すると、地熱や産業廃熱
のような中・低温の熱源流体1は、蒸発器2aで低沸点
の作動媒体3aを加熱し、蒸発させた後、予熱器4で作
動媒体3aを予熱してプラントの系外に排出される。液
体の状態である作動媒体3aは予熱器4で蒸発温度近く
まで加熱された後、蒸発@2aで蒸発し高エネルギーの
媒体蒸気となる。To explain the outline of the conventional technology with reference to FIG. 8, a medium/low temperature heat source fluid 1 such as geothermal heat or industrial waste heat is heated and evaporated by a low boiling point working medium 3a in an evaporator 2a, and then transferred to a preheater. 4, the working medium 3a is preheated and discharged outside the plant system. The working medium 3a in a liquid state is heated to near the evaporation temperature in the preheater 4, and then evaporated in the evaporator@2a to become a high-energy medium vapor.
この媒体蒸気はタービン5に導かれてタービン5を駆動
し、タービン5に結合された発電機6により、電力が得
られる。タービン5にエネルギーを与えて圧力、温度の
下がった媒体蒸気は凝縮器7aに入り、冷却水8aで冷
やされて凝縮し液体に戻った後、媒体ポンプ9で再度予
熱器4に送られ、この系統を循環する。媒体蒸気を冷や
すことによす温度の上がった冷却水8aは、 冷却水ポ
ンプ10aにより冷却塔11aに送られて空気により冷
却され、凝縮器7aへ循環する。なお、媒体ポンプ9の
出口には媒体ポンプ出口弁25が、タービン5の入口に
は主蒸気止め弁26がある。This medium steam is guided to the turbine 5 to drive the turbine 5, and a generator 6 coupled to the turbine 5 generates electric power. The medium vapor whose pressure and temperature have been lowered by giving energy to the turbine 5 enters the condenser 7a, is cooled by the cooling water 8a, condenses, and returns to a liquid state, and then is sent to the preheater 4 again by the medium pump 9, and this Cycle through the system. The cooling water 8a whose temperature has increased due to cooling the medium vapor is sent to the cooling tower 11a by the cooling water pump 10a, cooled by air, and circulated to the condenser 7a. A medium pump outlet valve 25 is provided at the outlet of the medium pump 9, and a main steam stop valve 26 is provided at the inlet of the turbine 5.
一方、冷媒とも言わ九る作動媒体3bの蒸気は。On the other hand, the vapor of the working medium 3b, also called refrigerant.
凝縮器7bで冷却水8bにより冷やされて凝縮し、膨張
機構12で減圧された後、蒸発器2bで冷熱媒体I3か
ら気化熱を奪った蒸発し、低温・低圧の媒体蒸気になる
。この低温・低圧の媒体蒸気は、電動機14で駆動され
る圧縮機15で圧縮され、凝縮器7bへと循環する。凝
縮器7bで媒体蒸気を冷却する冷却水8bは、冷却水ポ
ンプIObにより冷却塔11bに送られて空気により冷
却され、凝縮器7bへと循環する。It is cooled and condensed by the cooling water 8b in the condenser 7b, and after being depressurized in the expansion mechanism 12, it is evaporated in the evaporator 2b, taking away the heat of vaporization from the cooling medium I3, and becomes a low-temperature, low-pressure medium vapor. This low-temperature, low-pressure medium vapor is compressed by a compressor 15 driven by an electric motor 14, and circulated to the condenser 7b. The cooling water 8b that cools the medium vapor in the condenser 7b is sent to the cooling tower 11b by the cooling water pump IOb, cooled by air, and circulated to the condenser 7b.
凝縮器7bで冷やされた冷熱媒体13は、冷熱媒体循環
ポンプ16により蓄熱槽17内の蓄熱材を冷却し、ここ
に冷熱が蓄えられることになる。この冷熱は必要に応じ
て、冷水18等に与えられ、冷房等に利用される。The cold medium 13 cooled by the condenser 7b cools the heat storage material in the heat storage tank 17 by the cold medium circulation pump 16, and cold heat is stored there. This cold energy is given to the cold water 18 and the like as needed, and used for air conditioning and the like.
