Nothing Special   »   [go: up one dir, main page]

JPH0443937B2 - - Google Patents

Info

Publication number
JPH0443937B2
JPH0443937B2 JP9825788A JP9825788A JPH0443937B2 JP H0443937 B2 JPH0443937 B2 JP H0443937B2 JP 9825788 A JP9825788 A JP 9825788A JP 9825788 A JP9825788 A JP 9825788A JP H0443937 B2 JPH0443937 B2 JP H0443937B2
Authority
JP
Japan
Prior art keywords
block copolymer
weight
parts
hydrogenated block
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9825788A
Other languages
Japanese (ja)
Other versions
JPH01271452A (en
Inventor
Hiroshi Shirai
Yasushi Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9825788A priority Critical patent/JPH01271452A/en
Publication of JPH01271452A publication Critical patent/JPH01271452A/en
Publication of JPH0443937B2 publication Critical patent/JPH0443937B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐熱性、耐油性に優れた水添ブロツ
ク共重合体組成物に関し、更に詳しくは水添ブロ
ツク共重合体にカルボン酸基またはその誘導体基
を含有する分子単位が結合した変性水添ブロツク
共重合体に、ポリオレフイン系樹脂、オレフイン
系共重合体ゴム、さらに必要に応じてゴム用軟化
剤を配合してなる変性水添ブロツク共重合体組成
物を加熱溶融下に特定のに熱硬化性樹脂と混練し
て得られる、耐熱性、耐油性に優れた動的加硫し
た変性水添ブロツク共重合体組成物に関するもの
である。 〔従来の技術〕 近年、加硫工程を必要とせず、熱可塑性樹脂と
同様な成形加工性を有する熱可塑性エラストマー
が自動車部品、家電部品、雑貨、履物等の分野で
盛んに利用されるようになつてきた。 なかでも、スチレン−ブタジエンブロツク共重
合体やスチレン−イソプレンブロツク共重合体等
のビニル芳香族化合物−共役ジエン化合物ブロツ
ク共重合体は、従来の加硫ゴムに近い弾性と感触
を有しているため該加硫ゴムが使用されていた成
形品素材として好適であるとの評価を得ている。 しかしながら、上記のビニル芳香族化合物−共
役ジエン化合物ブロツク共重合体は、熱可塑性エ
ラストマーとしては、加硫ゴムに較べると、耐熱
性、耐候性、耐油性に劣るためその使用範囲に制
限があつた。 これらの欠点を改良したビニル芳香族化合物−
共役ジエン化合物ブロツク共重合体の水素添加物
(以下、水添ブロツク共重合体という)からなる
熱可塑性エラストマーは、耐候性、耐熱性に改良
が認められるものの、耐油性は従来と変わらず、
耐熱性についてもいまだ不充分なものであつた。 これら水添ブロツク共重合体の欠点を改善する
ためにいくつかの提案がなされている。例えば特
開昭59−6236号公報、および特開昭59−131613号
公報には、水添ブロツク共重合体に炭化水素油お
よびポリオレフイン系樹脂、無機充てん剤を配合
したエラストマー組成物を有機パーオキサイドと
架橋性モノマーの存在下で動的に加硫させ、得ら
れるエラストマー組成物の高温時のゴム弾性を改
良する提案がなされている。 〔発明が解決しようとする課題〕 しかし、上記した特開昭59−6236号公報、特開
昭59−131613号公報に示された有機パーオキサイ
ドで動的加硫した水添ブロツク共重合体組成物
は、高温時のゴム弾性は改善されるものの、有機
パーオキサイドに基づくラジカルによつて、重合
体鎖の切断が発生し、機械的強度が低下するとい
う欠点を有している。 〔課題を解決するための手段〕 本発明者らは、かかる現状に鑑み、上記芳香族
ビニル化合物−共役ジエン化合物ブロツク共重合
体の種々の問題を解決すべく鋭意検討した結果、
水添ブロツク共重合体に特定の反応基を導入した
変性水添ブロツク共重合体、ポリオレフイン系樹
脂及びオレフイン系共重合体ゴムをその加熱溶融
混練下に特定の熱硬化性樹脂を用いて動的加硫す
ることにより、機械的強度に優れ、且つ耐熱性、
耐油性にも優れた熱可塑性エラストマーが得られ
ることを見い出し、本発明を完成した。 すなわち本発明は (a) ビニル芳香族化合物を主体とする少なくとも
1個の重合体ブロツクAと、共役ジエン化合物
を主体とする少なくとも1個の重合体ブロツク
Bとから成るブロツク共重合体を水素添加して
得られる水添ブロツク共重合体にカルボン酸基
またはその誘導体基を含有する分子単位が結合
した変性水添ブロツク共重合体 100重量部、 (b) ポリオレフイン系樹脂 20〜500重量部及び (c) オレフイン系共重合体ゴム 5〜150重量部 からなる変性水添ブロツク共重合体組成物100重
量部に反応型アルキルフエノール/ホルムアルデ
ヒド樹脂0.5〜30重量部を配合し、加熱溶融下で
混練して動的加硫して得た変性水添ブロツク共重
合体組成物を提供するものである。 以下、本発明に関して詳しく説明する。 本発明で(a)成分として用いられる変性水添ブロ
ツク共重合体はビニル芳香族化合物を主体とする
少なくとも1個の重合体ブロツクAと、共役ジエ
ン化合物を主体とする少なくとも1個の重合体ブ
ロツクBとからなるブロツク共重合体を水素添加
し、この水添ブロツク共重合体に、カルボン酸基
またはその誘導体基を含有する分子単位が結合し
た変性水添ブロツク共重合体である。すなわち例
えば、A−B,A−B−A,B−A−B−A,
(A−B)−4Si,(B−A−B)−4Si,A−B−A−
B−A等の構造を有するビニル芳香族化合物−共
役ジエン化合物ブロツク共重合体を水素添加し、
該水添ブロツク共重合体に不飽和カルボン酸また
はその誘導体を付加反応させることにより製造し
たものである。 この水添ブロツク共重合体は、ビニル芳香族化
合物を5〜60重量%、好ましくは10〜55重量%含
むものであり、さらにブロツク構造について言及
すると、ビニル芳香族化合物を主体とする重合体
ブロツクAは、ビニル芳香族化合物重合体ブロツ
クまたは、ビニル芳香族化合物を50重量%を越え
好ましくは70重量%以上含有するビニル芳香族化
合物と水素添加された共役ジエン化合物との共重
合体ブロツクの構造を有しており、そしてさら
に、水素添加された共役ジエン化合物を主体とす
る重合体ブロツクBは、水素添加された共役ジエ
ン化合物重合体ブロツク、または水素添加された
共役ジエン化合物を50重量%を越え好ましくは70
重量%以上含有する水素添加された共役ジエン化
合物とビニル芳香族化合物との共重合体ブロツク
の構造を有するものである。また、これらのビニ
ル芳香族化合物を主体とする重合体ブロツクA、
水素添加された共役ジエン化合物を主体とする重
合体ブロツクBは、それぞれの重合体ブロツクに
おける分子鎖中の水素添加された共役ジエン化合
物またはビニル芳香族化合物の分布がランダム、
テーパード(分子鎖に沿つてモノマー成分が増加
または減少するもの)、一部ブロツク状またはこ
れらの任意の組合せで成つていてもよく、該ビニ
ル芳香族化合物を主体とする重合体ブロツクおよ
び該水素添加された共役ジエン化合物を主体とす
る重合体ブロツクがそれぞれ2個以上ある場合
は、各重合体ブロツクはそれぞれが同一構造であ
つてもよく、異なる構造であつてもよい。 水添ブロツク共重合体を構成するビニル芳香族
化合物としては、例えばスチレン、α−メチルス
チレン、p−メチルスチレン、ビニルトルエン、
p−第3ブチルスチレン、1,1′−ジフエニルエ
チレン等のうちから1種または2種以上が選択で
き、中でもスチレンが好ましい。また、水素添加
された共役ジエン化合物を構成する水添前の共役
ジエン化合物としては、例えば、ブタジエン、イ
ソプレン、1,3−ペンタジエン、2,3−ジメ
チル−1,3−ブタジエン等のうちから1種また
は2種以上が選ばれ、中でもブタジエン、イソプ
レン、およびこれらの組合せが好ましい。そし
て、水添される前の共役ジエン化合物を主体とす
る重合体ブロツクは、そのブロツクにおけるミク
ロ構造を任意に選ぶことができるが、例えばポリ
ブタジエンブロツクにおいては、1,2−ビニル
結合量が10〜65%、好ましくは20〜55%である。 また、上記した構造を有する本発明に供する水
添ブロツク共重合体の数平均分子量は5000〜
1000000、好ましくは10000〜500000であり、本発
明組成物の物性と加工性とのバランスを保持する
上からは30000〜300000が更に好ましい範囲であ
り、分子量分布〔重量平均分子量(w)と数平
均分子量(n)〕との比(Mw/n)は10以
下である。さらに水添ブロツク共重合体の分子構
造は、直鎖状、分岐状、放射状あるいはこれらの
任意の組合せのいずれであつてもよい。 これらのブロツク共重合体の製造法としては、
上記した構造を有するものであればどのような製
造方法で得られるものであつてもかまわない。例
えば、特公昭40−23798号公報に記載された方法
により、リチウム触媒等を用いて不活性溶媒中で
ビニル芳香族化合物−共役ジエン化合物ブロツク
共重合体を合成し、次いで、例えば特公昭42−
8704号公報、特公昭43−6636号公報に記載された
方法、特に好ましくは特公昭63−4841号公報及
び、特公昭63−5401号公報に記載された方法によ
り、不活性溶媒中で水素添加触媒の存在下に水素
添加して、本発明に供する水添ブロツク共重合体
を合成することができる。その際、ビニル芳香族
化合物−共役ジエン化合物ブロツク共重合体の共
役ジエン化合物に基づく脂肪族二重結合は少なく
とも80%を水素添加せしめ、共役ジエン化合物を
主体とする重合体ブロツクを形態的にオレフイン
性化合物重合体ブロツクに変換させることができ
る。また、ビニル芳香族化合物を主体とする重合
体ブロツクA及び必要に応じて、共役ジエン化合
物を主体とする重合体ブロツクBに共重合されて
いるビニル芳香族化合物に基づく芳香族二重結合
の水素添加率については特に制限はないが、水素
添加率を20%以下にするのが好ましい。 該水添ブロツク共重合体中に含まれる未水添の
脂肪族二重結合の量は、赤外分光光度計、核磁気
共鳴装置等によつて容易に知ることができる。 次いで、上記の水添ブロツク共重合体に不飽和
カルボン酸またはその誘導体を溶液状態または溶
融状態において、ラジカル開始剤を使用、もしく
は使用せずして付加することにより、本発明で用
いる変性水添ブロツク共重合体が得られる。かか
る付加変性に用いることができる水添ブロツク共
重合体は、前記に規定したものであればいずれで
も用いることができ、また水添ブロツク共重合体
に付加される不飽和カルボン酸またはその誘導体
の例としては、マレイン酸、ハロゲン化マレイン
酸、イタコン酸、シス−4−シクロヘキセン−
1,2−ジカルボン酸、エンド−シス−ビシクロ
〔2,2,1〕−5−ヘプテン−2,3−ジカルボ
ン酸等やこれらジカルボン酸の無水物、エステ
ル、アミド、イミド等およびアクリル酸、メタク
リル酸、クロトン酸等やこれらモノカルボン酸の
エステル、例えばメタクリル酸メチル、メタクリ
ル酸グリシジルやアミド等の誘導体が挙げられ
る。これらの中では無水マレイン酸が特に好まし
い。 これら変性水添ブロツク共重合体の製造方法に
関しては、本発明においては特に限定はしない
が、得られた変性水添ブロツク共重合体がゲル等
の好ましくない成分を含んだり、その溶融粘度が
著しく増大して加工性が悪化したりする製造方法
は好ましくない。好ましい方法としては、例えば
押出機中で、ラジカル開始剤存在下で、未変性水
添ブロツク共重合体と不飽和カルボン酸またはそ
の誘導体とを反応させる方法がある。 不飽和カルボン酸またはその誘導体の水添ブロ
ツク共重合体への付加量は、水添ブロツク共重合
体100重量部あたり20重量部以下が好ましく、10
重量部以下がさらに好ましい。付加量が20重量部
を超えても、それ以下に比べて改良の効果の増加
はほとんど見られない。本発明で用いる不飽和カ
ルボン酸またはその誘導体は一種のみならず二種
以上混合しても使用できる。 次に、本発明の(b)成分のポリオレフイン系樹脂
は、成形時の加工性を改良するほかに、耐油性お
よび耐熱性の向上に有効な成分として用いられ
る。使用するポリオレフイン系樹脂は融点120℃
以上の結晶性ポリオレフイン系樹脂であり例え
ば、ポリエチレン(低密度、中密度、高密度いず
れでもよい)、ポリプロピレンやプロピレンと他
のα−オレフインとの共重合体、例えばエチレン
−プロピレン共重合体、1−ヘキセン−プロピレ
ン共重合体、4−メチル−1−ペンテン−プロピ
レン共重合体等のポリプロピレン系樹脂あるいは
ポリ(4−メチル−1−ペンテン)を挙げること
ができる。なかでもポリプロピレン系樹脂が好ま
しく、MFR(ASTM−D−1238−L条件、230
℃)が0.1〜50g/10分特に0.5〜30g/10分の範
囲のものが好適である。 これら(b)成分の配合量は、成分(a)の変性水添ブ
ロツク共重合体100重量部に対して、20〜500重量
部、好ましくは30〜250重量部の範囲内で用いる
ことができる。500重量部を越えて配合した場合、
得られる組成物の硬度が高くなりすぎてゴム的感
触が失なわれるばかりでなく、柔軟性を失いゴム
弾性が著しく悪化する。また20重量部未満での配
合では得られる組成物の成形加工性が悪化するだ
けでなく、耐油性にも劣り好ましくない。 本発明の(c)成分として用いられるオレフイン系
共重合体ゴムは、(a)成分の変性水添ブロツク共重
合体だけの場合よりも高温時の圧縮永久歪みを改
良するのに有用になゴムであり、例えばエチレ
ン/プロピレン共重合体ゴム(EPM)、エチレ
ン/プロピレン/非共役ジエン共重合体ゴム
(EPDM)の如くオレフインを主成分とする無定
形ランダム共重合体の弾性体である。 本発明で用いられるこのようなゴムとしては、
上記の2種類のゴムが好ましいが、中でも非共役
ジエン成分を含むターポリマー(EPDM)のゴ
ムが特に好ましい。この場合の非共役ジエンとし
ては、例えばジシクロペンタジエン、シクロオク
タジエン、メチルノルボルネン、エチリデンノル
ボルネン、1,4−ヘキサジエン等が挙げられ、
なかでもエチリデンノルボルネンが好ましい。 このターポリマー(EPDM)ゴムのなかで、
本発明ではエチレン/プロピレン/エチリデンノ
ルボルネン共重合体ゴムが好ましい。ここで用い
られるゴムのムーニー粘度、ML1+4(100℃)は10
〜120、好ましくは40〜100の範囲から好適に選ぶ
ことができる。このムーニー粘度が10未満のもの
を用いた場合、好ましい架橋が得られず高温で圧
縮永久歪みの改良が期待できず好ましくない。ま
た、120を超えたものは成形加工性が悪化し、さ
らに成形品の外観が悪化するため好ましくない。
また、このゴムのヨウ素価は5〜30のものが好ま
しく、さらに共重合体中のプロピレン含量は20〜
50重量%が好ましい。 上記した(c)成分の配合量は、成分(a)の変性水添
ブロツク共重合体100重量部に対して、5〜150重
量部の範囲で好適に選ぶことができ、なかでも50
〜120重量部が好ましい。150重量部を超えた配合
では、得られる組成物の機械的強度および伸びの
低下をもたらし、さらに成形加工性および成形品
の外観が悪化し好ましくない。また、5重量部未
満の配合では、この(c)成分を添加する効果の高温
でのゴム弾性(圧縮永久歪み)の改良が顕著でな
く、未添加の場合と同等である。 次に、本発明の(d)成分として供する反応型アル
キルフエノール/ホルムアルデヒド樹脂は、一般
にレゾール型フエノール樹脂として知られている
ものであり、ゴムの樹脂加硫剤として利用できる
公知の反応型アルキルフエノール/ホルムアルデ
ヒド樹脂である。該樹脂の好ましい例として例え
ば一般式(A) (ここで、nは2〜5の整数、Xは水酸基また
はハロゲン基、Rは炭素1〜20の炭化水素基をあ
らわす。) で示される反応型アルキルフエノール/ホルムア
ルデヒド樹脂が挙げられるが一般式(A)を部分的に
変性させた構造のものであつてもよい。 この樹脂は、一般にアルカリ媒体中で置換フエ
ノールとホルムアルデヒドとの縮合反応によつて
得られるものであつたり、或は、二官能性フエノ
ールジアルコール類の縮合反応によつて得られる
フエノール硬化樹脂である。その製造はどの方法
をとつてもよく、例えば、米国特許第3287440号、
同第3709840号、同第2972600号および同第
3093613号に開示されたフエノール硬化樹脂の製
法およびこれを使用した加硫系による方法をとる
ことができる。 また、この樹脂として具体的には、市販されて
いるTackirol 201,Tackirol 250−1(住友化学
(株)製)Schenectady SP−1045,Schenectady
SP−1055(Schenectady Chemicals Co.製)等を
挙げることが出来る。 このレゾール型フエノール樹脂は単独でも使用
することができる、加硫速度を調整するため加硫
促進剤を併用することができる。この加硫促進剤
として、例えば金属ハロゲン化物(塩化第一錫、
塩化第二鉄、3フツ化アルミニウム)、有機ハロ
ゲン化物(塩素化ポリエチレン、クロルスルホン
化ポリエチレン、塩素化パラフイン、臭素化ブチ
ルゴム、クロロプレン)等が使用できる。 この(d)成分を用いて動的加硫した本発明の変性
水添ブロツク共重合体組成物は、公知技術の有機
パーオキサイドを用いて動的に加硫した水添ブロ
ツク共重合体組成物と比べ、機械的強度および高
温(100℃)での圧縮永久歪みに優れた性能を示
す組成物を与える。 ここで動的加硫された変性水添ブロツク共重合
体組成物とは、本発明で得られた組成物1gを沸
騰キシレンを用いてソツクスレー抽出器で10時間
リフラツクスし、残留物を80メツシユの金網で濾
過し、メツシユ上に残留した不溶物乾燥重量
(g)/組成物1g中に含まれる(a)成分の重量と
(c)成分の重量の和(g)の比を100倍した値で示
されるゲル含量(%)が少なくとも30%、好まし
くは50%以上(ただし、無機充てん剤等の不溶成
分はこれに含まない)となるように加硫したもの
であり、かつ該加硫が変性水添ブロツク共重合体
組成物の溶融混練中に行われることを特徴とす
る。 このような動的加硫した変性水添ブロツク共重
合体組成物を得るため、成分(d)の配合量は、成分
(a)〜(c)の合計100重量部に対して0.5〜30重量部、
好ましくは1〜20重量部の中から好適に選ぶこと
ができ、このゲル含量を調整することができる。
また、加硫促進剤を使用する場合は成分(a)〜(c)の
合計100重量部に対して0.2〜15重量部の加硫促進
剤を任意に添加することができる。 本発明は動的加硫した変性水添ブロツク共重合
体組成物の製造方法は通常の樹脂組成物の製造あ
るいはゴム組成物の製造に際して用いられる方法
が採用でき、単軸押出機、二軸押出機、バンバリ
ーミキサー、加熱ロール、ブラベンダー、各種ニ
ーダ等の溶融混練機を用いて複合化することがで
きる。この際、(a)〜(c)成分を前もつて150〜300℃
の温度で加熱溶融混練し、次いで(d)成分を添加し
さらに150〜300℃で溶融混練しながら動的加硫し
たり、使用する(d)成分のスコーチ時間が長い場合
は、(a)〜(d)成分を前もつて溶融混練しておき、さ
らに加硫促進剤を加え溶融混練しながら動的加硫
する等の方法も採用する事ができる。この時も加
工機器の設定温度は150〜300℃の中から好適に選
ぶことができる。 従つて、上記した動的加硫した変性水添ブロツ
ク共重合体組成物の特徴を有するかぎり、その製
造方法には特に制限はない。 また本発明の組成物には必要に応じてゴム用軟
化剤を添加することもできる。ここでいうゴム用
軟化剤とは、一般にゴム及びプラスチツク等の柔
軟性、剛性、流動性等の改良に用いられている軟
化剤であり、石油系軟化剤、脂肪族系軟化剤、合
成有機化合物の各種のものが挙げられ、例えばパ
ラフイン系プロセスオイル、ナフテン系プロセス
オイル、アロマ系プロセスオイル、ワセリン、パ
ラフイン、ポリエチレンワツクス、アマニ油、大
豆油、ジオクチルフタレート、ジオクチルアジペ
ート等のエステル系可塑剤などを挙げることがで
きる。こられのうちプロセスオイルが好ましく特
にパラフイン系プロセスオイルが好ましい。 これらゴム用軟化剤は、本発明の組成物に配合
してもよく、また(a),(b)および(c)の各成分の少な
くとも1種にあらかじめ配合しておいても或いは
(a)成分、(b)成分、(c)成分および(d)成分とゴム用軟
化剤を混合したのち、本発明でいう動的加硫を行
なつてもよい。 上記のゴム用軟化剤は、本発明の組成物に柔軟
性、流動性を付与するために必要に応じて添加さ
れる。その配合量は特に制限はないが、好ましく
は、(a)成分の変性水添ブロツク共重合体100重量
部に対して500重量部以下である。500重量部を越
える配合は、軟化剤のブリードアウトを生じた
り、機械的強度の低下を招いたりする等の可能性
があり好ましくない結果を生じることもある。 また本発明の組成物には、未変性の水添ブロツ
ク共重合体を添加することもできる。未変性の水
添ブロツク共重合体は、本発明で用いる変性水添
ブロツク共重合体の変性前のものであつてもよ
く、またまつたく別の水添ブロツク共重合体であ
つてもよいし2種以上用いてもよい。これら未変
性の水添ブロツク共重合体は、本発明の組成物に
配合してもよく、また、(a)成分、(b)成分および(c)
成分の少なくと1種の成分とあらかじめ配合して
おいてもよく、(a)成分、(b)成分、(c)成分および(d)
成分とこれら水添ブロツク共重合体を混合したの
ち、本発明の動的加硫を行つてもよい。これら未
変性の水添ブロツク共重合体の配合量は特に制限
はないが、好ましくは(a)成分の変性水添ブロツク
共重合体100重量部に対して300重量部以下であ
る。300重量部を越える配合は、本発明の組成物
の耐熱性、耐油性の低下を招くこともある。 また本発明の組成物には必要に応じて充てん
剤、例えば炭酸カルシウム、ケイ酸カルシウム、
カーボンブラツク、タルク、クレー、カオリン、
シリカ、水酸化マグネシウム、マイカ、硫酸バリ
ウム、天然ケイ酸、酸化チタン、酸化マグネシウ
ム、酸化亜鉛、ケイリウ土等を配合することがで
きる。その他、本発明の組成物には必要に応じて
酸化防止剤、難燃剤、紫外線吸収剤、光安定剤、
滑剤、ガラス繊維、カーボン繊維、ナイロン繊維
等を配合することができる。 さらに、本発明の組成物は、各種熱可塑性樹脂
と組成物化することにより新しい複合体とするこ
とも可能であり、熱可塑性樹脂の例として、ポリ
エチレン(低密度、中密度、高密度)、ポリプロ
ピレン、ポリブテンエチレン−プロピレン共重合
体、エチレン−酢酸ビニル共重合体、アイオノマ
ー、塩素化ポリエチレン等のポリオレフイン系重
合体やポリスチレン(一般用、耐衝撃用)、ABS
樹脂、AS樹脂、MBS樹脂などのポリスチレン系
重合体、ポリ塩化ビニル系重合体、ポリアミド系
重合体、熱可塑性ポリエステル系重合体、ポリフ
エニレンスルフイド系重合体、ポリフエニレンエ
ーテル系重合体、ポリカーボネート系重合体、ポ
リアセタール系重合体、ポリウレタン系重合体等
を挙げることができる。 本発明の動的加硫した変性水添ブロツク共重合
体は、一般に使用されている熱可塑性樹脂成形機
を用いて成形することが可能であつて、射出成
形、押出成形、ブロー成形、カレンダー成形等の
各種成形方法が適用可能である。 〔発明の効果〕 本発明によつて得られる動的加硫した変性水添
ブロツク共重合体組成物は、機械的強度に優れた
熱可塑性エラストマー組成物であり、耐熱クリー
プ性能、高温下での圧縮永久歪みといつた耐熱性
および耐油性に優れるため、自動車部品、家電製
品、電線被覆、各種工業部品等に好適に使用でき
るほか、レジヤー用品、雑品等にも用いることが
できる。 (実施例) 次に実施例を挙げて本発明を具体的に説明する
が、本発明はこれらにより限定されるものではな
い。 なお、実施例における各種の基本物性の評価は
下記の方法で行なつた。 〔基本物性の測定方法〕 (1) 引張特性:JIS K−6301、試料は2mm厚のイ
ンジエクシヨンシートを用い、試験片は3号ダ
ンベルを用いた。 (2) 硬度:JIS K−6301記載のJIS Aタイプ (3) 圧縮永久歪み:JIS K−6301、100℃、22時
間で25%圧縮 (4) 耐油性:JIS K−6301記載のNo.3オイルを用
いて、50mm×50mm×2mm厚の試験片を70℃で2
時間No.3オイル中に浸せきし、浸せき前後の重
量変化を求めた。 参考例A 水添ブロツク共重合体の製造 (A−1);特公昭63−4841号公報記載の方法に
て水添されたポリブタジエン−ポリスチレン−
水添されたポリブタジエン−ポリスチレンの構
造を有し、結合スチレン量28%、数平均分子量
166000、分子量分布1.04、水添前のポリブタジ
エン部の1,2−ビニル結合量37%、ポリブタ
ジエン部の水添率99%の水添ブロツク共重合体
を得た。 (A−2);(A−1)と同様にして、ポリスチレ
ン−水添されたポリブタジエン−ポリスチレン
の構造を有し、結合スチレン量22%、数平均分
子量64000、分子量分布1.03、水添前のポリブ
タジエン部の1,2−ビニル結合量55%、ポリ
ブタジエン部の水添率100%の水添ブロツク共
重合体を得た。 (A−3);(A−1)と同様にして、(ポリスチ
レン水添されたポリブタジエン−ポリスチレン
)−4Siの構造を有し、結合スチレン量45%、数
平均分子量109000、分子量分布1.44、水添前の
ポリブタジエン部の1,2−ビニル結合量22
%、ポリブタジエン部の水添率100%の水添ブ
ロツク共重合体を得た。 参考例B 変性水添ブロツク共重合体の製造 (B−1);(A−1)で得られた水添ブロツク共
重合体100重量部あたり、無水マレイン酸2.0重
量部、2,5−ジメチル−2,5−ジ(第3ブ
チルパーオキシ)ヘキサン0.2重量部を混合し、
30mmφ径の二軸押出機にて250℃の温度で付加
変性反応を行なつた。得られた変性水添ブロツ
ク共重合体は、該重合体100重量部あたり1.5重
量部の無水マレイン酸が付加したものであつ
た。 (B−2);(A−2)で得られた水添ブロツク共
重合体100重量部あたり、無水マレイン酸2.5重
量部、ジクミルパーオキサイド0.25重量部を混
合し、30mmφ径の二軸押出機にて250℃の温度
で、強制ベント(740mmHg減圧)を行ないなが
ら付加変性反応を行なつた。得られた変性水添
ブロツク共重合体は、該重合体100重量部あた
り1.8重量部の無水マレイン酸が付加したもの
であつた。 (B−3);(A−3)で得られた水添ブロツク共
重合体100重量部あたり、無水マレイン酸4.0重
量部、ジクミルパーオキサイド0.6重量部を混
合し、45mmφ径の二軸押出機にて240℃の温度
で、強制ベント(740mmHg減圧)を行ないなが
ら付加変性反応を行なつた。得られた変性水添
ブロツク共重合体は、該重合体100重量部あた
り2.6重量部の無水マレイン酸が付加したもの
であつた。 実施例1〜7、比較例1〜4 (a)成分として参考例Bで得られた(B−1)
を、(b)成分として旭化成(株)ポリプロピレン、
E1100(MFR(230℃、L)=0.5g/10分)を、(c)
成分として日本イーピーラバー(株)製EPDM、
EP57P、(ML1+4(100℃)=88、ヨウ素価=15)
を、(b)成分として住友化学(株)製熱反応型アルキル
フエノール/ホルムアルデヒド樹脂、Tackirol
−201を用い、さらに加硫促進剤として塩化第一
スズ(SnCl2・2H2O)を用いた。また硬度と流
動性調整のためのゴム用軟化剤として出光興産(株)
製ダイアナプロセスオイルPW380(パラフイン系
オイル)を用いた。 あらかじめ(a)〜(c)成分およびゴム用軟化剤をヘ
ルシエルミキサーで混合し、30mmφ径の二軸押出
機にて210℃の温度で溶融混練し、動的加硫をす
る前の変性水添ブロツク共重合体組成物を得た。
この組成物100重量部に対し(d)成分および加硫促
進剤を所定量配合し、再び30mmφ径の二軸押出機
にて210℃の温度で溶融混練して動的加硫した変
性水添ブロツク共重合体を得た。これらの組成物
を射出成形して基本物性を測定した。比較例2の
組成物は成形性が悪く表面状態も悪い。また比較
例3の組成物は射出成形が不可能で圧縮成形して
物性を測定した。 結果を表1に示す。表1から明らかな様に本発
明の範囲内の組成物は、範囲外の組成物に比べて
強度、伸びといつたエラストマー的性質はもちろ
んのこと、耐熱性(100℃の圧縮永久歪み)、耐油
性および成形加工性等に優れる。 実施例8〜12、比較例5〜10 (a)成分として参考例Bで得られた(B−2)
を、(b)成分として旭化成(株)製ポリプロピレン、
M1300(MFR(230℃、L)=4g/10分)を用い
(c)成分、(d)成分、加硫促進剤、ゴム用軟化剤は実
施例1〜7と同様のものを用いた。
[Industrial Application Field] The present invention relates to a hydrogenated block copolymer composition having excellent heat resistance and oil resistance, and more specifically to a hydrogenated block copolymer composition containing a carboxylic acid group or a derivative group thereof. A modified hydrogenated block copolymer composition prepared by blending a modified hydrogenated block copolymer in which units are bonded, a polyolefin resin, an olefin copolymer rubber, and, if necessary, a rubber softener, is heated and melted. The following relates to a dynamically vulcanized modified hydrogenated block copolymer composition with excellent heat resistance and oil resistance, which is obtained by kneading with a specific thermosetting resin. [Prior Art] In recent years, thermoplastic elastomers, which do not require a vulcanization process and have moldability similar to thermoplastic resins, have been widely used in fields such as automobile parts, home appliance parts, miscellaneous goods, and footwear. I'm getting old. Among these, vinyl aromatic compound-conjugated diene compound block copolymers such as styrene-butadiene block copolymer and styrene-isoprene block copolymer have elasticity and feel similar to conventional vulcanized rubber. The vulcanized rubber has been evaluated as being suitable as a material for molded products. However, as a thermoplastic elastomer, the above-mentioned vinyl aromatic compound-conjugated diene compound block copolymer has inferior heat resistance, weather resistance, and oil resistance compared to vulcanized rubber, so its range of use is limited. . Vinyl aromatic compounds that improve these drawbacks