この他にも各種の付属機器があるが、本発明の説明に直
接関係ないものは、図示を省略する。There are various other accessories, but those that are not directly related to the description of the present invention are omitted from illustration.
このように、従来の技術では発電、冷凍の両サイクルが
、似たような機器をいくつも持ちながら。In this way, with conventional technology, both the power generation and refrigeration cycles require many similar devices.
それぞれ単独に構成されていた。Each was composed individually.
(発明が解決しようとする謀M)
本発明の目的とするところは、低沸点の有機媒体を作動
媒体とする発電サイクルと、冷凍サイクルの両方の設備
を設置する場合に、設備機器の重複を避け、よって設置
面積、設備費等が節約可能な設備を提供しようとするも
のである。(Plot M to be solved by the invention) The purpose of the present invention is to avoid duplication of equipment when installing equipment for both a power generation cycle and a refrigeration cycle using a low-boiling organic medium as a working medium. The aim is to provide equipment that can save installation space, equipment costs, etc.
(11題を解決するための手段)
本発明では、発電サイクルと冷凍サイクルとで、共用可
能な機器を共有させることにより、上記目的を達する。(Means for Solving Problem 11) In the present invention, the above object is achieved by allowing the power generation cycle and the refrigeration cycle to share common equipment.
(作用)
発電サイクルと冷凍サイクルは凝縮器7a、7bでの作
動媒体3a、 3bの凝縮温度がほぼ等しいことから、
両作動媒体3a、 3bを共用とすることが考えられる
。また、凝縮器7a、7b、冷却水ポンプ10a。(Function) Since the condensation temperatures of the working media 3a and 3b in the condensers 7a and 7b are almost the same in the power generation cycle and the refrigeration cycle,
It is conceivable to share both working media 3a and 3b. Also, condensers 7a and 7b, and a cooling water pump 10a.
10b、冷却塔11a、 llbの共用が考えられる。10b, cooling tower 11a, and llb may be shared.
さらに、発電機6と電動機14、タービン5と圧縮機
15の共用も考えられる。Furthermore, the generator 6 and the electric motor 14, and the turbine 5 and the compressor 15 may be shared.
(実施例) 本発明の一実施例を第1図に示す。(Example) An embodiment of the present invention is shown in FIG.
本実施例では1作動媒体3.冷却水8.冷却水ポンプ1
0、冷却塔IIを共用とし1発電機6と電動機14の両
方の機能を有する電動発電機I9を、クラッチ20a、
20bを介してタービン5および圧縮機15に結合し
ている。その他、発電サイクルと冷凍サイクルの作動媒
体3a、 3bの系統を結合する媒体連絡管21a、
21bを設けている。In this embodiment, 1 working medium 3. Cooling water8. Cooling water pump 1
0, a motor generator I9 that shares the cooling tower II and has the functions of both a generator 6 and an electric motor 14, a clutch 20a,
It is coupled to turbine 5 and compressor 15 via 20b. In addition, a medium communication pipe 21a that connects the working media 3a and 3b systems of the power generation cycle and the refrigeration cycle;
21b is provided.
本実施例において発電サイクルの運転を行う場合には、
クラッチ20aは結合、20bは解放の状態とし、電動
発電機I9は発電機6の状態にして発電を行う。冷却水
系統は冷却水切替弁22aを開、22bを閉とし、冷却
水8は冷却塔11.冷却水?フプ10゜冷却水切替弁2
2a、凝縮器7a、冷却塔11の順に循環する。When operating the power generation cycle in this example,
The clutch 20a is engaged, the clutch 20b is disengaged, and the motor/generator I9 is set as the generator 6 to generate electricity. The cooling water system opens the cooling water switching valve 22a and closes the cooling water switching valve 22b, and the cooling water 8 is supplied to the cooling tower 11. Cooling water? Fup 10° Cooling water switching valve 2
2a, condenser 7a, and cooling tower 11 in this order.
電力よりも冷熱を発生したい状態となって冷凍サイクル
運転を行う場合には、 クラック20aは解放、 20
bは結合とし、電動発電機19は電動機14として圧縮
機15を駆動する。冷却水系統は冷却水切替弁22aを
閉、22bを開とし、冷却水8は冷却塔11゜冷却水ポ
ンプ10.冷却水切替弁22b、凝縮器7a。When operating the refrigeration cycle in a state where it is desired to generate cold heat rather than electric power, the crack 20a is released.
b is a coupling, and the motor-generator 19 drives the compressor 15 as the motor 14. In the cooling water system, the cooling water switching valve 22a is closed and the cooling water switching valve 22b is opened, and the cooling water 8 is supplied to the cooling tower 11° and the cooling water pump 10. Cooling water switching valve 22b, condenser 7a.
冷却塔11の順に循環する。The cooling tower 11 is circulated in this order.
もし必要とあらば、クラッチ20a、 20bの両方を
結合して全系統を生かし、発電サイクルで発生した動力
で直接圧縮機15を駆動して冷凍サイクルを機能させる
ことも可能である。この場合電動機発電機19は、ター
ビン5の出力と圧縮機15の入力が等しければ、空回し
の状態となり、差があるならが、差分に等しい電力出力
を発生、または電気入力を消費する。If necessary, it is also possible to connect both clutches 20a and 20b to utilize the entire system and directly drive the compressor 15 with the power generated in the power generation cycle to operate the refrigeration cycle. In this case, if the output of the turbine 5 and the input of the compressor 15 are equal, the motor generator 19 will be in an idling state, and if there is a difference, it will generate an electric power output equal to the difference or consume electric input.
媒体連絡管21a、 21bは両サイクルの作動媒体の
保有量を調整するためのもので、冷凍サイクルの方の保
有量を増やしたい場合には、媒体連絡弁23aを開いて
、媒体ポンプ9により媒体液を冷凍サイクル側に移送す
る。逆に発電サイクルの方の保有量を増やしたい場合に
は、媒体連終弁23bを開いて、圧縮機15により媒体
蒸気を発電サイクル側に移送する。The medium communication pipes 21a and 21b are used to adjust the amount of working medium held in both cycles, and when it is desired to increase the amount held in the refrigeration cycle, the medium communication valve 23a is opened and the medium pump 9 is used to pump the medium. Transfer the liquid to the refrigeration cycle side. Conversely, if it is desired to increase the amount held in the power generation cycle, the medium connection valve 23b is opened and the compressor 15 transfers the medium vapor to the power generation cycle side.
両サイクルにおける媒体の状態を第2図に示す。The state of the medium during both cycles is shown in FIG.
第2図は媒体の圧力(P)−エンタルピ(i)線図であ
り、凝縮器7a、 7bで媒体が凝縮し飽和液となった
状態がAの点である。発電サイクルでは、媒体は媒体ポ
ンプ9で加圧されてB、予熱器4、蒸発器2aで蒸発し
てC、タービン5で膨張してDとなり、凝縮器7aで凝
縮してAに戻る。冷凍サイクルでは、Aの状態から膨張
機構12で膨張・減圧してE、蒸発器2bで蒸発してF
、圧縮機15で昇圧されてGとなり、凝縮器7bで凝縮
してAに戻る。FIG. 2 is a pressure (P)-enthalpy (i) diagram of the medium, and point A is the state where the medium is condensed in the condensers 7a and 7b and becomes a saturated liquid. In the power generation cycle, the medium is pressurized by the medium pump 9, becomes B, evaporates in the preheater 4, evaporator 2a to become C, expands in the turbine 5 to become D, condenses in the condenser 7a, and returns to A. In the refrigeration cycle, from the state A, the expansion mechanism 12 expands and reduces the pressure to E, and the evaporator 2b evaporates to F.
, the pressure is increased by the compressor 15 to G, which is condensed by the condenser 7b and returns to A.