Thermoplastic elastomers made of hydrogenated products of conjugated diene compound block copolymers (hereinafter referred to as hydrogenated block copolymers) have improved weather resistance and heat resistance, but oil resistance remains the same as before.
Heat resistance was also still insufficient. Several proposals have been made to improve the drawbacks of these hydrogenated block copolymers. For example, in JP-A-59-6236 and JP-A-59-131613, an elastomer composition in which a hydrogenated block copolymer is blended with a hydrocarbon oil, a polyolefin resin, and an inorganic filler is prepared using organic peroxide. It has been proposed to dynamically vulcanize the elastomer composition in the presence of a crosslinking monomer to improve the rubber elasticity at high temperatures of the resulting elastomer composition. [Problem to be solved by the invention] However, the hydrogenated block copolymer composition dynamically vulcanized with an organic peroxide disclosed in the above-mentioned JP-A-59-6236 and JP-A-59-131613 Although the rubber elasticity at high temperatures is improved, radicals based on organic peroxides cause scission of polymer chains, resulting in a decrease in mechanical strength. [Means for Solving the Problems] In view of the current situation, the present inventors have conducted intensive studies to solve various problems with the aromatic vinyl compound-conjugated diene compound block copolymer, and have found that
A modified hydrogenated block copolymer obtained by introducing a specific reactive group into a hydrogenated block copolymer, a polyolefin resin, and an olefin copolymer rubber are dynamically melted and kneaded using a specific thermosetting resin. By vulcanizing, it has excellent mechanical strength and heat resistance.
The present invention was completed based on the discovery that a thermoplastic elastomer with excellent oil resistance can be obtained. That is, the present invention (a) hydrogenates a block copolymer consisting of at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. 100 parts by weight of a modified hydrogenated block copolymer in which a molecular unit containing a carboxylic acid group or its derivative group is bonded to the hydrogenated block copolymer obtained by (b) 20 to 500 parts by weight of a polyolefin resin; c) Olefin copolymer rubber 0.5 to 30 parts by weight of a reactive alkylphenol/formaldehyde resin is blended with 100 parts by weight of a modified hydrogenated block copolymer composition consisting of 5 to 150 parts by weight, and kneaded under heating and melting. The present invention provides a modified hydrogenated block copolymer composition obtained by dynamic vulcanization. The present invention will be explained in detail below. The modified hydrogenated block copolymer used as component (a) in the present invention comprises at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block mainly composed of a conjugated diene compound. This is a modified hydrogenated block copolymer in which a block copolymer consisting of B is hydrogenated and a molecular unit containing a carboxylic acid group or a derivative group thereof is bonded to the hydrogenated block copolymer. That is, for example, A-B, A-B-A, B-A-B-A,
(A-B) -4 Si, (B-A-B) -4 Si, A-B-A-
Hydrogenating a vinyl aromatic compound-conjugated diene compound block copolymer having a structure such as B-A,
It is produced by subjecting the hydrogenated block copolymer to an addition reaction with an unsaturated carboxylic acid or a derivative thereof. This hydrogenated block copolymer contains a vinyl aromatic compound in an amount of 5 to 60% by weight, preferably 10 to 55% by weight. A is a structure of a vinyl aromatic compound polymer block or a copolymer block of a vinyl aromatic compound containing more than 50% by weight and preferably 70% by weight or more and a hydrogenated conjugated diene compound. Further, the polymer block B mainly composed of a hydrogenated conjugated diene compound is a hydrogenated conjugated diene compound polymer block, or a hydrogenated conjugated diene compound containing 50% by weight. Over preferably 70
It has a structure of a copolymer block of a hydrogenated conjugated diene compound and a vinyl aromatic compound containing at least % by weight. In addition, polymer block A mainly composed of these vinyl aromatic compounds,
Polymer block B mainly composed of hydrogenated conjugated diene compounds has a random distribution of hydrogenated conjugated diene compounds or vinyl aromatic compounds in the molecular chains of each polymer block.
It may be tapered (the monomer component increases or decreases along the molecular chain), partially block-shaped, or any combination thereof, and the polymer block mainly composed of the vinyl aromatic compound and the hydrogen When there are two or more polymer blocks each consisting mainly of the added conjugated diene compound, each of the polymer blocks may have the same structure or may have different structures. Examples of vinyl aromatic compounds constituting the hydrogenated block copolymer include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene,
One or more types can be selected from p-tert-butylstyrene, 1,1'-diphenylethylene, etc., and styrene is preferred among them. Further, as the conjugated diene compound before hydrogenation constituting the hydrogenated conjugated diene compound, for example, one selected from butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, etc. One or more species are selected, with butadiene, isoprene, and combinations thereof being preferred. The microstructure of a polymer block mainly composed of a conjugated diene compound before hydrogenation can be arbitrarily selected, but for example, in a polybutadiene block, the amount of 1,2-vinyl bonds is 10 to 10. 65%, preferably 20-55%. Further, the number average molecular weight of the hydrogenated block copolymer used in the present invention having the above structure is 5000 to 5000.
1,000,000, preferably 10,000 to 500,000, and a more preferable range of 30,000 to 300,000 from the viewpoint of maintaining a balance between the physical properties and processability of the composition of the present invention, and the molecular weight distribution [weight average molecular weight (w) and number average molecular weight (n)] is 10 or less. Furthermore, the molecular structure of the hydrogenated block copolymer may be linear, branched, radial, or any combination thereof. The method for producing these block copolymers is as follows:
As long as it has the above-described structure, it may be obtained by any manufacturing method. For example, a vinyl aromatic compound-conjugated diene compound block copolymer is synthesized in an inert solvent using a lithium catalyst or the like by the method described in Japanese Patent Publication No. 40-23798, and then, for example,
Hydrogenation in an inert solvent by the method described in Japanese Patent Publication No. 8704 and Japanese Patent Publication No. 43-6636, particularly preferably by the method described in Japanese Patent Publication No. 63-4841 and Japanese Patent Publication No. 63-5401. The hydrogenated block copolymer used in the present invention can be synthesized by hydrogenation in the presence of a catalyst. At this time, at least 80% of the aliphatic double bonds based on the conjugated diene compound of the vinyl aromatic compound-conjugated diene compound block copolymer are hydrogenated, and the polymer block mainly composed of the conjugated diene compound is transformed into an olefin. The compound can be converted into a polymer block. In addition, hydrogen of an aromatic double bond based on a vinyl aromatic compound copolymerized into a polymer block A mainly composed of a vinyl aromatic compound and, if necessary, a polymer block B mainly composed of a conjugated diene compound. Although there is no particular restriction on the addition rate, it is preferable that the hydrogenation rate is 20% or less. The amount of unhydrogenated aliphatic double bonds contained in the hydrogenated block copolymer can be easily determined using an infrared spectrophotometer, nuclear magnetic resonance apparatus, or the like. Next, by adding an unsaturated carboxylic acid or a derivative thereof to the above-mentioned hydrogenated block copolymer in a solution state or melt state, with or without the use of a radical initiator, the modified hydrogenated copolymer used in the present invention can be obtained. A block copolymer is obtained. The hydrogenated block copolymer that can be used for such addition modification can be any of those specified above, and the unsaturated carboxylic acid or its derivative added to the hydrogenated block copolymer Examples include maleic acid, halogenated maleic acid, itaconic acid, cis-4-cyclohexene-
1,2-dicarboxylic acid, endo-cis-bicyclo[2,2,1]-5-heptene-2,3-dicarboxylic acid, anhydrides, esters, amides, imides, etc. of these dicarboxylic acids, acrylic acid, methacrylic acid, etc. Examples include derivatives of acids such as crotonic acid and esters of these monocarboxylic acids, such as methyl methacrylate, glycidyl methacrylate, and amides. Among these, maleic anhydride is particularly preferred. The method for producing these modified hydrogenated block copolymers is not particularly limited in the present invention, but the modified hydrogenated block copolymers obtained may contain undesirable components such as gel or have a significantly high melt viscosity. A manufacturing method that increases the number of particles and deteriorates workability is not preferable. A preferred method is, for example, a method in which an unmodified hydrogenated block copolymer is reacted with an unsaturated carboxylic acid or a derivative thereof in the presence of a radical initiator in an extruder. The amount of unsaturated carboxylic acid or its derivative added to the hydrogenated block copolymer is preferably 20 parts by weight or less per 100 parts by weight of the hydrogenated block copolymer, and 10 parts by weight or less.
Parts by weight or less are more preferred. Even if the amount added exceeds 20 parts by weight, there is hardly any increase in the improvement effect compared to when the amount is less than 20 parts by weight. The unsaturated carboxylic acids or derivatives thereof used in the present invention can be used not only alone but also as a mixture of two or more. Next, the polyolefin resin as component (b) of the present invention is used as an effective component for improving processability during molding as well as for improving oil resistance and heat resistance. The polyolefin resin used has a melting point of 120℃
The above crystalline polyolefin resins include, for example, polyethylene (low density, medium density, or high density), polypropylene, and copolymers of propylene and other α-olefins, such as ethylene-propylene copolymers. Examples include polypropylene resins such as -hexene-propylene copolymer and 4-methyl-1-pentene-propylene copolymer, and poly(4-methyl-1-pentene). Among them, polypropylene resin is preferred, and MFR (ASTM-D-1238-L conditions, 230
C) is preferably in the range of 0.1 to 50 g/10 minutes, particularly 0.5 to 30 g/10 minutes. The blending amount of these components (b) can be within the range of 20 to 500 parts by weight, preferably 30 to 250 parts by weight, based on 100 parts by weight of the modified hydrogenated block copolymer of component (a). . If more than 500 parts by weight is added,
The hardness of the resulting composition becomes so high that it not only loses its rubbery feel, but also loses flexibility and significantly deteriorates its rubber elasticity. In addition, if the amount is less than 20 parts by weight, the resulting composition not only has poor moldability but also poor oil resistance, which is not preferable. The olefin copolymer rubber used as component (c) of the present invention is a rubber that is more useful in improving compression set at high temperatures than the modified hydrogenated block copolymer alone of component (a). It is an elastic body of an amorphous random copolymer mainly composed of olefin, such as ethylene/propylene copolymer rubber (EPM) and ethylene/propylene/non-conjugated diene copolymer rubber (EPDM). Such rubbers used in the present invention include:
The above two types of rubber are preferred, and among them, a terpolymer (EPDM) rubber containing a non-conjugated diene component is particularly preferred. Examples of the non-conjugated diene in this case include dicyclopentadiene, cyclooctadiene, methylnorbornene, ethylidenenorbornene, 1,4-hexadiene, etc.
Among them, ethylidene norbornene is preferred. Among this terpolymer (EPDM) rubber,
In the present invention, ethylene/propylene/ethylidene norbornene copolymer rubber is preferred. The Mooney viscosity of the rubber used here, ML 1+4 (100℃) is 10
-120, preferably 40-100. If a material having a Mooney viscosity of less than 10 is used, preferred crosslinking cannot be obtained and no improvement in compression set can be expected at high temperatures, which is undesirable. Moreover, if it exceeds 120, molding processability deteriorates and the appearance of the molded product further deteriorates, which is not preferable.
The iodine value of this rubber is preferably 5 to 30, and the propylene content in the copolymer is 20 to 30.
50% by weight is preferred. The amount of component (c) mentioned above can be suitably selected in the range of 5 to 150 parts by weight, with 50 to 150 parts by weight based on 100 parts by weight of the modified hydrogenated block copolymer of component (a).
~120 parts by weight is preferred. If the amount exceeds 150 parts by weight, the mechanical strength and elongation of the resulting composition will decrease, and the moldability and appearance of the molded product will deteriorate, which is undesirable. Furthermore, when the amount is less than 5 parts by weight, the effect of adding component (c) on rubber elasticity (compression set) at high temperatures is not significant and is equivalent to the case without addition. Next, the reactive alkylphenol/formaldehyde resin used as component (d) of the present invention is generally known as a resol type phenol resin, and is a known reactive alkylphenol that can be used as a resin vulcanizing agent for rubber. / formaldehyde resin. As a preferable example of the resin, for example, general formula (A) (Here, n is an integer of 2 to 5, X is a hydroxyl group or a halogen group, and R is a hydrocarbon group having 1 to 20 carbon atoms.) Examples include reactive alkylphenol/formaldehyde resins represented by the general formula ( It may have a structure in which A) is partially modified. This resin is generally obtained by a condensation reaction between a substituted phenol and formaldehyde in an alkaline medium, or is a phenolic curing resin obtained by a condensation reaction of difunctional phenolic dialcohols. . It may be manufactured by any method, for example, US Pat. No. 3,287,440;