このように、両サイクルの凝縮圧力、よって凝縮温度も
、を同じ値としてシステムを構築することにより、本発
明のように両サイクルを融合させることが可能である。In this way, by constructing a system in which the condensing pressure and therefore the condensing temperature of both cycles are set to the same value, it is possible to combine both cycles as in the present invention.
第3図には第2の実施例を示す。本実施例では作動媒体
3、凝縮器7、冷却水8、冷却水ポンプ10、冷却塔1
1を共用としている。本実施例において発電サイクルの
運転を行う場合には、止め弁24a、 24bを全閉と
し、電動機14を停止させておくことにより、冷凍サイ
クルが切り眉された状態となる。一方冷凍サイクルの運
転を行う場合には、媒体ポンプ9を停止させ、媒体ポン
プ出口弁25、主蒸気止め弁26を全閉、止め弁24a
、 24bを全開の状態として、電動機14で圧縮機
15を駆動することにより実現できる。両サイクルの同
時運転も可能であり、その場合には止め弁24a、 2
4bの開度を制御して雨サイクルの作動媒体3a、3b
の流量を調整しながら運転する。FIG. 3 shows a second embodiment. In this embodiment, a working medium 3, a condenser 7, a cooling water 8, a cooling water pump 10, a cooling tower 1
1 is shared. In this embodiment, when the power generation cycle is operated, the stop valves 24a and 24b are fully closed and the electric motor 14 is stopped, so that the refrigeration cycle is in a closed state. On the other hand, when operating the refrigeration cycle, the medium pump 9 is stopped, the medium pump outlet valve 25 and the main steam stop valve 26 are fully closed, and the stop valve 24a is closed.
, 24b are fully opened and the compressor 15 is driven by the electric motor 14. Simultaneous operation of both cycles is also possible, in which case the stop valves 24a, 2
The working medium 3a, 3b of the rain cycle is controlled by controlling the opening degree of 4b.
Operate while adjusting the flow rate.
第4図には第3の実施例を示す。本実施例では作動媒体
3、凝縮器7、冷却水8、冷却水ポンプ10、冷却塔1
1を共用としている。また、発電機6と電動機14の両
方の機能を有する電動発電機19を、クラッチ20a、
20bを介してタービン5および圧縮機15に結合し
ている。本実施例において発電サイクルの運転を行う場
合には、止め弁24a、 24bを全閉、クラッチ20
aは結合、20bは解放とし、電動発電機19は発電機
6の状態とする。冷凍サイクルの運転を行う場合には、
媒体ポンプ9を停止させ。FIG. 4 shows a third embodiment. In this embodiment, a working medium 3, a condenser 7, a cooling water 8, a cooling water pump 10, a cooling tower 1
1 is shared. Furthermore, the motor generator 19 having the functions of both the generator 6 and the electric motor 14 is connected to the clutch 20a,
It is coupled to turbine 5 and compressor 15 via 20b. In this embodiment, when operating the power generation cycle, the stop valves 24a and 24b are fully closed, and the clutch 20 is closed.
It is assumed that a is connected, 20b is released, and the motor generator 19 is in the state of the generator 6. When operating the refrigeration cycle,
Stop the medium pump 9.
媒体ポンプ出口弁25、主蒸気止め弁26を全閉、止め
弁24a、 24bを全開、クラッチ20aは解放、2
0bは結合とし、電動発電機19は電動機14の状態と
して圧縮機15を駆動することにより実施する。The medium pump outlet valve 25 and the main steam stop valve 26 are fully closed, the stop valves 24a and 24b are fully opened, and the clutch 20a is released.
0b is a coupling, and the motor-generator 19 is in the state of the motor 14 and is implemented by driving the compressor 15.
クラッチ20a、 20bの両方を結合することにより
両サイクルの同時運転も可能であり、その場合には止め
弁24a、 24bの開度を制御して両サイクルの作動
媒体3a、3bの流量を調整しながら運転する。Simultaneous operation of both cycles is also possible by engaging both clutches 20a and 20b, and in that case, the opening degrees of stop valves 24a and 24b are controlled to adjust the flow rates of working media 3a and 3b for both cycles. while driving.