Same No. 3709840, Same No. 2972600 and Same No.
The method for producing a phenol curing resin disclosed in No. 3093613 and the method using a vulcanization system using the same can be used. In addition, specifically as this resin, commercially available Tackirol 201, Tackirol 250-1 (Sumitomo Chemical
Co., Ltd.) Schenectady SP-1045, Schenectady
Examples include SP-1055 (manufactured by Schenectady Chemicals Co.). This resol type phenolic resin can be used alone, or a vulcanization accelerator can be used in combination to adjust the vulcanization rate. Examples of the vulcanization accelerator include metal halides (stannic chloride,
(ferric chloride, aluminum trifluoride), organic halides (chlorinated polyethylene, chlorosulfonated polyethylene, chlorinated paraffin, brominated butyl rubber, chloroprene), etc. can be used. The modified hydrogenated block copolymer composition of the present invention dynamically vulcanized using this component (d) is a hydrogenated block copolymer composition dynamically vulcanized using a known organic peroxide. provides a composition that exhibits superior performance in mechanical strength and compression set at high temperatures (100°C). Here, the dynamically vulcanized modified hydrogenated block copolymer composition is defined as refluxing 1 g of the composition obtained in the present invention in a Soxhlet extractor using boiling xylene for 10 hours, and extracting the residue into 80 mesh. Dry weight of insoluble matter remaining on the mesh after filtering through a wire mesh (g)/Weight of component (a) contained in 1 g of the composition
(c) The gel content (%) expressed as the ratio of the sum of the weights (g) of the components multiplied by 100 is at least 30%, preferably 50% or more (however, this does not include insoluble components such as inorganic fillers). It is characterized in that the vulcanization is performed during melt-kneading of the modified hydrogenated block copolymer composition. In order to obtain such a dynamically vulcanized modified hydrogenated block copolymer composition, the blending amount of component (d) is
0.5 to 30 parts by weight for a total of 100 parts by weight of (a) to (c),
Preferably, it can be selected from 1 to 20 parts by weight, and the gel content can be adjusted.
Further, when a vulcanization accelerator is used, 0.2 to 15 parts by weight of the vulcanization accelerator can be optionally added to 100 parts by weight of components (a) to (c) in total. In the present invention, the method for producing the dynamically vulcanized modified hydrogenated block copolymer composition can be any method used in the production of ordinary resin compositions or rubber compositions, such as single-screw extruder, twin-screw extruder, etc. The composition can be compounded using a melt kneading machine such as a machine, a Banbury mixer, a heating roll, a Brabender, or various kneaders. At this time, preheat ingredients (a) to (c) to 150 to 300℃.
If the scorch time of the (d) component used is long, the (a) component is heated and melt-kneaded at a temperature of It is also possible to adopt a method in which components (d) are melt-kneaded in advance, a vulcanization accelerator is added, and the mixture is dynamically vulcanized while being melt-kneaded. At this time as well, the temperature setting of the processing equipment can be suitably selected from 150 to 300°C. Therefore, there are no particular limitations on the production method as long as it has the characteristics of the dynamically vulcanized modified hydrogenated block copolymer composition described above. Further, a rubber softener may be added to the composition of the present invention as required. The rubber softener referred to here is a softener that is generally used to improve the flexibility, rigidity, fluidity, etc. of rubber and plastics, and includes petroleum-based softeners, aliphatic softeners, and synthetic organic compounds. For example, paraffinic process oil, naphthenic process oil, aromatic process oil, vaseline, paraffin, polyethylene wax, linseed oil, soybean oil, ester plasticizers such as dioctyl phthalate, dioctyl adipate, etc. can be mentioned. Among these, process oils are preferred, and paraffinic process oils are particularly preferred. These rubber softeners may be blended into the composition of the present invention, or may be blended in advance with at least one of the components (a), (b), and (c).
After mixing components (a), (b), (c) and (d) with a rubber softener, dynamic vulcanization as referred to in the present invention may be performed. The above-mentioned rubber softener is added as necessary to impart flexibility and fluidity to the composition of the present invention. There is no particular restriction on the amount of the compound added, but it is preferably 500 parts by weight or less per 100 parts by weight of the modified hydrogenated block copolymer (a). If the amount exceeds 500 parts by weight, the softener may bleed out or the mechanical strength may decrease, which may lead to unfavorable results. It is also possible to add an unmodified hydrogenated block copolymer to the composition of the present invention. The unmodified hydrogenated block copolymer may be the unmodified modified hydrogenated block copolymer used in the present invention, or may be another hydrogenated block copolymer. Two or more types may be used. These unmodified hydrogenated block copolymers may be blended into the composition of the present invention, and may also be used as component (a), component (b) and component (c).
It may be pre-blended with at least one of the following ingredients: (a) ingredient, (b) ingredient, (c) ingredient and (d) ingredient.
After mixing the components and these hydrogenated block copolymers, the dynamic vulcanization of the present invention may be performed. The amount of these unmodified hydrogenated block copolymers to be blended is not particularly limited, but is preferably 300 parts by weight or less per 100 parts by weight of the modified hydrogenated block copolymer of component (a). If the amount exceeds 300 parts by weight, the heat resistance and oil resistance of the composition of the present invention may deteriorate. The composition of the present invention may also contain fillers, such as calcium carbonate, calcium silicate,
carbon black, talc, clay, kaolin,
Silica, magnesium hydroxide, mica, barium sulfate, natural silicic acid, titanium oxide, magnesium oxide, zinc oxide, diatomaceous earth, etc. can be blended. In addition, the composition of the present invention may contain antioxidants, flame retardants, ultraviolet absorbers, light stabilizers,