電動発電機19は、タービン5の出力と圧縮機15の入
力が等しければ、空回しの状態となり、差があるならば
、差分に等しい電気出力を発生、または電気入力を消費
する。If the output of the turbine 5 and the input of the compressor 15 are equal, the motor generator 19 is in an idling state, and if there is a difference, it generates an electrical output equal to the difference or consumes the electrical input.
第5図には第4の実施例を示す。本実施例では作動媒体
3、凝縮器7.冷却水8、冷却水ポンプ10、冷却塔1
1を共用としている。また、タービン5と圧縮機15の
両方の機能を有するタービン・圧縮機27、発電機6と
電動機14の両方の機構を有する電動発電機19を設け
る。FIG. 5 shows a fourth embodiment. In this embodiment, the working medium 3, the condenser 7. Cooling water 8, cooling water pump 10, cooling tower 1
1 is shared. Further, a turbine/compressor 27 having the functions of both the turbine 5 and the compressor 15, and a motor generator 19 having the functions of both the generator 6 and the electric motor 14 are provided.
本実施例において発電サイクルの運転を行う状態を第6
図の実線で示す、この場合、良め弁24a。In this embodiment, the state in which the power generation cycle is operated is set to the sixth state.
In this case, the good valve 24a is shown by the solid line in the figure.
24cは全閉とすることにより、冷凍サイクルは切り離
された状態となる。そしてタービン・圧縮機27をター
ビン5の機能、電動発電機19を発電機6の機能とする
ことにより、発電が行われる。By fully closing 24c, the refrigeration cycle becomes disconnected. Power is generated by making the turbine/compressor 27 function as the turbine 5 and the motor generator 19 function as the generator 6.
本実施例において冷凍サイクルの運転を行う状態を第7
図の実線で示す。この場合、媒体ポンプ出口弁25、主
蒸気止め弁26は全閉とすることにより、発電サイクル
は切り離された状態となる。そして止め弁24a、 2
4cは全開とし、タービン・圧縮機27を圧縮機15の
機能、電動発電機19を電動機14の機能とすることに
より、蒸発器2bに冷熱を発生することができる。In this embodiment, the state in which the refrigeration cycle is operated is the seventh state.
Shown by the solid line in the figure. In this case, the medium pump outlet valve 25 and the main steam stop valve 26 are fully closed, thereby disconnecting the power generation cycle. and stop valve 24a, 2
4c is fully opened, the turbine/compressor 27 functions as the compressor 15, and the motor generator 19 functions as the electric motor 14, thereby generating cold heat in the evaporator 2b.
以上の例では、冷熱を蓄熱する設備を有するシステムの
場合を説明した。本発明はこのようなシステムへの適用
が効果的であるが、冷熱蓄熱設備を有しないシステムに
対しても、同様に適用可能である。In the above example, a system having equipment for storing cold heat has been described. Although the present invention is effectively applied to such systems, it is equally applicable to systems that do not have cold/heat storage equipment.
なお、発電サイクルと冷凍サイクルの容量は同一である
必要はない。Note that the capacities of the power generation cycle and the refrigeration cycle do not need to be the same.
本発明によれば、低沸点の有機媒体を作動媒体とする発
電サイクルと冷凍サイクルとで、共用可能な機器を共有
させることにより、設備機器の重複を避け、よってプラ
ントの設置面積、設−費等が節約可能となる。According to the present invention, the power generation cycle and the refrigeration cycle, which use a low boiling point organic medium as a working medium, share common equipment, thereby avoiding duplication of equipment and reducing plant installation area and equipment costs. etc. can be saved.
第1図は本発明に係る発電・冷凍複合サイクル装置の第
1の実施例の系統図、第2図は発電、冷凍面サイクルの
作動媒体の状態を示す圧力−エンタルピ線図、第3図は
本発明の第2の実施例の系統図、第4図は本発明の第3
の実施例の系統図、第5図は本発明の第4の実施例の系
統図、第6図は第4の実施例において発電サイクルの運
転を行っている状態を示す図、第7図は第4の実施例に
おいて冷凍サイクルの運転を行っている状態を示す図、
第8図は従来技術の系統図である。
l・・・熱源流体 2.2a、 2b・・・蒸
発器3、3a、 3b・・・作動媒体 4・・・予熱器
5・・・タービン 6・・・発電機7、7a、
7b−凝縮器 8.8a、 8b−冷却水9・・・
媒体ポンプ
10、 IOa、 10b・=冷却ポンプ11、 ll
a、 Ilb・・・冷却塔 12・・・膨張機構13・
・・冷熱媒体 14・・・電動機15・・・圧
縮機
16・・・冷熱媒体循環ポンプ
17・・・蓄熱槽 18・・・冷水19・・
・電動機発電機 20・・・クラッチ21・・・媒
体連絡管
22a、 22b・・・冷却水切替弁
23・・・媒体連絡弁
24a、 24b、 24cm止め弁
25・・・媒体ポンプ出口弁
26・・・主蒸気止め弁 27・・・タービン・圧
縮機代理人 弁理士 則 近 憲 佑
第
図
第
図
第
図Fig. 1 is a system diagram of the first embodiment of the combined power generation/refrigeration cycle device according to the present invention, Fig. 2 is a pressure-enthalpy diagram showing the state of the working medium in the power generation/refrigeration surface cycle, and Fig. 3 is a diagram showing the state of the working medium in the power generation/refrigeration surface cycle. The system diagram of the second embodiment of the present invention, FIG. 4 is the system diagram of the third embodiment of the present invention.
Fig. 5 is a system diagram of the fourth embodiment of the present invention, Fig. 6 is a diagram showing the state in which the power generation cycle is operated in the fourth embodiment, and Fig. 7 is a system diagram of the fourth embodiment of the present invention. A diagram showing a state in which the refrigeration cycle is operating in the fourth embodiment,
FIG. 8 is a system diagram of the prior art. l... Heat source fluid 2.2a, 2b... Evaporator 3, 3a, 3b... Working medium 4... Preheater 5... Turbine 6... Generator 7, 7a,
7b-Condenser 8.8a, 8b-Cooling water 9...
Medium pump 10, IOa, 10b・=cooling pump 11, ll
a, Ilb...Cooling tower 12...Expansion mechanism 13.
...Cold heat medium 14...Electric motor 15...Compressor 16...Cold heat medium circulation pump 17...Heat storage tank 18...Cold water 19...
- Motor generator 20...Clutch 21...Medium communication pipes 22a, 22b...Cooling water switching valve 23...Medium communication valve 24a, 24b, 24cm stop valve 25...Medium pump outlet valve 26. ...Main steam stop valve 27...Turbine/compressor agent Patent attorney Noriyuki Chika Diagram Diagram Diagram Diagram
Claims (4)
ポンプおよび発電機と、冷凍サイクル用の蒸発器、圧縮
機、凝縮器、膨張機構および電動機とを有し、両サイク
ル共通の作動媒体が両サイクル内を融合的に流動するこ
とを特徴とする発電・冷凍複合サイクル装置。(1) It has an evaporator, prime mover, condenser, medium pump, and generator for the power generation cycle, and an evaporator, compressor, condenser, expansion mechanism, and electric motor for the refrigeration cycle, and the working medium is common to both cycles. A power generation/refrigeration combined cycle device characterized by a fused flow of water within both cycles.
媒体ポンプと、冷凍サイクル用の蒸発器、圧縮機、凝縮
器および膨張機構とを有し、上記原動機および上記圧縮
機それぞれにクラッチを介して結合される電動発電機を
具備し、上記二つのサイクル共通の作動媒体が両サイク
ル内を融合的に流動することを特徴とする発電・冷凍複
合サイクル装置。(2) It has an evaporator, a prime mover, a condenser, and a medium pump for the power generation cycle, and an evaporator, a compressor, a condenser, and an expansion mechanism for the refrigeration cycle, and the prime mover and the compressor are connected to each other via a clutch. A power generation/refrigeration combined cycle device comprising a motor/generator coupled to each other, wherein a working medium common to the two cycles flows integrally in both cycles.