A lubricant, glass fiber, carbon fiber, nylon fiber, etc. can be blended. Furthermore, the composition of the present invention can be made into a new composite by forming it into a composition with various thermoplastic resins. Examples of thermoplastic resins include polyethylene (low density, medium density, high density), polypropylene. , polybutene ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, polyolefin polymers such as chlorinated polyethylene, polystyrene (general use, impact resistant use), ABS
Resins, polystyrene polymers such as AS resins and MBS resins, polyvinyl chloride polymers, polyamide polymers, thermoplastic polyester polymers, polyphenylene sulfide polymers, polyphenylene ether polymers, Examples include polycarbonate polymers, polyacetal polymers, polyurethane polymers, and the like. The dynamically vulcanized modified hydrogenated block copolymer of the present invention can be molded using commonly used thermoplastic resin molding machines, including injection molding, extrusion molding, blow molding, and calendar molding. Various molding methods such as [Effects of the Invention] The dynamically vulcanized modified hydrogenated block copolymer composition obtained by the present invention is a thermoplastic elastomer composition with excellent mechanical strength, and has excellent heat-resistant creep performance and high temperature resistance. Because it has excellent heat resistance and oil resistance, such as compression set, it can be suitably used for automobile parts, home appliances, wire coatings, various industrial parts, etc., and can also be used for leisure goods, miscellaneous goods, etc. (Example) Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. In addition, evaluation of various basic physical properties in Examples was performed by the following method. [Method for measuring basic physical properties] (1) Tensile properties: JIS K-6301, a 2 mm thick injected sheet was used as the sample, and a No. 3 dumbbell was used as the test piece. (2) Hardness: JIS A type as described in JIS K-6301 (3) Compression set: JIS K-6301, 25% compression at 100°C for 22 hours (4) Oil resistance: No. 3 as described in JIS K-6301 Using oil, test specimens of 50mm x 50mm x 2mm thick were heated at 70℃ for 2 hours.
It was immersed in oil for a time No. 3, and the weight change before and after immersion was determined. Reference Example A Production of hydrogenated block copolymer (A-1); Polybutadiene-polystyrene-hydrogenated by the method described in Japanese Patent Publication No. 63-4841
Has a hydrogenated polybutadiene-polystyrene structure, with a bound styrene content of 28% and a number average molecular weight.
A hydrogenated block copolymer was obtained with a molecular weight distribution of 1.04, a 1,2-vinyl bond content of 37% in the polybutadiene portion before hydrogenation, and a hydrogenation rate of 99% in the polybutadiene portion. (A-2); Similar to (A-1), it has a polystyrene-hydrogenated polybutadiene-polystyrene structure, with a bound styrene content of 22%, a number average molecular weight of 64,000, a molecular weight distribution of 1.03, and a A hydrogenated block copolymer was obtained in which the amount of 1,2-vinyl bonds in the polybutadiene portion was 55% and the hydrogenation rate in the polybutadiene portion was 100%. (A-3); Similar to (A-1), it has the structure of (polystyrene hydrogenated polybutadiene-polystyrene) -4Si , the amount of bound styrene is 45%, the number average molecular weight is 109000, the molecular weight distribution is 1.44, 1,2-vinyl bond amount in polybutadiene part before hydrogenation 22
%, and a hydrogenated block copolymer with a hydrogenation rate of 100% in the polybutadiene portion was obtained. Reference Example B Production of modified hydrogenated block copolymer (B-1); 2.0 parts by weight of maleic anhydride, 2,5-dimethyl per 100 parts by weight of the hydrogenated block copolymer obtained in (A-1). - Mixing 0.2 parts by weight of 2,5-di(tert-butylperoxy)hexane,
Addition modification reaction was carried out at a temperature of 250°C in a twin-screw extruder with a diameter of 30 mm. The obtained modified hydrogenated block copolymer contained 1.5 parts by weight of maleic anhydride per 100 parts by weight of the polymer. (B-2); 2.5 parts by weight of maleic anhydride and 0.25 parts by weight of dicumyl peroxide were mixed per 100 parts by weight of the hydrogenated block copolymer obtained in (A-2), and the mixture was twin-screw extruded to a diameter of 30 mm. The addition modification reaction was carried out at a temperature of 250°C in a machine with forced venting (740 mmHg vacuum). The obtained modified hydrogenated block copolymer contained 1.8 parts by weight of maleic anhydride per 100 parts by weight of the polymer. (B-3); 4.0 parts by weight of maleic anhydride and 0.6 parts by weight of dicumyl peroxide were mixed per 100 parts by weight of the hydrogenated block copolymer obtained in (A-3), and the mixture was twin-screw extruded to a diameter of 45 mm. The addition modification reaction was carried out in a machine at a temperature of 240°C with forced venting (740 mmHg vacuum). The obtained modified hydrogenated block copolymer contained 2.6 parts by weight of maleic anhydride per 100 parts by weight of the polymer. Examples 1 to 7, Comparative Examples 1 to 4 (B-1) obtained in Reference Example B as component (a)
, Asahi Kasei Co., Ltd. polypropylene as component (b),
E1100 (MFR (230℃, L) = 0.5g/10min), (c)
EPDM manufactured by Japan EP Rubber Co., Ltd. as an ingredient,
EP57P, (ML 1+4 (100℃) = 88, iodine value = 15)
and Tackirol, a heat-reactive alkylphenol/formaldehyde resin manufactured by Sumitomo Chemical Co., Ltd., as component (b).
-201 was used, and stannous chloride (SnCl 2 .2H 2 O) was used as a vulcanization accelerator. Idemitsu Kosan Co., Ltd. is also used as a rubber softener to adjust hardness and fluidity.
Diana Process Oil PW380 (paraffin oil) was used. Components (a) to (c) and a rubber softener are mixed in advance in a Herschel mixer, and then melt-kneaded in a 30 mmφ diameter twin-screw extruder at a temperature of 210°C to produce denatured water before dynamic vulcanization. A block copolymer composition was obtained.
Component (d) and a vulcanization accelerator were blended in predetermined amounts to 100 parts by weight of this composition, and the mixture was melt-kneaded again at a temperature of 210°C in a twin-screw extruder with a diameter of 30 mm to perform dynamic vulcanization. A block copolymer was obtained. These compositions were injection molded and their basic physical properties were measured. The composition of Comparative Example 2 had poor moldability and poor surface condition. The composition of Comparative Example 3 could not be injection molded, so it was compression molded and its physical properties were measured. The results are shown in Table 1. As is clear from Table 1, the compositions within the scope of the present invention not only have elastomeric properties such as strength and elongation, but also have better heat resistance (compression set at 100°C) than compositions outside the scope of the present invention. Excellent oil resistance and moldability. Examples 8 to 12, Comparative Examples 5 to 10 (B-2) obtained in Reference Example B as component (a)
, Asahi Kasei Co., Ltd. polypropylene as component (b),
Using M1300 (MFR (230℃, L) = 4g/10 minutes)
The same components as in Examples 1 to 7 were used as component (c), component (d), vulcanization accelerator, and rubber softener.