び冷凍サイクル用でそれぞれ兼用されるものであること
を特徴とする請求項1または2に記載の発電・冷凍複合
サイクル装置。(3) The power generation/refrigeration combined cycle device according to claim 1 or 2, wherein the evaporator or condenser is used for both a power generation cycle and a refrigeration cycle.
機であり、上記発電機および電動機は兼用の電動発電機
であって、発電サイクル運転時には、上記タービン・圧
縮機はタービンとして、電動発電機は発電機としてそれ
ぞれ機能し、冷凍サイクル運転時には、上記タービン・
圧縮機は圧縮機として、電動発電機は電動機としてそれ
ぞれ機能するように構成されたことを特徴とする請求項
1に記載の発電・冷凍複合サイクル装置。(4) The prime mover and compressor are a dual-purpose turbine/compressor, and the generator and electric motor are a dual-purpose motor/generator, and during power generation cycle operation, the turbine/compressor functions as a turbine and a motor/generator. each functions as a generator, and during refrigeration cycle operation, the above turbines and
2. The power generation/refrigeration combined cycle device according to claim 1, wherein the compressor is configured to function as a compressor, and the motor generator is configured to function as an electric motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16290190A JPH0454205A (en) | 1990-06-22 | 1990-06-22 | Power generation and refrigeration combined cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16290190A JPH0454205A (en) | 1990-06-22 | 1990-06-22 | Power generation and refrigeration combined cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0454205A true JPH0454205A (en) | 1992-02-21 |
Family
ID=15763391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16290190A Pending JPH0454205A (en) | 1990-06-22 | 1990-06-22 | Power generation and refrigeration combined cycle device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0454205A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005307951A (en) * | 2004-04-26 | 2005-11-04 | Denso Corp | Fluid machine |
US7992400B2 (en) | 2004-10-29 | 2011-08-09 | Denso Corporation | Refrigerating apparatus and fluid machine therefor |
-
1990
- 1990-06-22 JP JP16290190A patent/JPH0454205A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005307951A (en) * | 2004-04-26 | 2005-11-04 | Denso Corp | Fluid machine |
US7992400B2 (en) | 2004-10-29 | 2011-08-09 | Denso Corporation | Refrigerating apparatus and fluid machine therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100528392B1 (en) | Vapor-compression refrigerant cycle system with refrigeration cycle and rankine cycle | |
US9927157B2 (en) | Integrated power, cooling, and heating device and method thereof | |
JP2012522959A (en) | Waste heat air conditioning system | |
JP2011526670A (en) | Cooling, heat generation and / or work generation plant | |
US4271679A (en) | Heating installation | |
JP2005257127A (en) | Natural refrigerant heat pump system | |
KR101864636B1 (en) | Waste heat recovery type hybrid heat pump system | |
US6519946B2 (en) | Cogeneration system using waste-heat gas generated in micro gas turbine | |
CA1063370A (en) | Heat pump system | |
JP2002221371A (en) | Air conditioner | |
JP2006292313A (en) | Geothermal unit | |
KR102142068B1 (en) | Condensation pressure control device utilizing heat pump and its control method | |
JPH0454205A (en) | Power generation and refrigeration combined cycle device | |
JP2007255862A (en) | Air conditioning system | |
JP2000111198A (en) | Composite heat pump device and air conditioning device using the same | |
KR101649447B1 (en) | Geothermal heat pump system using gas | |
JP3814877B2 (en) | Thermal storage air conditioner | |
EP1781998A1 (en) | A cooling device | |
KR101770806B1 (en) | cold or hot storage system | |
KR101977048B1 (en) | Integrated Cooling and Heating Control Method and System | |
JPH0365032A (en) | Cogeneration system | |
JP2005037008A (en) | Air conditioner | |
WO2018143521A1 (en) | Organic rankine cycle power generation system having reheating means | |
KR20150026499A (en) | Hybrid Type heat-Pump System using air heat | |
JP2002349995A (en) | Heating system |