【表】【table】

【表】 実施例1〜7と同様にして動的加硫した変性水
添ブロツク共重合体組成物を得、射出成形して物
性を測定した。 また比較例7〜10では、(a)成分として参考例A
で得られた、未変性の水添ブロツク共重合体(A
−2)を用い、有機パーオキサイド(2,5−ジ
メチル−2,5−ジ(第3ブチルパーオキシ)ヘ
キサン)を2.0重量部およびジビニルベンジル
(DVB)6重量部用いて動的に加硫した以外は実
施例と同様にした。 以上の結果を表2に示した。表2より本発明の
範囲内の組成物は範囲外の組成物に比べて機械的
強度、伸び等のエラストマーとしての性質が優れ
るだけでなく、耐熱性、耐油性にも優れることが
判明した。また、本発明の組成物は公知技術の有
機パーオキサイドで動的に加硫した組成物と比べ
ても、機械的強度、耐油性において優れることも
明らかである。
[Table] Modified hydrogenated block copolymer compositions dynamically vulcanized in the same manner as in Examples 1 to 7 were obtained, injection molded, and their physical properties were measured. In addition, in Comparative Examples 7 to 10, Reference Example A was used as the component (a).
An unmodified hydrogenated block copolymer (A
-2), dynamically vulcanized using 2.0 parts by weight of organic peroxide (2,5-dimethyl-2,5-di(tert-butylperoxy)hexane) and 6 parts by weight of divinylbenzyl (DVB). The procedure was the same as in the example except for the following. The above results are shown in Table 2. From Table 2, it was found that compositions within the scope of the present invention not only have superior elastomer properties such as mechanical strength and elongation, but also superior heat resistance and oil resistance, compared to compositions outside the scope. It is also clear that the composition of the present invention is superior in mechanical strength and oil resistance, even when compared to compositions dynamically vulcanized with known organic peroxides.

【表】【table】

【表】 実施例13〜16、比較例11 (a)成分として参考例Bで得られた(B−3)を
(d)成分として住友化学(株)製、熱反応型臭素化アル
キルフエノール/ホルムアルデヒド樹脂である
Tackirol250−を用い、加硫促進剤は何も用い
なかつた。 (b)成分、(c)成分は実施例1〜7と同様のものを
用いた。ゴム用軟化剤も実施例1〜7と同様のも
のを用いたが実施例16ではゴム用軟化剤は用い
ず、実験例Aで得られた(A−3)を用いた。 (d)成分以外の全ての成分をヘンシエルミキサー
で混合し、実施例1〜7と同様にして動的加硫を
する前の変性水添ブロツク共重合体組成物を得、
実施例1〜7と同様にして動的加硫した変性水添
ブロツク共重合体組成物を得、射出成形して物性
を測定した。 結果を表3に示した。表3より臭素化アルキル
フエノール/ホルムアルデヒド樹脂を用いて動的
加硫した場合も、機械的強度、耐熱性、耐油性に
優れた組成物を与えることが明らかとなつた。
[Table] Examples 13 to 16, Comparative Example 11 (B-3) obtained in Reference Example B was used as component (a).
Component (d) is a heat-reactive brominated alkylphenol/formaldehyde resin manufactured by Sumitomo Chemical Co., Ltd.
Tackirol 250- was used and no vulcanization accelerator was used. The same components as in Examples 1 to 7 were used as the component (b) and the component (c). The same rubber softener as in Examples 1 to 7 was used, but in Example 16, the rubber softener (A-3) obtained in Experimental Example A was used instead of the rubber softener. All components other than component (d) were mixed in a Henschel mixer, and a modified hydrogenated block copolymer composition before dynamic vulcanization was obtained in the same manner as in Examples 1 to 7.
Modified hydrogenated block copolymer compositions were dynamically vulcanized in the same manner as in Examples 1 to 7, injection molded, and their physical properties were measured. The results are shown in Table 3. Table 3 reveals that dynamic vulcanization using a brominated alkylphenol/formaldehyde resin also provides a composition with excellent mechanical strength, heat resistance, and oil resistance.

【表】 実施例 17 (a)成分として参考例Bで得られた(B−1)を
100重量部、(b)成分として旭化成(株)製ポリプロピ
レン、E1100を100重量部、(c)成分として日本イ
ーピーラバー(株)製EPDM、EP57Pを100重量部、
ゴム用軟化剤として出光興産(株)製ダイアナプロセ
スオイルPW380を200重量部の(a)〜(c)および軟化
剤をヘンシエルミキサーで混合し、30mmφ径の二
軸押出機にて220℃の温度で溶融混練し、動的加
硫をする前の変性水添ブロツク共重合体組成物を
得た。この組成物100重量部あたり(d)成分として
住友化学(株)製、熱反応型アルキルフエノール/ホ
ルムアルデヒド樹脂Tackirol−201を8重量部お
よび2重量部の3フツ化アルミニウム(AlF3
を添加し再び上記の押出機にて230℃の温度で溶
融混練し、動的加硫した変性水添ブロツク共重合
体組成物を得た。 この組成物の物性を測定したところ、硬度80、
引張強度196Kg/cm2、伸び650%、100℃の圧縮永
久歪み42%、耐油性10%であつた。
[Table] Example 17 (B-1) obtained in Reference Example B was used as the (a) component.
100 parts by weight, 100 parts by weight of polypropylene and E1100 manufactured by Asahi Kasei Corporation as component (b), 100 parts by weight of EPDM and EP57P manufactured by Japan EP Rubber Co., Ltd. as component (c),
As a rubber softener, 200 parts by weight of Diana Process Oil PW380 manufactured by Idemitsu Kosan Co., Ltd. (a) to (c) and the softener were mixed in a Henschel mixer, and the mixture was heated to 220°C in a twin screw extruder with a diameter of 30 mm. A modified hydrogenated block copolymer composition prior to dynamic vulcanization was obtained by melt-kneading at a high temperature. Per 100 parts by weight of this composition, 8 parts by weight of heat-reactive alkylphenol/formaldehyde resin Tackirol-201 manufactured by Sumitomo Chemical Co., Ltd. and 2 parts by weight of aluminum trifluoride (AlF 3 ) were used as component (d).
was added and melt-kneaded again at a temperature of 230° C. in the extruder described above to obtain a dynamically vulcanized modified hydrogenated block copolymer composition. When the physical properties of this composition were measured, the hardness was 80;
The tensile strength was 196 Kg/cm 2 , the elongation was 650%, the compression set at 100°C was 42%, and the oil resistance was 10%.

Claims (1)

【特許請求の範囲】 1 (a) ビニル芳香族化合物を主体とする少なく
とも1個の重合体ブロツクAと、共役ジエン化
合物を主体とする少なくとも1個の重合体ブロ
ツクBとから成るブロツク共重合体を水素添加
して得られる水添ブロツク共重合体にカルボン
酸基またはその誘導体基を含有する分子単位が
結合した変性水添ブロツク共重合体
100重量部、 (b) ポリオレフイン系樹脂 20〜500重量部及び (c) オレフイン系共重合体ゴム 5〜150重量部 からなる変性水添ブロツク共重合体組成物100重
量部に反応型アルキルフエノール/ホルムアルデ
ヒド樹脂0.5〜30重量部を配合し、加熱溶融下で
混練して動的加硫して得た変性水添ブロツク共重
合体組成物。
[Claims] 1 (a) A block copolymer consisting of at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. A modified hydrogenated block copolymer in which a molecular unit containing a carboxylic acid group or its derivative group is bonded to a hydrogenated block copolymer obtained by hydrogenating
(b) 20 to 500 parts by weight of polyolefin resin, and (c) 5 to 150 parts by weight of olefin copolymer rubber. A modified hydrogenated block copolymer composition obtained by blending 0.5 to 30 parts by weight of formaldehyde resin, kneading it under heating and melting, and dynamically vulcanizing it.
JP9825788A 1988-04-22 1988-04-22 Dynamically vulcanized, modified, hydrogenated block copolymer composition Granted JPH01271452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9825788A JPH01271452A (en) 1988-04-22 1988-04-22 Dynamically vulcanized, modified, hydrogenated block copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9825788A JPH01271452A (en) 1988-04-22 1988-04-22 Dynamically vulcanized, modified, hydrogenated block copolymer composition

Publications (2)

Publication Number Publication Date
JPH01271452A JPH01271452A (en) 1989-10-30
JPH0443937B2 true JPH0443937B2 (en) 1992-07-20

Family

ID=14214905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9825788A Granted JPH01271452A (en) 1988-04-22 1988-04-22 Dynamically vulcanized, modified, hydrogenated block copolymer composition

Country Status (1)

Country Link
JP (1) JPH01271452A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364162B2 (en) * 1997-12-17 2003-01-08 住友ゴム工業株式会社 Rubber roller using rubber composition and method of manufacturing the rubber roller
JP4231367B2 (en) * 2003-07-17 2009-02-25 リケンテクノス株式会社 Thermoplastic elastomer composition
JP4231368B2 (en) * 2003-07-17 2009-02-25 リケンテクノス株式会社 Thermoplastic elastomer composition
KR100632603B1 (en) * 2003-08-20 2006-10-09 에스케이 주식회사 Thermoplastic Elastomer Compositions and Method of Making the Same
JP2009013429A (en) * 2008-10-22 2009-01-22 Riken Technos Corp Thermoplastic elastomer composition
JP5974825B2 (en) * 2012-10-26 2016-08-23 住友ベークライト株式会社 Method for producing low dust generation powder resin mixture and method for producing molded product
WO2013132754A1 (en) * 2012-03-07 2013-09-12 住友ベークライト株式会社 Method for producing resin molded article, method for producing resin composition, resin molded article, resin composition, low-dust-emitting resin powder, and method for obtaining low-dust-emitting resin

Also Published As

Publication number Publication date
JPH01271452A (en) 1989-10-30

Similar Documents

Publication Publication Date Title
AU604691B2 (en) Method of producing thermoplastic elastomer compositions
WO1991019762A1 (en) Thermoplastic resin composition
JPH0358381B2 (en)
US4801651A (en) Method of manufacture of thermoplastic elastomer compounds
JPH11158346A (en) Thermoplastic elastomer with excellent oil resistance
AU598808B2 (en) Thermoplastic elastomer composition
JPH043779B2 (en)
JPH0349927B2 (en)
JPH0443937B2 (en)
JP3102844B2 (en) Thermoplastic elastomer resin composition and method for producing the composition
JPH0149423B2 (en)
JP4909467B2 (en) Thermoplastic elastomer composition and method for producing the same
JP3967004B2 (en) Thermoplastic elastomer composition and process for producing the same
JPH0149424B2 (en)
JP3984073B2 (en) Thermoplastic elastomer composition
JP3875551B2 (en) Thermoplastic elastomer composition
JPH0635520B2 (en) Composition of thermoplastic high elasticity elastomer
JP3480022B2 (en) Thermoplastic elastomer composition
JPH0474378B2 (en)
JPH0578582B2 (en)
JPH05230322A (en) Hydrogenated block copolymer composition
JPH0539386A (en) Hydrogenated block copolymer composition excellent in oil resistance
JP3303005B2 (en) Thermoplastic elastomer composition
JP3984072B2 (en) Thermoplastic elastomer composition
JPH0262584B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20080720